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Abstract. Clustering is a ubiquitous tool in unsupervised learning. Most of the
existing self-supervised representation learning methods typically cluster sam-
ples based on visually dominant features. While this works well for image-based
self-supervision, it often fails for videos, which require understanding motion
rather than focusing on background. Using optical flow as complementary in-
formation to RGB can alleviate this problem. However, we observe that a naı̈ve
combination of the two views does not provide meaningful gains. In this paper,
we propose a principled way to combine two views. Specifically, we propose
a novel clustering strategy where we use the initial cluster assignment of each
view as prior to guide the final cluster assignment of the other view. This idea
will enforce similar cluster structures for both views, and the formed clusters
will be semantically abstract and robust to noisy inputs coming from each indi-
vidual view. Additionally, we propose a novel regularization strategy to address
the feature collapse problem, which is common in cluster-based self-supervised
learning methods. Our extensive evaluation shows the effectiveness of our learned
representations on downstream tasks, e.g., video retrieval and action recognition.
Specifically, we outperform the state of the art by 7% on UCF and 4% on HMDB
for video retrieval, and 5% on UCF and 6% on HMDB for video classification. 1
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1 Introduction

The pursuit of understanding human activities in videos is a fundamental problem in
computer vision. Representation learning methods with supervised training strategies
showed promising results on various tasks, such as action understanding [12,20,28,43,54],
action detection and localization [13,95], and action proposal [32,56]. It is fair to say
that large-scale, manually labeled video datasets such as Kinetics [45], AVA [35], and
Epic [22] substantially contributed to that success. In spite of those promising results,
these algorithms can usually only recognise activities if they have access to a seman-
tically labelled dataset. The cost and challenges of collecting large-scale, manually la-
belled videos hinder further improvements in activity understanding. On the other hand,
⋆ Work done during internship at Snap Inc.
1 Code available at https://github.com/Seleucia/goca
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Clustering Without Guidance Guided Clustering
RGB

Optical Flow (OF)
Fig. 1: An abstract illustration of the proposed idea. The filled and empty shapes repre-
sent RGB and OF views respectively. Each shape represents a different type of activity,
while colors represent intra-class variations. In this toy example, the initial clustering
is wrong for both views. RGB fails because it clusters based on color (e.g. irrelevant
background information), while OF fails since it confuses square with circle (due to the
lower resolution of details). By combining the two types of information, clustering can
be achieved correctly on both views.

the internet is a virtually unlimited source of unlabeled videos (e.g. YouTube). There-
fore, designing a representation learning strategy that does not rely on manual labelling
is fundamentally important.

Self-supervised learning (SSL) aims to address this issue, by designing pretext tasks
that only rely on input, and training networks to solve those tasks. Recent advances in
SSL for image understanding [11,15,34,36,38,70,79,96] have achieved excellent perfor-
mance in various downstream tasks. Motivated by this success, several papers brought
these ideas to the video domain [23,29,68,76]. Although these methods show promising
results to some extent, they rely solely on an RGB stream. As demonstrated by [4,6,37],
this is not sufficient to learn a strong temporal representation.

Johansson’s classical psychology work [44] shows that humans can recognize ac-
tivities by only watching a few bright dots depicting the movement of the main body
joints. This intuitive work motivated researchers to use optical flow as a representation
of motion for activity understanding [12,30,71,72], and they have achieved significant
improvements over RGB-only models in the supervised learning literature. Inspired by
this success, many recent SSL works [33,37,80] have explored using optical flow (OF)
to advance SSL beyond RGB-only baselines. Han et al. (CoCLR) [37] used OF to re-
trieve positive samples for the infoNCA [63], which led to significant improvements.
Nevertheless, CoCLR did not utilize OF for training the backbone and hence may not
have realized the full potential of learning motion representations. VICC [80] adopted
the online cluster assignment [11] to videos by considering OF as another view of RGB,
and minimized the distance between RGB and OF features during online clustering.
This method obtained SOTA results on various datasets. However, enforcing similarity
between RGB and OF features can be detrimental, especially if one information source
is noisy, as is usually the case for OF due to camera motion. Furthermore, these mod-



GOCA 3

els [37,80] require a complicated training strategy that successively updates one model
while freezing the parameters of the other model, which prevents end-to-end training.

In this paper, we introduce the guided online cluster assignment algorithm (GOCA)
to address the aforementioned problems. Specifically, for a given video with RGB and
OF representations, we first compute initial cluster assignments for only using RGB or
OF separately, and then we use these assignments as priors for each other to compute
a final assignment that is guided by both views, as illustrated in Fig. 1. After we ob-
tain our final assignment, we train a backbone network by minimizing a cross entropy
loss between the final cluster assignment of different augmentations of the same video
(as used in [11]). The proposed idea has several benefits compared to the state of the
art [11,37,80]. First, it constructs more robust clusters during training due to prior infor-
mation, which is particularly important when one information source is noisy. Second,
allowing RGB and OF to share information by means of sharing cluster assignment
encourages the two views to form similar cluster structure, which leads to more se-
mantically abstract representations. Third, both RGB and OF backbones are trained
jointly and information flows both ways during training, which is beneficial for both
backbones due to the complementary nature of these views. Fourth, compared to the
CoCLR method [37], OF is utilized more explicitly in our formulation, which leads to
stronger spatio-temporal representations. Finally, the proposed approach circumvents
complicated training strategies [37,33,80] and allows simple and end to end training.

We also propose a novel prototype regularization method to address the feature
collapse problem, where all features are mapped to a single point. This is a common
problem in SSL and was partially addressed in SwAV [11] via equipartition constraint.
However, it requires careful tuning1 of the parameter λ (See Eq. (5)) of the Sinkhorn
algorithm, which makes it hard used in practice [9,16,17,69]. We address this problem
by constructing cluster prototypes which are maximally distant from each other. We
achieve this by locating the N prototypes in the Φ dimensional space such that they
divide the space equally. Despite the simplicity of the proposed idea, it yields consistent
performance improvements.

To sum up, our contributions are: 1) we introduce a novel Guided Online Cluster
Assignment (GOCA) algorithm that aims to learn stronger spatio-temporal representa-
tions by utilizing the complementary information of RGB and OF; 2) we mathemati-
cally prove that guidance based clustering can be achieved efficiently with the Sinkhorn
algorithm; 3) we propose a prototype regularization strategy that addresses the com-
mon feature collapse problem; 4) we perform extensive evaluations of our method using
two backbones (S3D [85] and R(2+1)D [81]) on four different evaluation regimes (See
Sec. 4). The proposed model outperforms the state of the art in almost all experiments.
Furthermore, we present ablation studies to show the effect of each contribution and the
key parameters of our method.

2 Related Works

1 https://github.com/facebookresearch/swav#common-issues
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Fig. 2: An overview of the proposed GOCA algorithm. The RGB and Optical Flow
(OF) views have the same backbone architectures and share the projection head and
prototypes. Optimal assignment (OA) and optimal assignment with prior (OAP) are
defined in Eq. (6) and Eq. (7), respectively. Lp is defined for a batch of videos in Eq. (13)

Self-supervised representation learning. The success of image-based SSL methods
[25,26,38,48,62,96,70,79,94] has inspired their application in the video domain, result-
ing in several recently proposed methods in that domain. Early approaches for video
representation learning [1,24,75,82] typically relied on the idea of predicting the fu-
ture frames given the past frames, which requires carefully training a deep generative
model. Other works focus on designing proxy tasks to exploit temporal information.
In a pioneering work, Misra et al. [60] designed a pretext task that predicts whether
the order of video frames is correct or wrong. Follow-up methods achieved better per-
formance by designing new pretext tasks such as predicting clip order [31,49,60,86],
pace [8,18,83,88], or the arrow of time [66,84]. To achieve better generalization, aside
from designing novel pretext tasks, some recent works focus on using instance-based
contrastive learning approaches [23,29,39,52,64,68]. Since videos often contain multi-
modal data, many recent works used audio [2,3,4,5,6,46,65] or language [2,3,59,77] as
complementary information to improve results. Unlike those works, we focus on learn-
ing representations purely on visual input, namely RGB and optical flow (OF). Note
that we compute OF from RGB videos in an unsupervised way.

Clustering based self-supervised learning. Early works in this direction adopted clus-
tering to representation learning by simply applying clustering to obtain pseudo-labels [4,10,87].
The common approach has two alternating steps, as it performs clustering offline, rather
than concurrently with training as described in Sec. 3.1. One of the main limitations of
that approach is that such naive implementations may form degenerate clusters where
all samples are clustered to the same point. Asano et al. [6,7] tackle this problem by
adding an equipartition constraint on the number of samples per cluster and converting
the pseudo-label generation step into an optimal assignment problem. They solve the
resulting problem using the Sinkhorn-Knopp algorithm [21]. Although the equipartition
constraint achieves promising results, it is still inefficient due to the offline clustering.
Recently, Caron et al. [11] (closest work to ours) eliminated offline label generation
via an online clustering algorithm which allows them to train end-to-end on large-scale
datasets. Although it works well for images, we observe that adapting this idea to videos
is not as effective as with images. As seen in [4,6] and our results, RGB alone is not
sufficient to form representative clusters for videos. We tackle this problem by using
OF as complementary information to guide clustering.
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3 Method

Fig. 2 shows an overview of the proposed method. For a given video with RGB and OF
views, we first compute two different augmentations for each view, and then pass them
through the RGB and OF backbones, followed by a shared projection head and a shared
prototype layer in order to compute cluster assignments.

3.1 Preliminaries

State-of-the-art clustering based SSL methods (SwAV [11], VICC [80], Sela [90], Selavi [7])
are built on top of the Cuturi et. al. [21] formulation. The Cuturi et. al. [21] formula-
tion is used to find optimal assignments from samples to cluster centers (or prototypes)
under constraints.

Formally, consider a given minibatch of M videos X = {x1, ..., xM}, and N
prototypes P = {p1, ..., pN} represented by trainable vectors. The idea of [11] is to
compute two random augmentations Xt and Xs, and compute their feature vectors
F t = {f t1, ..., f ti } and F s = {fs1 , ..., fsi } using an encoder network θ. Next, optimal
assignmentsDt = {dt1, ..., dtM} andDs = {ds1, ..., dsM} are computed from features F t

and F s to prototypes P , as described in the following paragraph. dti ∈ Dt and dsi ∈ Ds

vectors represent assignment values from fsi and f ti to prototypes, respectively. Finally,
θ is trained with the following loss function:

L(F t, F s) =
∑M

i

(
l(dti, g

s
i ) + l(dsi , g

t
i)
)
, (1)

where

l(dt, gs) = −
N∑
n

dtnlog(g
s
n), gsn =

exp((fs)⊤pn)∑
n′ exp((fs)⊤pn′)

(2)

This loss function minimizes the distance of two different augmentations by comparing
them according to their assignment. Ideally, the two augmentations should be assigned
to the same prototype, due to identical semantic content.

Computing optimal assignment: The optimal assignment (OA) D can be found by
solving the following optimization:

dC(F, P ) := min
D∈U

⟨D,C⟩, (3)

where C ∈ RM×N is a distance matrix from a batch of feature vectors to prototypes
and ⟨D,C⟩ = tr(C⊤D). U represents all possible assignments from our features F to
prototypes P . Formally:

U := {D ∈ RM×N
+ | D1N = ψ,D⊤1M = ω}, (4)

where ψ = 1
M ∗ 1⃗M and ω = 1

N ∗ 1⃗N , and 1⃗M ∈ RM and 1⃗N ∈ RN are ones vectors.
The constraint on U ensures all the prototypes are selected. Eq. (3) can be solved with
linear programming. Since this is computationally expensive, it is infeasible to carry
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it out during training for every batch. Cuturi et al. [21] address this issue by adding
entropy regularization and solving the resulting problem with the Sinkhorn algorithm:

dC(F, P ) := minD∈U

(
⟨D,C⟩ − λ1h(D)

)
. (5)

where h represents the entropy. The above formulation is a strictly convex and smoothed
version of Eq. (3). This allows us to efficiently approximate D. Specifically, D has a
unique solution for any given λ1, which is in the form of: Dλ1 = diag(u)Kdiag(v)
where K = eλ1C , and u, v are non-negative unique vectors. The proof of this statement
can be found in [21]. According to the Sinkhorn theorem[27], if K has only positive
elements, the unknowns u and v can be determined via the Sinkhorn algorithm.

There are two main problems with this conventional formulation: First, it does not
allow utilizing the complementary information, which is particularly important in the
video, since it has been shown that using RGB alone encourages the model to focus
on the background and ignore motion cues [6]. We address this problem by rewriting
Eq. (3) such that we can fuse two information sources to obtain the cluster assignment.
Second, in the conventional formulation [11,80], the prototypes are randomly initialized
and trained with the rest of the model without any restriction, which can lead to a
degenerate solution where all prototypes collapse into a single point, and consequently
the feature vectors too [9,16,17,69]. To overcome this problem, we propose to use a
novel prototype regularizer, which encourages prototypes to be maximally far apart.

3.2 Guided Online Cluster Assignment (GOCA)

Our goal is to train backbone networks θRGB and θOF while sharing information between
the two views. The single-view approach of [10,11,90] does not allow combining the
two information sources. A straightforward way is to concatenate the FRGB and FOF
features, but we have observed that this approach yields a very small improvement over
RGB-only training on various downstream tasks (see Experiments 4.1). Another way is
to force the similarity of OF and RGB features as in [80]. Even though this idea obtains
better results on downstream tasks, it leads to a loss of information by forcing each view
to only maintain mutual information. Hence, it does not reach the maximum potential
performance of correctly combining the two views (Tab. 1).

In contrast, we propose a principled way to combine two information sources. We
use each information source as a prior to the other. We assign D′

OF and D′
RGB as the

initial prototype assignment (computed based on Eq. (5)), and DOF and DRGB as the
final. To this end, we use the D′

OF as the prior to DRGB, and D′
RGB as the prior to DOF

We implement this idea by modifying Eq. (5) in a way that it takes the prior into
account. Our optimal assignment with prior (OAP) optimization problems for DRGB
and DOF takes this form:

dCRGB(FRGB, P ) := min
DRGB∈U

(
⟨DRGB, CRGB⟩ − λ1h(DRGB) + λ2KL(DRGB|D′

OF)
)
, (6)

and

dCOF(FOF, P ) := min
DOF∈U

(
⟨DOF, COF⟩ − λ1h(DOF) + λ2KL(DOF|D′

RGB)
)
. (7)
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Where CRGB and COF are distance matrices from RGB and OF features to prototypes,
KL(·|·) represents the Kullback Leibler divergence between two assignment matrices,
λ1 and λ2 are hyper-parameters. Note that we use the same prototypes P for OF and
RGB features. These two optimization problems can be solved via the following lemma:

Lemma 1. DRGB and DOF have a unique solution for λ1 and λ2 in the form of:

Dλ1,λ2

b = diag(ub)Kbdiag(vb) b ∈ {RGB ,OF} (8)

Proof We will prove only for DRGB, but the same proof can be used for OF as well. Let
L(DRGB, α, β) be the Lagrangian form of the Equation(6) with dual variables α ∈ RM

and β ∈ RN for the two equality constraints in U (see Eq. (4)):

L(DRGB, α, β) =
∑
i,j

λ1dRGBij
log(dRGBij

) +
∑
i,j

dRGBij
cRGBij

+
∑
i,j

λ2dRGBij
log

(
dRGBij

d′OFij

)
+ α(DRGB1M − ψ) + β(D⊤

RGB1N − ω)

(9)

for all (i, j) we set (∂L/∂dRGBij
= 0) and solve for dRGBij

dRGBij
= exp

(
−0.5− αi

λ1 + λ2

)
exp

(
−cRGBij

+ λ2log(d
′
OFij

)

λ1 + λ2

)
exp

(
−0.5− βj

λ1 + λ2

)
.

(10)

When we choose KRGB = exp(
−cRGBij+λ2log(d

′
OFij

)

λ1+λ2
), we can see that it is strictly pos-

itive since it is the element-wise exponential, therefore according the Sinkhorn’s theo-
rem [73], Dλ1,λ2

RGB has unique solution for any given λ1 and λ2. Thus, uRGB and vRGB
vectors in Eq. (8) can be computed with Sinkhorn algorithm. In our formulation, since
the final cluster assignment relies on both views, formed clusters will be robust to noise
and semantically abstract. The supplemental includes the details of the proof.

3.3 Prototype Regularization

It has been shown that SSL models suffer from feature collapse, i.e. when all features
are mapped to the same representation [14,34,70,93]. Even though this problem was
partially addressed in [11] by using equipartition constraint as in Eq. (3), in practice, λ
needs to be carefully tuned [9,16,17,69]. More specifically, we observe that a higher λ
leads to numerical issues, and lower values tend to cause feature collapse.

Alternatively, we introduce a regularization term that encourages prototypes to be
maximally far apart. We achieve this by utilizing the idea of hyperspherical proto-
types [58]. Formally, we divide the Φ-dimensional hyperspherical space equally into
N prototypes. For instance, for a 2-dimensional hyperspherical space (circle), this can
be easily done by placing N prototypes with a 2π

N angle difference. Even though this is
easy to do for a 2-dimensional space, there is no exact solution for 3 or more dimen-
sions [78]. We solve this problem by finding an approximate solution using gradient
descent. Specifically, consider the N prototypes that are represented with a linear layer,
W ∈ RN×Φ in our network (Fig. 2). Instead of training W with the rest of the network
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end-to-end, we train it separately, once before the main training phase, by minimizing
the following loss under the following constraint:

Lreg =
1

N

N∑
i

max(Ωi,.), Ω =WW⊤ − 2I s.t. ∀i∥wi∥ = 1, (11)

where I and wi represents the identity matrix and i-th row in W , respectively. This
loss minimizes the similarity of maximally similar prototypes. To apply the constraint,
we continuously re-project our prototypes to the hypersphere during training via l2
normalization. This can be seen as a simple and quick initialization step, which takes
only 5 minutes on a Nvidia GTX 1060 GPU.

3.4 Training procedure

After initializing (and fixing) the prototype layer as described in Eq. (11), we train the
network by minimizing the following loss function:

Lfinal = Lp(F
t
RGB, F

s
RGB) + Lp(F

t
OF, F

s
OF), (12)

where

Lp(F
t
b , F

s
b ) =

M∑
i

l(dtbi , g
s
bi) + l(dsbi , g

t
bi) (13)

Here b ∈ {RGB,OF} and dbi i-th row in Db. Db represents optimal assignment
matrix. We compute these matrices using Lemma 1, while our prototypes are obtained
as described in Sec. 3.3. Note that l and g are defined in Eq. (2). Since RGB and OF
features only interact when computing optimal assignment, this formulation encourages
cluster similarity without enforcing RGB and OF features to be strictly similar, hence,
not leading to information loss.

4 Experimental Results

In this section, we first describe datasets, metrics, and training details. We present our
ablation results to show the importance of our method design choices in Sec. 4.1. Then,
we compare our approach with SOTA in Sec. 4.2 for retrieval task. Then, we show our
cluster analysis results in Sec. 4.3. Finally, we show classification results in Sec. 4.4.

Datasets: We conduct our experiments on four different datasets: Kinetics (K400) [45],
UCF [74], HMDB [47], and Diving-48 [51]. We follow the same training protocols
as other self-supervised learning approaches [6,37,68,80]. K400 training set contains
240k videos. UCF, HMDB, and Diving-48 contain 13k, 7k, and 17k videos respectively.
Evaluation Metrics: We evaluate our model performance on the action retrieval and
action classification tasks. To evaluate action retrieval, we compute Recall at K ∈
{1, 5, 10, 20}, similar to earlier works [6,37,68,80]. More specifically, if the correct
class is within the K nearest neighbours we consider it a correct result. For action
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classification, we consider top-1 accuracy for Linear Classification and Fine Tuning
experimental setups (See Sec. 4.4). We report all numbers in terms of percentage.
Data Augmentations: Following [37,68,80], we use horizontal flipping, random crop-
ping, Gaussian blurring, and color jittering for augmentation. We also use a multi-
temporal-resolution idea which is analogous to multi-crop in SwAV [11]. In this aug-
mentation strategy, we sample shorter length clips alongside longer ones. We observe
this makes convergence faster, but does not affect the final accuracy.
Backbones and Training details: We conduct our experiments with two widely used
backbones: S3D [85] and R(2+1)D+18 [81]. We use two datasets (K400 [45] and
UCF [74]) for self-supervised training. Optical flow (OF) is computed using the TV-L1
algorithm [92] and pre-processed as in [12,37,80]. We follow earlier works [29,68,80]
and use SGD+LARS [91] optimizer with a learning rate of 4.8 that is increased dur-
ing the first 10 warm-up epochs and then is decreased to 0.0048 with cosine learning
rate decay. All models are pre-trained on 64 V100 GPUs (10 samples per GPU) for 500
epochs as in [6,29,68,80]. Each clip contains 32 consecutive frames. During the test, we
turn off all augmentations and use a standard 3 (spatial) × 10 (temporal). We always
denote with a ” + ” suffix the case of RGB and OF being used during testing. Follow-
ing the earlier works [37,67,80] and we use 32 and 16 frames for S3D and R(2+1)D,
respectively during the training of fine-tuning and linear-classification experiments.

4.1 Ablation study
In these experiments, we demonstrate the effectiveness of each proposed component in
terms of recall values. All models pre-trained on the UCF training set and evaluated on
the UCF and HMDB test sets with S3D backbone.
Effect of view merging strategies For a better understanding of the effectiveness of
the proposed approach, we design 3 different baselines: SView, Avg, and Sep. SView:
We train OF and RGB separately with identical but independent backbones, projection
heads, and prototypes. This baseline can be considered a trivial extension of SwAV [11]
to videos. Avg: We train OF and RGB jointly, by passing OF and RGB from different
backbones and then feeding their average into the projection head and prototypes. Sep:
We train the model jointly but this time OF and RGB information do not interact. We
use separate backbones but share the projection head and prototypes. Our model dif-
ferentiates from this only at the assignment computing stage. We train all our baselines
by minimizing the loss described in Eq. (1). Finally, to better compare our method
(GOCA) with the single-view (SView) baseline, we also evaluate it in single-view set-
tings by only using one of the backbones during the test. To combine RGB and OF
representations during the test, we simply take the average of the two.

Tab. 1 shows our results on the UCF and HMDB test sets. In single-view settings
(first 6 rows), SView with RGB obtains very poor results, which can be attributed to
an over-emphasis on the background scene and ignoring the motion, which is common
for RGB-only models. Our results confirm that motion-only models can perform bet-
ter than RGB, as observed in [37,80]. Furthermore, GOCA outperforms both baselines
even in single-view testing, which confirms that the proposed joint training approach
is beneficial for each individual backbone as well. We can also see that enforcing the
similarity of the two views as in VICC does not improve OF results compared to single-
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UCF HMDB

Method Train Test R@1 R@5 R@1 R@5

SView R R 41.3 58.9 17.9 43.2
SView F F 62.0 75.8 28.2 53.3
VICC [80] R+F R 62.1 77.1 25.5 49.6
VICC [80] R+F F 59.7 77.3 27.7 53.3
GOCA R+F R 63.4 76.3 26.3 50.2
GOCA R+F F 67.9 79.5 31.8 56.3

SView+ - R+F 63.6 76.8 28.6 54.1
Avg R+F R+F 50.8 63.0 22.8 46.3
Sep R+F R+F 65.0 78.2 29.5 54.8
GOCA+ R+F R+F 70.8 81.4 33.7 58.7

Table 1: Comparison of RGB (R) and OF
(F) merging strategies

λ1

0.01 0.02 0.03 0.04
0.01 56.4 57.6 55.1 54.1

λ2 0.02 57.3 58.7 60.1 58.9
0.03 58.1 60.9 60.5 57.5
0.04 55.8 58.5 59.0 55.2

Table 2: The effect of lambda parameters
on recall values on the UCF RGB-only val.

view training. In contrast, GOCA significantly improves the results for both views, by
aligning the two representations in a smarter, more implicit manner.

When we combine RGB and OF during testing (last 4 rows), we observe that naively
merging features at training (Avg) performs better than RGB-only by 3.5% while signif-
icantly worse than OF-only training (-11.2%). This might be due to the fact that during
training, RGB information dominates the gradients, and the OF backbone can not be
fully trained. The performance of Sep indicates that joint training for RGB and OF
can improve the results when we do not naively merge features. Finally, the proposed
model, GOCA, further improves the results, which verifies the efficacy of the proposed
guided cluster assignment idea.
Effect of λ1 and λ2. Our next ablation study is observing the impact of the λ1 and
λ2 parameter values in Eq. (6) and Eq. (7). These parameters control the effect of the
uniformity assumption and prior distribution. Tab. 2 shows how recall at 1 varies de-
pending on the λ1 and λ2 parameters. We train GOCA for 200 epochs and evaluate it
on the UCF dataset. We can observe that the proposed approach is robust to λ1 and λ2,
especially in the range of [0.02, 0.03]. For all other experiments, we set λ1 = 0.02 and
λ2 = 0.03.

Fig. 3: The t-SNE plot of 1000 pro-
totypes in 2D without regularization
(left) and with regularization (right)

Use UCF HMDB

Method ProtReg Train Test R@1 R@5 R@1 R@5

SView No R R 40.9 57.4 17.1 42.7
SView Yes R R 42.3 58.9 17.9 43.2

GOCA+No R+F R+F 69.1 79.4 32.9 58.6
GOCA+Yes R+F R+F 70.8 81.4 33.6 58.7

Table 3: Effect of prototype regulariza-
tion on recall values

Effect of prototype regularizer. Our prototype regularizer idea guarantees that proto-
types are maximally far apart from each other. Fig. 3 shows t-SNE plot of 1000 proto-
types with and without regularization. As we can see, the proposed method locates the
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prototypes maximally far apart from each other, on the other hand, in the unregularized
case, prototypes are quite closely grouped. As we discuss in Sec. 3.3, maximally far
apart prototypes prevent the feature collapse and allow us stable training. Another ben-
efit is that clusters formed around prototypes are also will be far apart from each other
which is particularly important for retrieval tasks. We verify this benefit by comparing
the recall accuracy with and without using prototype regularization. Tab. Tab. 3 shows
the consistent effectiveness of the proposed method for both models on both datasets.

UCF HMDB

Method DS Backbone Res Modl R@1 R@5 R@10R@20 R@1 R@5 R@10R@20

Selavi [6] K400 R(2+1)D+18 112 V+A 52.0 68.6 - 84.5 24.8 47.6 - 75.5
Rbst-xID [61] K400 R(2+1)D+18 112 V+A 60.9 79.4 - 90.8 30.8 55.8 - 79.7
TCGL [55] K400 R(2+1)D+18 112 V 21.5 39.3 49.3 59.5 10.5 27.6 39.7 55.63
MotionFit [33] K400 R(2+1)D+18 112 V 61.6 75.6 - 85.5 29.4 46.5 - 66.7
ASCNet [40] K400 R3D-18 112 V 58.9 76.3 82.2 87.5 - - - -
Enhenced [67] K400 R3D-18 112 V 41.5 60.6 71.2 80.1 20.7 40.8 55.2 68.3
MCN [52] K400 R(2+1)D-18 128 V 52.5 69.5 77.9 83.1 23.7 46.5 58.9 72.4
Zhang [53] K400 R3D-18 112 V 46.7 63.1 69.7 78.0 - - - -
CoCLR [37] K400 S3D 128 V 45.6 63.9 75.4 81.7 - - - -
GOCA K400 S3D 128 V 67.3 79.1 84.9 89.9 32.7 55.1 68.5 79.5
GOCA+ K400 S3D 128 V 68.6 80.7 86.6 90.1 33.2 56.3 68.5 80.2

VCOP [86] UCF R(2+1)D+18 112 V 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8
Var. PSP [19] UCF R(2+1)D+18 112 V 24.6 41.9 51.3 62.7 - - - -
RTT [42] UCF R(2+1)D+18 112 V 26.1 48.5 59.1 69.6 - - - -
MemDPC [36] UCF R2D3D-18 112 V 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7
VCP [57] UCF R(2+1)D+18 112 V 19.9 33.7 42.0 50.5 6.7 21.3 32.7 49.2
TCLR [23] UCF R(2+1)D+18 112 V 56.9 72.2 79.0 84.6 24.1 45.8 58.3 75.3
Enhenced [67] UCF R3D-18 112 V 39.6 57.6 69.2 78.0 18.8 39.2 51.0 63.7
GOCA UCF R(2+1)D+18 112 V 62.8 77.7 82.0 87.0 22.3 47.2 60.1 73.3
GOCA+ UCF R(2+1)D+18 112 V 63.4 78.6 82.5 86.2 28.5 54.4 66.2 76.6

MCL+ [50] UCF S3D 224 V 67.0 80.8 86.3 90.8 26.7 52.5 67.0 79.3
Time-Equ* [41] UCF R3D-18 128 V 62.1 - - - 31.5 - - -
CoCLR [37] UCF S3D 128 V 53.3 69.4 76.6 82.0 23.2 43.2 53.5 65.5
CoCLR+ [37] UCF S3D 128 V 55.9 70.8 76.9 82.5 26.1 45.8 57.9 69.7
ViCC [80] UCF S3D 128 V 62.1 77.1 83.7 87.9 25.5 49.6 61.9 72.5
ViCC+ [80] UCF S3D 128 V 65.1 80.2 85.4 89.8 29.7 54.6 66.0 76.2
GOCA UCF S3D 128 V 63.4 76.3 81.3 86.5 26.3 50.2 62.6 77.0
GOCA+ UCF S3D 128 V 70.8 81.4 85.3 89.5 33.7 58.5 70.0 80.6

Table 4: Video retrieval results on UCF [74] and HMDB51 [47] datasets. DS, Res, and
Modl represent training dataset, input resolution, and input modality respectively. Rows
above the double line are trained on Kinetics and the rest use UCF. Light grey colored
methods (MCL [50]) use 2 times more input resolution (224). Time-Equ* [41] uses
various additional loss functions that used in earlier works (speed [8,89], direction [66],
order [86]). These loss functions can be combined with our loss functions as well.

Comparison with the state-of-the-art Given the large body of self-supervised video
understanding works published thus far, we only selected recent (from 2019) publi-
cations. To the best of our ability, we conducted a fair comparison. However, we still
observe small variations in terms of input resolution and fine-tuning details in the litera-
ture, which makes it extremely hard to perform perfectly fair comparisons. Furthermore,
we encourage the readers to study the supplementary material for more in-depth exper-
imental results. As noted in [29], we observe that during the Fine-Tuning experiment,
backbone networks tend to overfit validation datasets (UCF and HMDB), therefore we
perform extensive retrieval and cluster analysis experiments to show our contributions’
influence (On these experiments there is no supervised training on validation datasets).
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Query GOCA (Ours)SModal-RGB

Head Massage Rock Climbing Indoor Head Massage

Walking With Dog Biking Walking With Dog

Throw Discus Salsa Spin Hammer Throw

Drumming Fencing Drumming

Fig. 4: Retrieval comparison between SView-RGB and GOCA representations on UCF
dataset. Query videos (left) are selected from test set and top-1 nearest neighbour videos
are retrieved from the training set. Ground truth labels are reported on top of each query.

Method R@1 R@5 R@10 R@20

CoCLR [37] 6.7 23.6 37.4 55.2
VICC [80] 7.2 24.4 38.1 54.5
GOCA 8.1 24.8 38.3 55.1

Table 5: Retrieval results on Diving-48 [51] with S3D backbone(pre-trained on UCF)

Method Acc NMI F1

SView-RGB 42.1 65.1 40.3
CoCLR [37] 44.3 65.4 41.9
CoCLR+ [37] 46.1 68.6 43.1
VICC [80] 51.1 70.4 50.0
VICC+ [80] 51.9 72.9 53.7
GOCA 57.3 75.8 57.4
GOCA+ 61.2 78.7 61.3

Table 6: Cluster quality results on UCF test set with S3D backbone. All models are
trained on UCF training set.

4.2 Retrieval Results

Tab. 4 and Tab. 5 show the retrieval results for Recall@K (R@K). In this experi-
ment, we follow the standard protocol defined in [23,36,37,42,57,67,80] and perform
the evaluation on the frozen features that were computed from a pre-trained model. At
Tab. Tab. 4, the first part of the table (above the double line) includes models that are
all pre-trained on K400 [45], while evaluated on the UCF and HMDB datasets. We can
see a significant improvement (5% and 8% on UCF and HMDB respectively, averaged
over allK values). Surprisingly, the proposed approach even outperforms models [6,61]
that use an additional view (Audio) by a large margin. Below the double line, we show
models that are pre-trained on the UCF training set, using two different backbone archi-
tectures, S3D and R(2 + 1)D, separated by a horizontal line. On the S3D, we achieve
an improvement of 5.7% on UCF and 4.0% on HMDB at K = 1. On the R(2 + 1)D,
we can see a nearly 6% increase across all recall values for UCF and 5% for HMDB.
Our RGB-only model also achieves state-of-the-art results and outperforms baselines
by a large margin on both datasets for both backbones. These findings verify our intu-
ition that effectively utilizing OF can result in strong spatio-temporal representations.
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Method DS Backbone Res UCF HMDB
CVRL [68] K400 R3D-50 224 92.9 67.9
MoCo [29] K400 R-50 224 93.2 70.6
ASCNet[67] K400 R3D-18 112 80.5 52.3
Enhanced[67] K400 R3D-18 112 79.1 47.6
CoCLR [37] K400 S3D 128 87.9 54.6
CoCLR+ [37] K400 S3D 128 90.6 62.9
GOCA K400 S3D 128 89.3 63.2
GOCA+ K400 S3D 128 91.1 65.8

MoCo* [29] UCF R(2+1)D+18 112 77.6 45.7
CVRL* [68] UCF R3D+18 112 75.8 44.6
TCLR [23] UCF R(2+1)D+18 112 82.4 52.9
TCLR [23] UCF R(2+1)D+18 112 82.8 55.6
Var. PSP [19] UCF R3D+18 112 74.8 36.8
PacePred [83] UCF R(2+1)D+18 112 75.9 35.9
VCP [57] UCF R(2+1)D+18 112 66.3 32.2
PRP [89] UCF1 R(2+1)D+18 112 72.1 35.0
RTT [42] UCF R(2+1)D+18 112 81.6 46.4
Enhanced [67] UCF R3D+18 112 76.2 41.1
Zhang [53] UCF R(2+1)D+18 112 79.0 45.4
GOCA UCF R(2+1)D+18 112 82.1 54.7
GOCA+ UCF R(2+1)D+18 112 88.7 60.1

CoCLR [37] UCF S3D 128 81.4 52.1
CoCLR+ [37] UCF S3D 128 87.3 58.7
ViCC [80] UCF S3D 128 84.3 47.9
ViCC+ [80] UCF S3D 128 90.5 62.2
GOCA UCF S3D 128 83.4 53.5
GOCA+ UCF S3D 128 90.2 64.8

Table 7: Fine Tuning. Light grey
colored methods use much higher
input resolution. MoCo* and
CVRL* results obtained from [53]
and [23], respectivelly.

Method DS Backbone Res UCF HMDB

MemDPC [36] K400 R-2D3D 224 54.1 30.5
CVRL [68] K400 R3D-50 224 89.8 58.3
TCLR [23] UCF R3D+18 112 69.9 52.8
Enhanced[67] K400 R3D+18 112 63.2 33.4
CoCLR [37] K400 S3D 128 74.5 46.1
CoCLR+ [37] K400 S3D 128 77.8 52.4
GOCA K400 S3D 128 78.9 50.5
GOCA+ K400 S3D 128 82.8 58.7

MCL+ [50] UCF S3D 224 79.8 -
Time-Equ [41] UCF R3D-18 128 74.1 47.5
CoCLR [37] UCF S3D 128 70.2 39.1
CoCLR+ [37] UCF S3D 128 72.1 40.2
ViCC [80] UCF S3D 128 72.2 38.5
ViCC+ [80] UCF S3D 128 78.0 47.9
GOCA UCF S3D 128 69.2 38.6
GOCA+ UCF S3D 128 81.1 50.0

Table 8: Linear Classification.

We observe that Time-Equ* [41] method also performs well however, this work uses
speed [8,89], direction [66], and order [86] as auxiliary loss as well. These loss func-
tions can be combined with our method also. Time-Equ* [41] obtains 52.1% and 21.4%
at at K = 1 on UCF and HMDB respectively, without these auxiliary loss function. We
also evaluate our pre-trained model on motion centric dataset [51]. Tab. 5 show our
result for Diving-48 [51]. We can see that proposed model improves the baselines for
the motion centric dataset as well and obtain SOTA results. Fig. 4 shows our retrievals
results. GOCA retrieves videos from the same semantic categories and it fails only for
one case where it confuses Disk Throwing with Hammer Throwing. This is a quite hard
example because these two activities have very similar motions and the only difference
is the quite small object in the person’s hand. Higher resolution input images would help
to solve this problem. We can see that SModel-RGB fails to retrieve relevant videos and
consistently retrieves based on the background.

4.3 Cluster Analysis

Ideally, video representations should form semantic clusters in order to facilitate activ-
ity recognition. To evaluate the clustering quality of our learned representations, we use
two metrics that measure the correlation between clusters and semantic labels (ground
truth). To this end, we perform K-means clustering on the our representations that are
extracted from the UCF101 test set. Then we use the given labels of the test set to de-



14

termine a label for each cluster via majority voting. We assign each cluster’s label to all
its members and compare those assigned labels to given labels. Specifically, we com-
pute the accuracy of the assigned labels (Acc), as well as the F1 score, which is the
harmonic mean of recall and precision. We also compute the Normalized Mutual In-
formation (NMI), which measures the mutual information between clusters and ground
truth labels, divided by the sum of their entropy. Due to the randomness of K-means, we
repeat experiments 50 times and take the average for each metric. As shown in Tab. 6,
GOCA significantly improves the cluster quality in terms of all metrics, both with and
without OF. This verifies the high quality semantic clustering ability of our method.

4.4 Classification Tasks

Linear Classification We follow the earlier works of [37,67,80] for the linear classifi-
cation experiments. After the self-supervised training on the K400 dataset, we discard
the projection head and prototypes and replace them with a linear layer. Then we train
the linear layer on the training set of each downstream dataset (UCF and HMDB) with
frozen backbone. The results are shown in the first section of Tab. 7, and demonstrate
that the proposed model significantly outperforms CoCLR [37] on both datasets by 5%
and 6%, respectively. Notably, when we combine RGB and OF, we achieve state-of-the-
art results on the HMDB dataset, even though the other methods [36,68] benefit from a
higher input resolution. For the case of UCF dataset, our model with the S3D marginally
outperforms the other methods, achieving 80.1% on UCF and 50.0% on HMDB.

Fine-Tuning We follow the standard protocol from [37,67,80], where we train the full
backbone on the downstream tasks. We summarize the results in the second section
of Tab. 8. On the S3D backbone, our method improves CoCLR+ [37] by 0.5% and
2.9%, respectively. In addition, when using only RGB as input, we achieve improve-
ments of 1.4% and 8.8% on both datasets. Moving to the UCF dataset, our approach
obtains state-of-art results with R(2+1)D; while, with S3D, we are slightly worse than
ViCC+ [80]. However, on the HMDB dataset, our results outperform ViCC+ [80] by a
large margin of 6.6% and 2.6% when using RGB and RGB+OF. Note that CVRL [68]
and ρ BYOL [29] use higher input resolution (224) than ours (112), which leads to bet-
ter performance, but needs significantly more computation. In fact, when we compare
to CVRL at a resolution of 112, we significantly outperform CVRL [68].

5 Conclusion

In this paper, we presented a novel self-supervised learning approach for videos. We
showed that the proposed guided online clustering idea and the prototype regularization
approach both substantially improve the performance of our learned representations on
both activity retrieval and action classification tasks. We believe that our work estab-
lishes a new direction for SSL research on multi-view and multi-modal data. Although
we conduct our experiments using RGB and optical flow, the proposed idea can be
applied to fuse other modalities such as RGB+Audio or RGB+Text, which we will ex-
plore in our future work. Furthermore, our method simplifies the training procedure for
multi-modal SSL on videos (CoCLR and VICC require multi-stage training).
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