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Abstract. In this work, we present SeqFormer for video instance seg-
mentation. SeqFormer follows the principle of vision transformer that
models instance relationships among video frames. Nevertheless, we ob-
serve that a stand-alone instance query suffices for capturing a time
sequence of instances in a video, but attention mechanisms shall be done
with each frame independently. To achieve this, SeqFormer locates an
instance in each frame and aggregates temporal information to learn a
powerful representation of a video-level instance, which is used to pre-
dict the mask sequences on each frame dynamically. Instance tracking
is achieved naturally without tracking branches or post-processing. On
YouTube-VIS, SeqFormer achieves 47.4 AP with a ResNet-50 backbone
and 49.0 AP with a ResNet-101 backbone without bells and whistles.
Such achievement significantly exceeds the previous state-of-the-art per-
formance by 4.6 and 4.4, respectively. In addition, integrated with the
recently-proposed Swin transformer, SeqFormer achieves a much higher
AP of 59.3. We hope SeqFormer could be a strong baseline that fosters
future research in video instance segmentation, and in the meantime,
advances this field with a more robust, accurate, neat model. The code
is available at https://github.com/wjf5203/SeqFormer.
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1 Introduction

Video Instance Segmentation (VIS) [45,30] is an emerging vision task that
aims to simultaneously perform detection, classification, segmentation, and track-
ing of object instances in videos. Compared to image instance segmentation [11],
video instance segmentation is much more challenging since it requires accurate
tracking of objects across an entire video.

Previous VIS algorithms can be roughly divided into two categories. The
first mainstream follows the tracking-by-detection paradigm, extending image
instance segmentation models with a tracking branch [45,4,46,21,28,10]. These
methods first predict candidate detection and segmentation frame-by-frame, and
then associate them by classification [45,46] or re-identification [4,21] to track
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Fig. 1. Performance vs. Model Size. All results are reported with single model and
single-scale inference. SeqFormer significantly outperforms the previous method with
similar parameters.

the instance through a video. Nevertheless, the tracking process is sensitive to
occlusions and motion blur that are common in videos. Another mainstream
is to predict clip-level instance masks by taking a video clip [2,3] or the en-
tire video [14,39] as input. It divides a video into multiple overlapping clips
and generates mask sequences with clip-by-clip matching on overlapping frames.
More recently, VisTR [39] first adapts transformer [37] to VIS and uses instance
queries to obtain instance sequence from video clips. After that, IFC [14] im-
proves the performance and efficiency of VisTR by building communications
between frames in a transformer encoder.

In this paper, we present Sequential Transformer (SeqFormer), which fol-
lows the principle of vision transformer [5,39] and models instance relationships
among video frames. As in [14], we observe that a stand-alone instance query
suffices although an object may be of different positions, sizes, shapes, and vari-
ous appearances. Nevertheless, it is witnessed that the attention process shall be
done with each frame independently, so that the model will attend to locations
following with the movement of instance through the video. This observation
aligns with the conclusion drawn in action recognition [47,29], where the 1D
time domain and 2D space domain have different characteristics and should be
handled in a different fashion.

Considering the movement of an instance in a video, a model is supposed to
attend to different spatial locations following the motion of the instance. We de-
compose the shared instance query into frame-level box queries for the attention
mechanism to guarantee that the attention focuses on the same instance on each
frame. The box queries are kept on each frame and used to predict the bounding
box sequences. Then the features within the bounding boxes are aggregated to
refine the box queries on the current frame. By repeating this refinement through



SeqFormer for Video Instance Segmentation 3

decoder layers, SeqFormer locates the instance in each frame in a coarse-to-fine
manner, in a similar way to Deformable DETR [49].

However, to mitigate redundant information from non-instance frames, those
box queries are aggregated in a weighted manner, where the weights are end to
end learned upon the box embeddings. The generated representation, which re-
tains richer object cues, is used to predict the category and generate dynamic
convolution weights of mask head. Since the box sequences are predicted and
refined in the decoder, SeqFormer naturally and succinctly establishes the asso-
ciation of instances across frames.

In summary, SeqFormer enjoys the following advantages:

– SeqFormer is a neat and efficient end-to-end framework. Given an arbitrary
long video as input, SeqFormer predicts the classification results, box se-
quences, and mask sequences in one step without the need for additional
tracking branches or hand-craft post-processing.

– As shown in Fig. 1, SeqFormer sets the new state-of-the-art performance
on YouTube-VIS 2019 benchmark [45]. SeqFormer achieves 47.4 AP with a
ResNet-50 backbone and 49.0 AP with a ResNet-101 backbone without bells
and whistles. Such achievement significantly exceeds the previous state-of-
the-art performance by 4.6 and 4.4, respectively. With a ResNext-101 back-
bone, SeqFormer achieves 51.2 AP, which is the first time that an algorithm
achieves an AP above 50. In addition, integrated with the recently-proposed
Swin transformer, SeqFormer achieves a much higher AP of 59.3.

– With the query decomposition mechanism, SeqFormer attends to locations
following with the movement of instance through the video and learns a
powerful representation for instance sequences.

– The code and the pre-trained models are publicly available. We hope the
SeqFormer, with the idea of making attention follow with the movement
of object, could be a strong baseline that fosters future research in video
instance segmentation, and in the meantime, advances this field with a more
robust, accurate, neat model.

2 Related Work

Image Instance Segmentation Instance Segmentation is the most fundamen-
tal and challenging task in computer vision, which aims to detect every instance
and segment every pixel respectively in static images. Instance segmentation
was dominated by Mask R-CNN architecture [11,22,13] for a long time, Mask R-
CNN [11] directly introduces fully convolutional mask head to Faster R-CNN [31]
in a multi-task learning manner. Recently, one stage models [6,38,41,35] emerged
as excellent frameworks for instance segmentation. Solo [38] and CondInst [35]
propose one stage instance segmentation pipeline and achieve comparable per-
formance. CondInst [35] proposes to dynamically generate the mask head param-
eters for each instance, which is used to predict the mask of the corresponding
instance. QueryInst [8] proposes a query based instance segmentation framework
based on Sparse R-CNN [34], which also take advantage of the Dynamic mask
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head. Dynamic mask head can be efficiently adopted into video segmentation
tasks because instances with the same identity on different frames can share the
same mask head parameters.

Video Instance Segmentation. Video instance segmentation is extended from
the traditional image instance segmentation, and aims to simultaneously segment
and track all object instances in the video sequence. The baseline method Mask-
Track R-CNN [45] is built upon Mask R-CNN [11] and introduces a tracking head
to associate each instance in the video. SipMask [4] proposes a spatial preser-
vation module to generate spatial coefficients for mask predictions based on the
one-stage FCOS [36]. STMask [17] proposes a spatial feature calibration to ex-
tract features for frame-level instance segmentation on each frame, and further
introduces a temporal fusion module to aggregate temporal information from ad-
jacent frames. STEm-Seg [2] models a video clip as a single 3D spatial-temporal
volume and enables inference procedure based on clustering. CrossVIS [46] pro-
poses a learning scheme that uses the instance feature in the current frame
to pixel-wisely localize the same instance in other frames. MaskProp [3] and
Propose-Reduce [18] take advantage of mask propagation, which can achieve
high performance, but it is very computationally intensive.

Transformers. Transformer [37] was first proposed for the sequence-to-sequence
machine translation task and became the basic component in most Natural Lan-
guage Processing tasks. Recently, Transformer has been successfully applied in
many visual tasks such as Object detection [5,49,34], segmentation [42,48,39,40],
tracking [26,33,44], video recognition [29,16,1,23]. VIT[7] firstly applies trans-
former in image recognition and model an image as sequence of patches, which
achieves comparable performance with traditional CNN architecture. DETR [5]
proposes a new detection paradigm upon transformers, which simplifies the tra-
ditional detection framework and abandons the hand-crafted post-processing
module. Deformable DETR [49] achieves better performance by using local at-
tention and multi-scale feature maps. VisTR [39] is the first method that adapts
Transformer to the VIS task. However, VisTR has a fixed number of input queries
hardcoded by video length and maximum number of instances. Each query cor-
responds to an object on every single frame. In our method, instances with the
same identity share a same query, which aggregates information across the video
and learn a global feature representation for efficient segmentation. IFC [14]
improves the performance and efficiency of VisTR by building communications
between frames in the transformer encoder instead of flatting the space-time
features into one dimension, but it still flatten the space-time features for the
transformer decoder. Our model is designed to carry out the instance feature
capturing independently on different frames, which makes the model attend to
locations following with the movement of instance through the video.
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Fig. 2. The overall architecture of SeqFormer. Given the feature maps of input frames,
the initial instance query is decomposed into frame-level box queries at the first decoder
layer. The box queries are kept on each frame and serve as anchors without interacting
with each other. The features extracted by box queries from each frame are aggregated
to the instance query after each decoder layer, which is used for predicting dynamic
mask head parameters. Then the mask head convolves the encoded feature maps to
generate the mask sequences.

3 Method

3.1 Architecture

The network architecture is visualized in Fig. 2. SeqFormer has a CNN back-
bone and a transformer encoder for extracting feature maps from each frame
independently. Next, a transformer decoder is adapted to locate the instance se-
quences and generate a video-level instance representation. Finally, three output
heads are used for instance classification, instance sequences segmentation, and
bounding box prediction, respectively.

Backbone. Given an input video xv ∈ RT×3×H×W with 3 color channels and
T frames of resolution H ×W , the CNN backbone (e.g., ResNet [12]) extracts
feature maps for each frame independently.

Transformer Encoder. First, a 1×1 convolution is used to reduce the channel
dimension of the all the feature maps to C = 256, creating new feature maps
{f′t}Tt=1, f

′
t ∈ RC×H′×W ′

, t ∈ [1, T ]. After adding fixed positional encodings [5],
the transformer encoder performs deformable attention [49] on the feature maps,
resulting in the output feature maps {ft}Tt=1, with the same resolutions as the
input. To perform attention mechanisms on each frame independently, we keep
the spatial and temporal dimensions of feature maps rather than flattening them
into one dimension.
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Query Decompose Transformer Decoder. Given a video, humans can ef-
fortlessly identify every instance and associate them through the video, despite
the various appearance and changing positions on different frames. If an instance
is hard to recognize due to occlusion or motion blur in some frames, humans can
still re-identify it through the context information from other frames. In other
words, for the same instance on different frames, humans treat them as a whole
instead of individuals. This is the crucial difference between video and image
instance segmentation. Motivated by this, we propose Query Decompose Trans-
former Decoder, which aims to learn a more and robust video-level instance
representation across frames.

We introduce a fixed number of learnable embeddings to query the features
of the same instance from each frame, termed Instance Queries. Different from
the instance queries corresponding to frame-level instances in VisTR [39], which
has a fixed number of input queries hardcoded by video length and maximum
number of instances, our instance queries correspond to video-level instances.
Since the changing appearance and position of the instance, the model should
attend to different exact spatial locations of each frame. To achieve this goal,
we propose to decompose the instance query into T frame-specific box queries,
each of which serves as an anchor for retrieving and locating features on the
corresponding frame.

At the first decoder layer, an instance query Iq ∈ RC is used to query the
instance features on features maps of each frame independently:

B1
t = DeformAttn(Iq, ft), (1)

where B1
t ∈ RC is the box query on frame t from the 1-st decoder layer, and

DeformAttn indicates deformable attention module in [49] . Given a query
element and the frame feature map ft, deformable attention only attends to a
small set of key sampling points. At the l-th (l > 1) layer, the box query Bl−1

t

from last layer is used as input:

Bl
t = DeformAttn(Bl−1

t , ft), (2)

and the instance query aggregates the temporal features by a weighted sum of
all the box queries at the end of every decoder layers, where the weights are end
to end learned upon the box embedding:

Ilq =

∑T
t=1 B

l
t × FC(Bl

t)∑T
t=1 FC(B

l
t)

+ Il−1
q . (3)

After Nd decoder layers, we get an instance query and T box queries for each
instance. The instance query is a shared video-level instance representation, and
the box query contains the position information for predicting the bound box on
each frame. We define the instance query INd

q and box queries {BNd
t }Tt=1 from

the last layer of decoder as output instance embedding and box embeddings
{BEt}Tt=1,BEt ∈ RN×d.
Output Heads. As shown in Fig. 2, we add mask head, box head, class head
on the top of the decoder outputs. A linear projection acts as the class head
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to produce the classification results. Given the instance embedding from the
transformer decoder with index σ(i), class head output a class probability of
class ci (which may be ∅) as p̂σ(i)(ci) .

The box head is a 3-layer feed forward network (FFN) with ReLU activation
function and a linear projection layer. For BEt of each frame, the FFN predicts
the normalized center coordinates, height and width of the box w.r.t. the frame.
Thus, for the instance with index σ(i), we denote the predicted box sequence as

b̂σ(i) = {b̂(σ(i),1), b̂(σ(i),2), ..., b̂(σ(i),T )}.
As for mask head, we leverage dynamic convolution [35] as our mask head.

The output instance embedding of decoder contains the information of instance
on all frames, thus it can be regarded as a more robust instance representation.
We can use instance embedding to efficiently generate the entire mask sequences.
First, a 3-layer FFN encodes the instance embedding into parameters ωi of mask
head with index σ(i), which has three 1 × 1 convolution layers. The instances
with the same identity on different frames share the same mask head parameters,
which makes the segmentation very efficient. Each convolution layer has 8 chan-
nels and uses ReLU as the activation function except for the last one, following
[35]. As shown in Fig. 2, there is a mask branch that provides the feature maps
for mask head to predict instance masks. We employ an FPN-like architecture
as the mask branch to make use of multi-scale feature maps from transformer

encoder and generate feature maps sequences {F̂
1

mask, F̂
2

mask, ..., F̂
T

mask} that are
1
8 of the input resolution and have 8 channels for each frame independently. Then

the feature map F̂
t

mask is concatenated with a map of the relative coordinates

from center of b̂(σ(i),t) in corresponding frames to provide a location cue for

predicting the instance mask. Thus we get the {Ft
mask}Tt=1,F

t
mask ∈ R10×H

8 ×W
8 .

The mask head performs convolution on these high-resolution sequence feature
maps Ft

mask to predict the mask sequences:

{mt
i}Tt=1 = {MaskHead(Ft

mask, ωi)}Tt=1, (4)

where MaskHead performs three-layer 1 × 1 convolution on given feature maps
with the kernels reshaped from ω. By sharing the same mask head parameters for
instances with the same identity on different frames, our method can efficiently
perform instance segmentation on each frame. Similar to DETR [5], we add
output heads and Hungarian loss after each decoder layer as an auxiliary loss to
supervise the training stage.

3.2 Instance Sequences Matching and Loss

Our method predicts a fixed-size set of N predictions in a single pass through
the decoder, and N is set to be significantly larger than the number of instances
in a video. To train our network, we first need to find a bipartite graph matching
between the prediction and the ground truth. Let y denotes the ground truth set
of video-level instance, and ŷi = {ŷi}Ni=1 denotes the predicted instance set. Each
element i of the ground truth set can be seen as yi = {ci, (bi,1,bi,2, ...,bi,T )},
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where ci is the target class label including ∅, and bi,t ∈ [0, 1]4 is a vector that
defines ground truth bounding box center coordinates and its relative height and
width in the frame t. For the predictions of instance with index σ(i), we take the

output of class head p̂σ(i)(ci) and predicted bounding box b̂σ(i). Then we define
the pair-wise matching cost between ground truth yi and a prediction with index
σ(i).

Lmatch(yi, ŷσ(i)) = −p̂σ(i)(ci) + Lbox(bi, b̂σ(i)), (5)

where ci ̸= ∅. Note that Eq. 5 does not consider the similarity between mask
prediction and mask ground truth, as such mask-level comparison is computa-
tionally expensive. To find the best assignment of a ground truth to a prediction,
we search for a permutation of N elements σ ∈ Sn with the lowest cost:

σ̂ = argmin
σ∈Sn

N∑
i

Lmatch(yi, ŷσ(i)). (6)

Following prior work[5,39], the optimal assignment is computed with the
Hungarian algorithm [15]. Given the optimal assignment σ̂ , we use Hungarian
loss for all matched pairs to train our network:

LHung(y, ŷ) =

N∑
i=1

[
− log p̂σ̂(i)(ci) + 1{ci ̸=∅}Lbox(bi, b̂σ̂(i))

+1{ci ̸=∅}Lmask(mi, m̂σ̂(i))
]
.

(7)

For Lbox, we use a linear combination of the L1 loss and the generalized IoU
loss [32]. The mask sequences {mt

i}Tt=1 from mask head with 1
8 of the video

resolution which may loss some details, thus we upsample the predicted mask
to 1

4 of the video resolution, and downsample the ground truth mask to the
same resolution for mask loss, following [35]. The mask loss Lmask is defined as a
combination of the Dice [27] and Focal loss [19]. We calculate box loss and mask
loss on each frame and take the average for Hungarian loss.

4 Experiment

4.1 Datasets and Metrics

We evaluate our method on YouTube-VIS 2019 [45] and YouTube-VIS 2021 [43]
datasets. YouTube-VIS 2019 is the first and largest dataset for video instance
segmentation, which contains 2238 training, 302 validation, and 343 test high-
resolution YouTube video clips. It has a 40-category label set and 131k high-
quality instance masks. In each video, objects with bounding boxes and masks
are labeled every five frames. YouTube-VIS 2021 is an improved and extended
version of YouTube-VIS 2019 dataset, it contains 3,859 high-resolution videos
and 232k instance annotations. The newly added videos in the dataset include
more instances and frames.
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Video instance segmentation is evaluated by the metrics of average precision
(AP) and average recall (AR). Different from image instance segmentation, each
instance in a video contains a sequence of masks. To evaluate the spatio-temporal
consistency of the predicted mask sequences, the IoU computation is carried out
in the spatial-temporal domain. This requires a model not only to obtain accurate
segmentation and classification results at frame-level but also to track instance
masks between frames accurately.

4.2 Implementation Details

Model settings. ResNet-50 [12] is used as our backbone network unless other-
wise specified. Similar to [49], we use the features from the last three stages as
{C3, C4, C5} in ResNet, which correspond to the feature maps with strides {8,
16, 32}. And adding the lowest resolution feature map C6 obtained via a 3 ×
3 stride 2 convolution on the C5. We set sampled key numbers K=4 and eight
attention heads for deformable attention modules. We use six encoder and six
decoder layers of hidden dimension 256 for the transformer, and the number of
instance queries is set to 300.
Training. We used AdamW [25] optimizer with base learning rate of 2× 10−4,
β1 = 0.9 , β2 = 0.999, and weight decay of 10−4. Learning rates of the backbone
and linear projections used for deformable attention modules are multiplied by a
factor of 0.1. We first pre-train the model on COCO [20] by setting the number
of input frames T = 1. Given the pretrained weights, we train our models on the
YouTube-VIS dataset with input frames T = 5 sampled from the same video.

The training data of the YouTube-VIS dataset is not sufficient, which makes
a model prone to overfitting. To address this problem, we adopt 80K training
images in the COCO for compensation, following [2,18]. We only use the images
with 20 overlapping categories in COCO and augment them with ±10◦ rotation
to generate a five-frame pseudo video. We train our model on the mixed dataset
including COCO and the video dataset for 12 epochs, and the learning rate is
decayed at the 6-th and 10-th epoch by a factor of 0.1. The input frame sizes
are downsampled so that the longest side is at most 768 pixels. The model is
implemented with PyTorch-1.7 and is trained on 8 V100 GPUs of 32G RAM,
with 2 video clips per GPU.
Inference. SeqFormer is able to model a video of arbitrary length without
grouping frames into subsequences. We take the whole video as input during
inference, which is downscaled to 360p, following MaskTrack R-CNN [45]. Seq-
Former learns a video-level instance representation used for dynamic segmenta-
tion on each frame and classification, and the box sequences are generated by
the decoder. Thus, no post-processing is needed for associating instances.

4.3 Main Results

The comparison of SeqFormer with previous state-of-the-art methods on
YouTube-VIS 2019 are listed in Table 1. MaskProp [3] and ProposeReduce [18]
are the state-of-the-art methods, which take a strong backbone to extract spatial
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Table 1. Quantitative results of video instance segmentation on YouTube-VIS 2019
validation set. The result with superscript “†” is obtained without coco joint training.
The best results with the same backbone are in bold.

Backbone Method Params FPS AP AP50 AP75 AR1 AR10

ResNet-50

MaskTrack R-CNN [45] 58.1M 20.0 30.3 51.1 32.6 31.0 35.5
STEm-Seg [2] 50.5M 7.0 30.6 50.7 33.5 37.6 37.1
SipMask [4] 33.2M 30.0 33.7 54.1 35.8 35.4 40.1
CompFeat [9] - - 35.3 56.0 38.6 33.1 40.3
SG-Net [21] - - 34.8 56.1 36.8 35.8 40.8
VisTR [39] 57.2M 69.9 36.2 59.8 36.9 37.2 42.4
MaskProp [3] - - 40.0 - 42.9 - -
CrossVIS [46] 37.5M 39.8 36.3 56.8 38.9 35.6 40.7
Propose-Reduce [18] 69.0M - 40.4 63.0 43.8 41.1 49.7
IFC [14] 39.3M 107.1 42.8 65.8 46.8 43.8 51.2

SeqFormer† 49.3M 72.3 45.1 66.9 50.5 45.6 54.6
SeqFormer 49.3M 72.3 47.4 69.8 51.8 45.5 54.8

ResNet-101

MaskTrack R-CNN [45] 77.2M - 31.8 53.0 33.6 33.2 37.6
STEm-Seg [2] 69.6M - 34.6 55.8 37.9 34.4 41.6
SG-Net [21] - - 36.3 57.1 39.6 35.9 43.0
VisTR [39] 76.3M 57.7 40.1 64.0 45.0 38.3 44.9
MaskProp [3] - - 42.5 - 45.6 - -
CrossVIS [46] 56.6 35.6 36.6 57.3 39.7 36.0 42.0
Propose-Reduce [18] 88.1M - 43.8 65.5 47.4 43.0 53.2
IFC [14] 58.3M 89.4 44.6 69.2 49.5 44.0 52.1
SeqFormer 68.4M 64.6 49.0 71.1 55.7 46.8 56.9

ResNeXt-101
MaskProp [3] - - 44.3 - 48.3 - -
Propose-Reduce [18] 127.1M - 47.6 71.6 51.8 46.3 56.0
SeqFormer 112.7M 30.7 51.2 75.3 58.0 46.5 57.3

Swin-L SeqFormer 220.0M 27.7 59.3 82.1 66.4 51.7 64.4

features and use mask propagation to improve the segmentation and tracking,
but suffer from low inference speed. We list the methods with different backbones
for fair comparison. It can be observed that SeqFormer significantly surpasses
all the previous best reported results by at least 4 AP with the same back-
bone. Training our model with coco pseudo videos improves the AP from 45.1
to 47.4. SeqFormer with a ResNet-50 backbone can even achieve competitive
performance against state-of-the-art methods with a ResNeXt-101 backbone.
By adopting Swin transformer [24] as our backbone without further modifica-
tions, SeqFormer can first achieve 59.3 AP on this benchmark, outperforming
the best previous results by a large margin of 11.7 AP. To understand the run-
time efficiency, we measure FPS of SeqFormer excluding the data loading process
of multiple images on NVIDIA Tesla V100. With an input size of 360p and a
ResNet-50 backbone on YouTube-VIS, the inference FPS is 72.3. While sur-
passing the stateof-the-art AP by a large margin, SeqFormer is the second fast
one following IFC. An example of qualitative comparison with previous meth-
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Table 2. Quantitative results of video instance segmentation on YouTube-VIS 2021
validation set. The best results with the same backbone are in bold.

Backbone Method AP AP50 AP75 AR1 AR10

ResNet-50

MaskTrack R-CNN [45] 28.6 48.9 29.6 26.5 33.8
SipMask [4] 31.7 52.5 34.0 30.8 37.8
CrossVIS [46] 34.2 54.4 37.9 30.4 38.2
IFC [14] 36.6 57.9 39.3 - -
SeqFormer 40.5 62.4 43.7 36.1 48.1

Swin-L SeqFormer 51.8 74.6 58.2 42.8 58.1

V
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m
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Fig. 3. Qualitative comparisons with other methods.

ods is given in Fig. 3, the mask predictions of SeqFormer are more stable over
time. Please refer to the Sup. Mat. for more qualitative results. We also evaluate
our approach on the recently introduced YouTube-VIS 2021 dataset, which is
a more challenging dataset with more videos and a higher number of instances
and frames. As shown in Table 2, SeqFormer achieves 40.5 AP with a ResNet-50
backbone, surpassing previous methods by 3.9 AP. We believe that our effective
method will serve as a strong baseline on these benchmarks and facilitate future
research in video instance segmentation.

4.4 Ablation Study

This section conducts extensive ablation experiments to study the effects
of different settings in our proposed method. All the ablation experiments are
conducted with the ResNet-50 backbone and training on YouTube-VIS 2019
dataset rather than the mixed dataset.
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Table 3. Instance query decomposition. Decomposing instance query into frame-level
box queries is critical for SeqFormer.

Decompose AP AP50 AP75 AR1 AR10

w/o 34.1 53.7 34.9 34.8 40.9
w 45.1 66.9 50.5 45.6 54.6

Instance query decomposition. Instance query decomposition plays an im-
portant role in our method. Since an instance may have different positions on
each frame, the iterative refinement of the spatial sampling region should be
performed independently on each frame. To keep the temporal consistency of
instances, we use the temporal-shared instance query for deformable attention
and get box queries for each frame. The box queries will be kept through all the
decoder layers and serve as frame anchors for the same instance. Experiments of
models without box queries and using the shared instance query for each decoder
layer are presented in Table 3. The model without query decomposition manages
to achieve only 34.1 AP. It is because the query controls the sampling region of
deformable attention. Using the same instance query for each frame will result
in the same spatial sampling region on each frame, as shown in Fig. 4 (a), which
is inaccurate and insufficient for video-level instance representation. We further
visualize the sampling points of the second and the last decoder layers in Fig. 4
(b) and (c). The box queries decoupled from instance query serve as anchors
for locating features and iteratively refining the sampling region on the current
frame. It can be seen that SeqFormer attends to locations following with the
movement of instance through the video in a coarse-to-fine manner. Please refer
to the Sup. Mat. for more visualization of sampling points.

Spatial temporal dimensions. Previous transformer-based methods [39,14]
flatten the spatial and temporal dimensions of video features into one dimen-
sion for the transformer decoder. We argue that the temporal dimension should
not be flattened with spatial dimensions, since it was recognized that the 2D
space domain and 1D time domain have different characteristics and should be
intuitively handled in a different way [47]. Thus, we retain the complete 3D
spatio-temporal dimensions and perform explicit region sampling and informa-
tion aggregation on all frames. In this experiment, we study the effect of this
architecture by replacing deformable transformer with vanilla transformer and
flattening the spatial and temporal dimensions, termed as ‘flatten’ in Table 4.
For fair comparison, we use single-scale deformable attention as the baseline,
termed as ‘single-scale’, which use the same scale feature map with ‘flatten’, the
default setting termed as ‘multi-scale’. By keeping spatial-temporal dimensions
of video features, the AP increased from 35.1 to 42.5. The use of multi-scale
feature maps can only improve 2.6 AP, which proves that the success of our
method mainly comes from the preservation of the temporal dimension and the
explicit spatial sampling.
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(a)

(b)

(c)

Fig. 4. The sampling points from the first decoder layer is shown in (a), which is coarse
and inaccurate. The refined accurate sampling points from the second and last decoder
layer are shown in (b) and (c).

Table 4. Spatial and temporal dimensions. Keeping spatial-temporal feature dimen-
sions and performing instance feature capture independently on different frames brings
about 7.4 AP gains. Multi-scale feature maps can further bring 2.6 AP.

Feature AP AP50 AP75 AR1 AR10

flatten 35.1 56.8 35.6 38.1 41.8
single-scale 42.5 64.6 46.5 41.5 50.9
multi-scale 45.1 66.9 50.5 45.6 54.6

Aggregation of temporal information. The frame-level box queries and the
predicted boxes can align the instance features from all frames, there are sev-
eral ways to aggregate the aligned features into the instance query. We conduct
an experiment to evaluate the different aggregation ways for these features, as
shown in Table 5. In the ‘sum’ setting, the features from different frames are
directly added together as the instance feature of this decoder layer. In the ‘av-
erage’ setting, the feature on each frame is averaged as the instance feature. In
the ‘weighted-sum’ setting, we apply a softmax layer and a fully-connected layer
on box embeddings to get the weights of each frame, and the features are aggre-
gated in a weighted sum in Eq. 3. The result is 30.6 AP and 43.2 AP for ‘sum’
and ‘average’ settings respectively. Direct summation will cause the value to be
unstable with different frame numbers. Since some instances only appear in a few
frames, directly averaging features from all frames may cause the information
to be diluted. Please refer to the Sup. Mat. for more details and visualization of
different frame weights.
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Table 5. Temporal information aggregation. Weighted sum brings a performance gain
of 1.9 in AP.

Aggregation AP AP50 AP75 AR1 AR10

sum 30.6 44.5 34.3 37.2 45.0
average 43.2 65.2 48.5 43.4 52.8
weighted-sum 45.1 66.9 50.5 45.6 54.6

Table 6. Fewer frames for instance representation.We evenly sample fewer frames from
a video to generate the mask head.

Frames AP AP50 AP75 AR1 AR10

1 38.1 58.3 41.3 38.7 47.5
3 43.4 65.4 47.6 42.4 51.3
5 44.6 66.5 49.7 44.8 54.6
10 44.7 66.9 49.5 44.3 53.5
all 45.1 66.9 50.5 45.6 54.6

Robust instance representation. Our decoder explicitly aligns and aggre-
gates the information from each frame to learn a video-level instance represen-
tation. In this experiment, we try to generate instance representation with fewer
frames. We use the instance representation to generate a mask head and apply
the mask head on each frame to get the mask sequences, as shown in Table 6.
Surprisingly, with only one frame as input, the generated mask head can produce
a competitive result of 38.1 AP. With five frames as input, the performance is
only 0.5 AP worse than taking all frames as input. This result shows that the
mask head learned by our method can generalize well to unseen frames.

5 Conclusion

In this paper, we have proposed an effective transformer architecture for video
instance segmentation, named SeqFormer, which performs attention mechanisms
on each frame independently and learns a shared powerful instance query for
each video-level instance. With the proposed instance query decomposition, our
network can align the instance features and naturally tackle the instance tracking
without additional tracking branches or post-processing. We demonstrated that
our method surpasses all state-of-the-art methods by a large margin. We believe
that our neat and efficient approach will serve as a strong baseline for future
research in video instance segmentation.
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A Appendix

Fig. 5. Visualization of SeqFormer on the YouTube-VIS 2019 validation dataset. The
first row shows the instances with various poses. The second row shows the case of a
lot of similar instances that are close together with overlapping. The third row shows
the situation where an instance reappears after being occluded while in motion. The
last row shows an instance severely occluded by the other instance. The same colors
depict the mask sequences of the same instances

A.1 Visualization

In Fig. 5, we visualize the results of SeqFormer with four challenging cases.
It can be seen that SeqFormer can handle these situations well. In Fig. 6, we
show more qualitative results of the intermediate attention of transformer de-
coder. Since the same initial instance query is used to predict sampling points
for each frame in the first decoder layer (Eq.1), the distribution of sampling
points on each frame is the same in Fig. 6 (a) and (d). After that, the initial
instance query is decomposed into frame-level box queries that are kept and
maintained independently on each frame. Starting from the second layer of the
SeqFormer decoder, the box query is used to predict the sampling points of the
current frame, and the sampled features are used to refine the box query for the
next decoder layer. By doing so, SeqFormer attends to different spatial locations
following the motion of the instance in a coarse-to-fine manner.

A.2 Aggregation of Temporal Information

SeqFormer is able to attend to different spatial locations following the mo-
tion of the instance. The aligned features are aggregated into an instance query
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(a)

(b)

(d)

(e)

(f)

(c)

Fig. 6. Visualization of attention. We draw the sampling points that the deformable
attention attends to. The four frames in each row are from the same video. Each
sampling point is marked as a filled circle whose color indicates its corresponding
instance identity. (a) and (d) show the sampling points from the first decoder layer.
(b) and (e) show the sampling points from the second decoder layer. (c) and (f) show
the sampling points from the last decoder layer.

to generate a video-level instance representation. However, an instance may
not appear in every frame due to occlusion and camera motion. The features
from frames without instance are useless or even harmful. To address this, Se-
qFormer aggregates temporal features in a weighted manner, where the weights
are learned upon the box queries in Eq.3. We visualize the learned weights and
the corresponding frames in Fig. 7. It can be seen that the features from frames
without instance have lower weights.

A.3 Qualitative Comparisons

We provide some qualitative comparisons with other methods in Fig. 8, the
mask predictions of SeqFormer are more stable over time. More video results
and comparisons can be found in the rest of the supplementary material.
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Fig. 7. Visualization of the normalized softmax weights and the corresponding frames.

A.4 Clip Matching

Our model can be extended to per-clip model through clip matching algo-
rithm to handle long videos. Specifically, we divide long videos into clips with
overlapping frames, and match clip-level instance masks by calculate the match-
ing scores which are space-time soft IoU of overlapping frames, following IFC.
We evaluate our method by varying the length of clips in Table 7. Our method
still achieves competitive performance but slightly worse when evaluating in the
clip-wise manner. This manner makes our method handle very long videos with
limited computational resources and have a wider range of application scenarios.

Table 7. Evaluating SeqFormer in a clip-wise manner.

Clip Length Whole 20 15 10

AP 45.1 44.8 43.6 42.0
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Fig. 8. Qualitative comparisons with other methods on YouTube-VIS 2019. All meth-
ods use ResNet-50 backbone. The three frames in each row are from the same video.
The mask predictions of SeqFormer are more stable over time. Best viewed in color.
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