Skip to main content

Slim Scissors: Segmenting Thin Object from Synthetic Background

  • Conference paper
  • First Online:
  • 1792 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Abstract

Existing interactive segmentation algorithms typically fail when segmenting objects with elongated thin structures (e.g., bicycle spokes). Though some recent efforts attempt to address this challenge by introducing a new synthetic dataset and a three-stream network design, they suffer two limitations: 1) large performance gap when tested on real image domain; 2) still requiring extensive amounts of user interactions (clicks) if the thin structures are not well segmented. To solve them, we develop Slim Scissors, which enables quick extraction of elongated thin parts by simply brushing some coarse scribbles. Our core idea is to segment thin parts by learning to compare the original image to a synthesized background without thin structures. Our method is model-agnostic and seamlessly applicable to existing state-of-the-art interactive segmentation models. To further reduce the annotation burden, we devise a similarity detection module, which enables the model to automatically synthesize background for other similar thin structures from only one or two scribbles. Extensive experiments on COIFT, HRSOD and ThinObject-5K clearly demonstrate the superiority of Slim Scissors for thin object segmentation: it outperforms TOS-Net by 5.9% IoU\(_\textrm{thin}\) and 3.5% \(\mathcal {F}\) score on the real dataset HRSOD.

K. Han—Work done during an internship at ByteDance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://docs.opencv.org/master/d7/d8b/group__photo__inpaint.html.

References

  1. Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of segmentation datasets with Polygon-RNN++. In: CVPR (2018)

    Google Scholar 

  2. Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: ICCV (2007)

    Google Scholar 

  3. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: ICCV (2001)

    Google Scholar 

  4. Castrejon, L., Kundu, K., Urtasun, R., Fidler, S.: Annotating object instances with a Polygon-RNN. In: CVPR (2017)

    Google Scholar 

  5. Chen, B., Ling, H., Zeng, X., Gao, J., Xu, Z., Fidler, S.: ScribbleBox: interactive annotation framework for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 293–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_18

    Chapter  Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI (2018)

    Google Scholar 

  7. Chen, X., Zhao, Z., Yu, F., Zhang, Y., Duan, M.: Conditional diffusion for interactive segmentation. In: ICCV (2021)

    Google Scholar 

  8. Dang, V.N., et al.: Vessel-captcha: an efficient learning framework for vessel annotation and segmentation. In: Medical Image Analysis (2021)

    Google Scholar 

  9. Dong, X., Shen, J., Shao, L., Van Gool, L.: Sub-markov random walk for image segmentation. TIP (2015)

    Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. In: IJCV (2010)

    Google Scholar 

  11. Grady, L.: Random walks for image segmentation. TPAMI (2006)

    Google Scholar 

  12. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: CVPR (2010)

    Google Scholar 

  13. Hao, Y., et al.: Edgeflow: Achieving practical interactive segmentation with edge-guided flow (2021)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Hu, Y., Soltoggio, A., Lock, R., Carter, S.: A fully convolutional two-stream fusion network for interactive image segmentation. In: Neural Networks (2019)

    Google Scholar 

  16. Jang, W.D., Kim, C.S.: Interactive image segmentation via backpropagating refinement scheme. In: CVPR (2019)

    Google Scholar 

  17. Jegelka, S., Bilmes, J.: Cooperative cuts for image segmentation. Tech. rep., Technical Report 2010–0003, University of Washington (2010)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2015)

    Google Scholar 

  19. Kontogianni, T., Gygli, M., Uijlings, J., Ferrari, V.: Continuous adaptation for interactive object segmentation by learning from corrections. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 579–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_34

    Chapter  Google Scholar 

  20. Le, H., Mai, L., Price, B., Cohen, S., Jin, H., Liu, F.: Interactive boundary prediction for object selection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 20–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_2

    Chapter  Google Scholar 

  21. Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diversity. In: CVPR (2018)

    Google Scholar 

  22. Liew, J.H., Cohen, S., Price, B., Mai, L., Feng, J.: Deep interactive thin object selection. In: WACV (2021)

    Google Scholar 

  23. Liew, J.H., Cohen, S., Price, B., Mai, L., Ong, S.H., Feng, J.: MultiSeg: Semantically meaningful, scale-diverse segmentations from minimal user input. In: ICCV (2019)

    Google Scholar 

  24. Liew, J.H., Wei, Y., Xiong, W., Ong, S.H., Feng, J.: Regional interactive image segmentation networks. In: ICCV (2017)

    Google Scholar 

  25. Lin, T.-Y.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  26. Lin, Z., Zhang, Z., Chen, L.Z., Cheng, M.M., Lu, S.P.: Interactive image segmentation with first click attention. In: CVPR (2020)

    Google Scholar 

  27. Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S.: Fast interactive object annotation with Curve-GCN. In: CVPR (2019)

    Google Scholar 

  28. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  29. Majumder, S., Yao, A.: Content-aware multi-level guidance for interactive instance segmentation. In: CVPR (2019)

    Google Scholar 

  30. Maninis, K.K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: From extreme points to object segmentation. In: CVPR (2018)

    Google Scholar 

  31. Mansilla, L.A., Miranda, P.A.: Oriented image foresting transform segmentation: Connectivity constraints with adjustable width. In: SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) (2016)

    Google Scholar 

  32. Mansilla, L.A., Miranda, P.A., Cappabianco, F.A.: Oriented image foresting transform segmentation with connectivity constraints. In: ICIP (2016)

    Google Scholar 

  33. OpenCV: Open source computer vision library (2015)

    Google Scholar 

  34. Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  35. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM ToG (2004)

    Google Scholar 

  36. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV (2015)

    Google Scholar 

  37. Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: f-BRS: Rethinking backpropagating refinement for interactive segmentation. In: CVPR (2020)

    Google Scholar 

  38. Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: f-brs: Rethinking backpropagating refinement for interactive segmentation. In: CVPR (2020)

    Google Scholar 

  39. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: CVPR (2008)

    Google Scholar 

  40. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: Fast end-to-end embedding learning for video object segmentation. In: CVPR (2019)

    Google Scholar 

  41. Wang, G., et al.: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. TPAMI (2018)

    Google Scholar 

  42. Wu, J., Zhao, Y., Zhu, J.Y., Luo, S., Tu, Z.: Milcut: A sweeping line multiple instance learning paradigm for interactive image segmentation. In: CVPR (2014)

    Google Scholar 

  43. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.: Deep GrabCut for object selection. In: BMVC (2017)

    Google Scholar 

  44. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selection. In: CVPR (2016)

    Google Scholar 

  45. Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 332–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_20

    Chapter  Google Scholar 

  46. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)

    Google Scholar 

  47. Zeng, Y., Zhang, P., Zhang, J., Lin, Z., Lu, H.: Towards high-resolution salient object detection. In: ICCV (2019)

    Google Scholar 

  48. Zhang, S., Liew, J.H., Wei, Y., Wei, S., Zhao, Y.: Interactive object segmentation with inside-outside guidance. In: CVPR (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key R &D Program of China (No. 2021ZD0112100), the National NSF of China (No. U1936212, No. 62120106009, No. 61972405), the Fundamental Research Funds for the Central Universities (No. K22RC00010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2367 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, K., Liew, J.H., Feng, J., Tian, H., Zhao, Y., Wei, Y. (2022). Slim Scissors: Segmenting Thin Object from Synthetic Background. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics