
ASpanFormer: Detector-Free Image Matching
with Adaptive Span Transformer

Hongkai Chen, Zixin Luo, Lei Zhou, Yurun Tian, Mingmin Zhen,
Tian Fang, David McKinnon, Yanghai Tsin, and Long Quan

HKUST Apple Inc.

Abstract. Generating robust and reliable correspondences across im-
ages is a fundamental task for a diversity of applications. To capture
context at both global and local granularity, we propose ASpanFormer,
a Transformer-based detector-free matcher that is built on hierarchical
attention structure, adopting a novel attention operation which is ca-
pable of adjusting attention span in a self-adaptive manner. To achieve
this goal, first, flow maps are regressed in each cross attention phase to
locate the center of search region. Next, a sampling grid is generated
around the center, whose size, instead of being empirically configured as
fixed, is adaptively computed from a pixel uncertainty estimated along
with the flow map. Finally, attention is computed across two images
within derived regions, referred to as attention span. By these means, we
are able to not only maintain long-range dependencies, but also enable
fine-grained attention among pixels of high relevance that compensates
essential locality and piece-wise smoothness in matching tasks. State-of-
the-art accuracy on a wide range of evaluation benchmarks validates the
strong matching capability of our method.

Keywords: Image Matching, Visual Localization, Pose Estimation, Trans-
former

1 Introduction

Image matching lays the foundation for various geometric computer vision tasks,
including Structure from Motion (SfM) [1,2], visual localization [3], and Simulta-
neous Localization And Mapping (SLAM) [4,5]. As a widely accepted pipeline for
image matching, cross-image correspondences are usually established by match-
ing a set of detected and described sparse keypoints, such as SIFT [6], ORB [7], or
their learning-based counterparts [8,9,10,11,12]. Despite its general effectiveness,
this detector-based matching pipeline struggles in extreme situations, including
large view point changes and textureless areas, due to the reliance on keypoint
detector and context loss in feature description.

Concurrent with detector-based matching, another line of works focus on gen-
erating correspondences directly from raw images [13,14,15,16,17,18,19,20,21],
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Fig. 1. An illustration of the proposed adaptive attention span (top row) and final
dense matching results (bottom row). Particularly, in the top row, a rectangle with
8 × 8 uniform sampling grid is drawn to explain the position and size of adaptive
attention span. In addition, three typical types of correspondences are visualized. Easy
match in green with rich texture, which can be well localized and matched with small
local contexts. Hard match in yellow with little texture, which requires larger contexts
to guide matching. Impossible match in red in non-overlapping or occluded region,
which has a very large attention span to avoid falsely fitting to certain regions. With
this design, we enable Transformer to adaptively capture necessary context according
to matching difficulty.

where richer context can be leveraged while keypoint detection step can be es-
chewed. Earlier works [16,22,17] in detector-free matching often rely on iterative
convolution upon correlation or cost volume to discover potential neighbour-
hood consensus. Recently, some works [13,14,21] base their methods on Trans-
former [23,24] backbone for better modeling of long-range dependencies. As a
representative work, LoFTR utilizes self and cross attention blocks to update
cross-view features, where Linear Transformer [25] is adopted to replace global
full attention in order to achieve manageable computation cost. Although proven
effective, a concern about LoFTR is the lack of fine-level local interaction among
pixel tokens, which could limit its capability to extract highly accurate and well-
localized correspondences. This concern is deepened by the findings [21] of Tang
et al., which reveals that the cross attention map generated by LoFTR’s Linear
Transformer tends to diffuse among large areas instead of sharply focusing on
actual corresponding regions.

To capture both global context and local details, we propose a Transformer-
based detector-free matcher, equipped with a hierarchical attention framework.
Our foundation processing blocks, referred to as Global-Local Attention (GLA)
block, performs a coarse-level global attention at low resolution to acquire long-
range dependencies, meanwhile, conducts fine-level local attention at high reso-
lution within only a concentrated region around a current correspondence found
through dense flow prediction.
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The key challenge for fine-level local attention is to determine the size of the
attention span. A naive approach is to regard its size as a fixed hyper parameter,
which, however, neglects the intrinsic matchability of different regions where the
dependency of context varies. As shown in Figure 1, regions in rich texture areas
can be easily matched within a small neighbourhood, while the textureless areas
are more uncertain about their correspondences and require larger context for
matching, not to mention areas that lie out of overlapping regions and are impos-
sible to be matched. To mitigate this issue, we introduce an adaptive attention
span driven by probabilistic modelling, which can be adjusted for different loca-
tions based on underlying matching difficulty. We summarize our contributions
in three aspects:

– A hierarchical attention framework is proposed for feature matching, where
attention operations are performed at different scales to enable both global
context awareness and fine-grained matching.

– A novel uncertainty-driven scheme, based on probabilistic modelling of flow
prediction, is proposed to adaptively adjust local attention span. Through
this design, our network assigns varying size of contexts to different locations
according to their essential matchability and context richness.

– State-of-the-arts results on extensive set of benchmarks are achieved. Our
method outperforms both detector-free and detector-based matching base-
lines in two-view pose estimation. Further experiments on challenging visual
localization also proves our method’s potential to be integrated into c
omplicated down-stream applications.

2 Related Works

2.1 Detector-Free Image Matching

Differing from detector-based matching methods, which typical involve detect-
ing [11,9,10,8], describing [26,27,28,12,29] and matching [30,31,32,33,34,35,36] a
set of keypoints, detector-free matching consumes a pair of images and output
correspondences in one shot. Thanks to the removal of keypoint detection stage,
detector-free matching is able to capture richer contexts from original images,
thus exhibits strong potential to match in extreme situations, such as low texture
areas and repetitive patterns.

Despite the potential merits of detector-free matching, its popularity hardly
outperforms detector-based methods during early deep learning times due to
the intrinsic difficulties in robust and distinctive features. Recently, with the
help of deep neural network, possibility is explored to build high performance
detector-free matching frameworks based on deep features, which can roughly be
classified into two categories: cost volume-based methods [16,18,15,22,17,37] and
Transformer-based methods [13,14,21]. Both kinds of methods leverage strong
signals in deep features’ correlation, either in form of correlation layer or cross at-
tention, to guide correspondence search and feature update. Our method follows
works on Transformer-based methods and employs multilevel cross attention
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for mutual feature update, encoding two-view contexts into original features for
both global and local consensus.

2.2 Global-Local Structure

Balancing receptive field and interaction granularity is a long-standing issue
for both cost volume-based and Transformer-based matching. To ensure global
receptive field, cost volume based methods are often designed to perform con-
volution on large global correlation volume, while Transformer-based methods
need to conduct attention among all pixel tokens in image pairs. Due to the
high cost of global interaction, the input features are usually downsampled into
coarse resolution [17,18,14] or being projected into low rank [13], which to some
degree limits the networks’ capability for fined grained feature update.

Complementary to global interaction, some methods propose to perform lo-
cal interaction only within a certain region instead of a global field, enabling
to process fine level features given a limited computation budget. This prac-
tice is especially common in cost volume based methods and are referred to as
local correlation layer [18,38,15,39], where the cost volumes/vectors are only con-
structed around neighbourhood of each correspondence estimation. Intuitively,
the idea of complementary global-local interaction can also be introduced to
Transformer-based matcher. In our method, a global-local attention block is
proposed for message passing across images, ensuring both global receptive field
and fine level feature processing. Specially, instead of fixing span for local atten-
tion, we design an adaptive mechanism to determine the size of area that each
pixel should attend to.

2.3 Flow Regression and Uncertainty Modeling

Flow maps depicts correspondence coordinates, which can either be absolute or
relative, for each location in an image. Predicting correspondence coordinates
from an image pair has been intensively investigated by works in optical flow
estimation [40,38,41,39] and general dense image matching [18,15,37]. In these
works, the flow maps are regressed from structured correlation volumes which are
implicitly position-aware. Recently, a Transformer-based method, COTR [14],
proves that flows can also be retrieved from positional-embedded features after
several turns of attention update.

Naturally, the reliability of flow estimation in each location is not equal and
predicting associated confidence scores is essential for many scenarios. As an
elegant framework for uncertainty prediction, some works [15,42,43,44,45] pro-
pose to use probabilistic model to jointly explain both flows estimations and
their confidence. Inspired by above works, we propose a network that regresses
a flow map for each attention block to guide local attention region and adjust
the attention span adaptively based on uncertainty prediction.
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Fig. 2. We use CNN backbone to extract initial features. After initialization, the fea-
tures are fed into iterative GLA blocks for updating. A matching module is used to
determine final matches.

3 Methodology

We present an overview of our network structure in Figure 2. Taking an image
pair IA, IB as input, our network produces reliable correspondences across im-
ages. The matching process starts with a CNN-based encoder to extract initial
features F 0

A, F
0
B for both images separately. After initialization, these features

are turned into F 1
A, F

1
B and fed into the proposed Adaptive Span Transformer

(ASpanFormer) module for updating, which is composed of iterative global-local
attention (GLA) blocks with hierarchical structure. Particularly, for each GLA
block, we regress auxiliary flow maps φA, φB describing correspondence coor-
dinates (flows) and their uncertainty. Instead of adopting these flow maps as
our correspondence output, we use them to guide local cross attention, enabling
adaptive local attention span according to matching uncertainty. After N GLA

blocks, the updated features F
(N+1)
A , F

(N+1)
B are use to construct coarse level

matches, which will be further refined into final correspondences.

In the following part, we demonstrate the details of each individual block as
well as the underlying insights.

3.1 Preliminary

Before introducing the structure of our network, we first clarify necessary nota-
tions and concepts.
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Attention. As the key operation in Vision Transformer, attention is defined
over a set of query (Q), key (K) and value (V ) vectors as

M = Att(Q,K, V ) = softmax(QKT )V, (1)

where Q,K, V are linear projections of upstream features F and M is retrieved
message. More specially, in the context of cross attention, Q are derived from
source features Fs and K,V vectors are derived from target features Ft. M is
used to update source features Fs through a feed forward network (FFN), which
involves concatenation, layer normalization and linear layers.

F i+1
s = FFN(F i

S ,M). (2)

Typically, in each pass, the position of source/target features can be switched
and cross attention is performed symmetrically.

Flow map. Flow maps φA, φB ∈ RH×W×2 depict the correspondence relation-
ship between an image pair IA, IB ∈ RH×W , such that for any location (i, j)
in an image, IA[i, j]↔ IB [φA[i, j]], IB [i, j]↔ IA[φB [i, j]]. Here, ↔ denotes that
the points on two sides are correspondences.

Instead of depicting simple correspondences, a stream of works [15,42,43,44,45]
proposes to model flow field with a probabilistic framework. Following these
works, we model the flow field as a Gaussian distribution defined by a set of
parameters. More specifically, assuming conditional independence among pixels,
two flow maps φA, φB ∈ RH,W,4 are predicted, such that φ[i, j] = [uijx , u

ij
y , σ

ij
x , σ

ij
y ],

where (uijx , u
ij
y ) are estimated correspondence coordinates and (σij

x , σ
ij
y ) are stan-

dard deviations. The probability for IA[i, j]↔ IB [x, y] is given by

P (x, y|φA[i, j]) =
1

2πσij
x σ

ij
y

exp(− (x− uijx )2

2σij
x

2 −
(y − uijy )2

2σij
y

2 ) (3)

Instead of thresholding flow estimation with uncertainty, we use it to ad-
just the search region for subsequent network interaction, as described in later
sections.

3.2 Feature Extractor

As the first part of our network, a convolutional neural network (CNN) is used

to extract 1/8 down-sampled initial features FA, FB ∈ R
H
8 ×

W
8 for each image.

As is shown in previous works [10,8,9,12,28,27,26,29], CNN exhibits strong ca-
pability to capture local context and generates high-level features, which can
be directly used to perform nearest neighbour matching. However, since these
features are processed independently for each image and critical cross view con-
texts are missed. To enrich features with long range and cross view contexts,
the initial features are further fed into our proposed Transformer module for
updating.



ASpanFormer 7

3.3 Initialization

Our Transformer-module starts with a fast initialization block, which conducts
(1) positional encoding and (2) two-view contexts initialization.

Positional encoding. As validated in Transformer networks [13,30,14], posi-
tional encoding is critical in maintaining spatial information for the flattened
tokens. Following the same formulation in LoFTR [13], 2D sinusoidal signals in
different frequencies are used to encode position information and are added to
initial features. Specially, we apply normalization when testing resolution differs
from training resolution. We provide more details in Appendix A.5.

Two-view contexts initialization. At each local attention phase, our network
requires regressing an auxiliary flow map as guidance, which requires cross view
contexts. To this end, we pass positional embedded features to a light-weight
cross attention block. More specifically, These features are downsampled to low
resolution H0,W0 and two global cross attention blocks are used for feature
processing. After initialization, the features are upsampled back to original input
resolution, denoted as F 1

A, F
1
B , and sent to iterative global-local attention blocks

for further processing.

3.4 Global-Local Attention Block

The basic structure of our Transformer network is global-local attention (GLA)
block. As is shown in Figure 2, for each GLA block, attention is performed upon
a 3-level coarse-to-fine feature pyramid built by strided average pooling.

For the i-th GLA block, global attention is conducted on coarsest down-
sampled features in resolution [H0,W0], while local attention with adaptive
span is used to pass message between medium-resolution features in resolution
[ H16 ,

W
16 ] and fine level features in resolution [H8 ,

W
8 ]. Note that we keep the coars-

est resolution as a constant, making the complexity of global full attention unaf-
fected by input size. Retrieved messages M c,Mm,Mf from coarse/medium/fine
level are upsampled to same [H8 ,

W
8 ] resolution, concatenated and fused with an

MLP to update source features.

M =MLP(M c||Mm||Mf ), (4)

F i+1 = FFN(M,F i). (5)

The FFN in our network is defined as

FFN(M,F ) = F + LN(Conv3(F ||M)). (6)

LN stands for layer normalization. Specially, we adopt a 3×3 convolution Conv3

in FFN for locality modeling, which compensate for the absence of self attention
within each feature map. Empirically, we find 3 × 3 convolution in FFN works
better than the combination of linear projection FFN and self attention, more
details can be found in Appendix A.5.
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𝜑 𝑄 𝐾/𝑉

[𝒖𝒙, 𝒖𝒚]

𝒏 ∗ 𝝈𝒙

𝒏 ∗ 𝝈𝒚

Fig. 3. Illustration Local cross attention. Query map Q are partitioned into cells in
size S × S(S = 2 in this case), retrieving prediction from flow map φ and generate
attention span. Here we only show attention span for one cell(marked in red).

Local cross attention with adaptive attention span. To facilitate fine-
grained attention with modest cost, we adopt local attention on medium and fine
level feature maps, where attention span focuses on the neighbourhood regions
around current correspondences estimation.

A key problem for local attention is how to define the size of neighbour-
hood region. A naive approach is to define neighbourhood with a fixed radius
r for all pixels, neglecting the fact that the optimal attention span for different
regions varies. For instance, it is sufficient to match regions with distinctive fea-
tures using small contexts, while regions that are harder to match require larger
contexts. Instead of using fixed attention span for all pixels, we propose to adap-
tively adjust the attention span according to the uncertainty of flow estimation.
This design lets each area balance their local receptive fields with uncertainty
awareness. Regions with high confidence in flow estimation can sharply focus on
a small region for fine level matching, while larger contexts are extracted in low
confidence areas for better convergence.

Formally, for the i-th GLA block, we first regress flow maps φiA, φ
i
B from

input features F i
A, F

i
B in fine level with an MLP, while the medium level flow

map are obtained by strided average pooling. For each scale level, we partition
the corresponding query map Q into cells with size S × S. For each cell, we
use the mean flow estimation to generate a rectangle region upon K,V map and
uniformly sample a fixed number of tokens. Attention is performed between each
cell and the sampled tokens. The detailed process is defined in Algorithm 1. An
illustration for local attention is given in Fig. 3. Since number of sampled tokens
for each location is fixed, the whole process retains linear complexity.

3.5 Matches Determination

We inherit the scheme in LoFTR [13] to generate final correspondences, including
a coarse matching stage and a sub-pixel refinement stage.
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Algorithm 1 Local Cross Attention

Input: Q,K, V ∈ RH×W×C , φ ∈ RH×4, span coefficient n, sample number w, window
size S
Output: Retrieved message M ∈ RH×W×C

1: Partition Q into cells set Qp with window size S × S, there will be H
S
× W

S
cells in

total
2: M = [ ]

3: for each cell Qpi ∈ RS
2×C in Qp do in parallel

4: Retrieving flow φp ∈ RS
2×4 from flow map φ according to the location of Qpi

5: Let [ux, uy, σx, σy] = φp =
∑
j φp[j, :]

6: Let Γ be a rectangle area with center [ux, uy], width n ∗ σx and height n ∗ σy
7: Uniformly sample w2 tokens in Γ region fromK,V , denoted asKΓ , VΓ ∈ Rw

2×C

8: Attention mi = Att(Qpi,KΓ , VΓ )
9: Append mi to M

10: Reshaping M into RH×W×C

11: return M

After being updated by N GLA blocks, we flatten the output features into
F̃A ∈ Rn×c, F̃B ∈ Rm×c and construct correlation matrix C = τF̃AF̃

T
B ∈ Rn×m,

where τ is a temperature parameter and n,m are feature numbers of two im-
ages. By applying dual-direction softmax in both column/row dimensions, a
score matrix is given by S = softmaxrow(C) · softmaxcol(C), from which we
retain coarse-level matches Mc by mutual nearest neighbour (MNN) and filter-
ing scores below a certain threshold θ. The coarse matches Mc are further fed
into a correlation-based refinement block, which is the same with LoFTR [13],
to obtain the final matching results.

3.6 Loss Formulation

We formulate the final loss from three parts, (1) coarse matches loss Lc, (2)
fine-level loss Lf and (3) flow estimation loss Lflow

L = Lc + Lf + αLflow. (7)

For coarse level loss Lc, the ground truth matches Mgt is determined by repro-
jection using depth and camera poses in datasets. We supervise the dual-softmax
score matrix S with cross entropy loss

Lc = − 1

|Mgt|
∑

(i,j)∈Mgt

log(S(i, j)). (8)

The fine-level loss is supervised directly with L2-distance between each refined
coordinates Mf (i, j) and ground truth reprojection coordinates, which are fur-
ther normalized by the coordinate variance.

For flow estimation supervision, we minimize the log-likelihood for each esti-
mated distribution. Formally, given flow estimation Φ from each layer and ground
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truth flow Dgt, Lflow is defined as

Lflow = − 1

|Dgt|
∑
ij

log(P (Dgt
ij |Φij)). (9)

In our implementation, this log-likelihood formulation can be further substituted
and decomposed into a more compact form, which is elaborated in Appendix B.

3.7 Implementation Details

Our network shares the same ResNet-18 [46] CNN feature extractor with LoFTR.
After feature extraction and flow initialization, we use 4 GLA blocks for updat-
ing. For adaptive attention span, we set n = 5, meaning that using 5 standard
deviation to crop local neighbourhood region for each token. We uniformly sam-
ple 8× 8 features in each cropped local region.

We train two different models specified for indoor and outdoor scenes respec-
tively. Both models are optimized using Adam with learning rate 1×10−3 for 30
epochs on 8 V-100 GPUs. Indoor model is trained on ScanNet [47] dataset with
batch size 24, where the training consumes 5 days. Outdoor model is trained on
MegaDepth [48] with batch size 8, taking 2 days to converge. More details about
implementation are introduced in Appendix A.3.

4 Experiments

In this section, we demonstrate the performance of our method on two-view pose
estimation and visual localization tasks, among both indoor and outdoor scenes.
Besides, we conduct ablation study to validate the effectiveness of key design
components of our method.

4.1 Two-view Pose Estimation

We resort to two popular datasets, ScanNet [47] and MegaDepth [48], intro-
duced below, to demonstrate the matching ability of our method in indoor
scenes and outdoor scenes, respectively. We also provide additional results on
YFCC100M [49] and Image Matching Challenge(IMC) 2022 in Appendix C.

Indoor two-view matching dataset. ScanNet dataset [47] is composed of
1613 sequences, each of which contains RGB images exposing large view changes
and repetitive or textureless patterns, with ground-truth depth maps and camera
poses associated. For fair comparison, we follow the same training and testing
protocols used by SuperGlue [30] and LoFTR [13], where 230M and 1.5K im-
age pairs are sampled for training and testing, respectively. In congruent with
LoFTR, we resize all test images to 480× 640.

Outdoor two-view matching dataset. MegaDepth [48] consists of 196 3D
reconstructions from 1M Internet images, whose camera poses and depth maps
are initially computed from COLMAP [1] and then refined as ground-truth.
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Fig. 4. Qualitative results of dense matching in different scenarios.

We perform two view pose estimation on 1.5k testing pairs. All test images are
resized so that their longest dimension is 1152.

Evaluation protocols. Following previous works [30,13], we train and evalu-
ate our method separately on the two datasets. Two-view pose is recovered by
solving essential matrix from correspondences produced, while pose accuracy is
measured by AUC at multiple error thresholds (5◦, 10◦ and 20◦). A pose is only
considered accurate if both its angular rotation error and translation error is
under a certain threshold compared with ground-truth poses.

Comparative methods. We compare the proposed method with 1) detector-
based approaches, including SuperGlue [30] and SGMNet [31] that are equipped
with SuperPoint(SP) [9] as local feature extractor, 2) detector-free approaches,
including DRC-Net [17], PDC-Net [15,50], LoFTR [13], QuadTree Attention [21],
MatchFormer [51] and DKM [52].

Results. As presented in Table 1 and Table 2, our method consistently achieves
the best accuracy in both indoor and outdoor scenes. Visualization in Figure 4
qualitatively demonstrates our method performance against other matches. More
visualizations are provided in Appendix D.

Table 1. Two-view pose estimation re-
sults on ScanNet dataset [47] in indoor
scenes.

Method
Pose Estimation AUC

@5◦ @10◦ @20◦

SP [9]+SuperGlue [30] 16.2 33.8 51.8
SP [9]+SGMNet [31] 15.4 32.1 48.3

DRC-Net [17] 7.7 17.9 30.5
PDC-Net+(H) [50] 20.2 39.4 57.1
LoFTR [13] 22.0 40.8 57.6
QuadTree [21] 24.9 44.7 61.8
MatchFormer [51] 24.3 43.9 61.4
DKM [52] 24.8 44.4 61.9
Ours 25.6 46.0 63.3

Table 2. Two-view pose estimation re-
sults on MegaDepth dataset [48] in out-
door scenes.

Method
Pose Estimation AUC

@5◦ @10◦ @20◦

SP [9]+SuperGlue [30] 42.2 61.2 75.9
SP [9]+SGMNet [31] 40.5 59.0 73.6

DRC-Net [17] 27.0 42.9 58.3
PDC-Net+(H) [50] 43.1 61.9 76.1
LoFTR [13] 52.8 69.2 81.2
QuadTree [21] 54.6 70.5 82.2
MatchFormer [51] 53.3 69.7 81.8
DKM [52] 54.5 70.7 82.3
Ours 55.3 71.5 83.1
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4.2 Visual Localization

Apart from evaluation on two-view pose estimation task, we further integrate
our network into a visual localization pipeline, and use two popular datasets,
InLoc [53] and Aachen Day-Night v1.1 [54,3,55] datasets, to demonstrate perfor-
mance on multi-view matching in indoor scenes and outdoor scenes, respectively.

Indoor localization dataset. InLoc dataset [53] contains a database of 9, 972
RGBD indoor images that are geometrically registered to form the reference
scene model, while 329 RGB query images are provided for visual localization,
annotated with manually verified camera poses. Great challenge is posed in
matching textureless or repetitive patterns under large perspective differences.

Outdoor localization dataset. Aachen Day-Night v1.1 dataset [54] depicts
a city whose reference scene model is built upon 6, 697 day-time images. For
visual localization, the dataset provides another 824 day-time images and 191
night-time images as queries. Great challenge is posed in identifying correspon-
dences from, in particular, night-time images under extremely large illumination
changes.

Evaluation protocols. We follow the instructions from Long-Term Visual Lo-
calization Benchmark [56] to compute query poses. For both datasets, we use pre-
trained HLoc [57] to retrieve candidate pairs, and recover camera poses with the
model trained on MegaDepth dataset following SuperGlue [30] and LoFTR [13].
More details on localization pipeline are elaborated in Appendix A.4.

Results. On InLoc dataset, as shown in Table 3, our methods achieves overall
best results compared with multiple comparative methods. On Aachen V1.1, as
shown in Table 4, our method outperforms all other methods except SuperGlue.
We partially ascribe this to the fact that we use only coarse matches for database
reconstruction (see Appendix A.4.), causing localization error that harms pose
estimation. In general, our method generalizes well in practical pipelines.

Table 3. Visual localization results on In-
Loc dataset [53].

Method
DUC1 DUC2

(0.25m,2◦) / (0.5m,5◦) / (1m,10◦)

HLoc [57] + SP [9]+SuperGlue [30] 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4
HLoc [57] + LoFTR [13] 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5
HLoc [57] + Ours 51.5 / 73.7 / 86.4 55.0 / 74.0 / 81.7

Table 4. Visual localization results on
Aachen V1.1 dataset [54].

Method
Day Night

(0.25m,2◦) / (0.5m,5◦) / (1m,10◦)

Localization with matching pairs provided in dataset

R2D2 [8] + NN - 71.2 / 86.9 / 98.9
ASLFeat [10] + NN - 72.3 / 86.4 / 97.9
SP [9]+SuperGlue [30] - 73.3 / 88.0 / 98.4
SP [9]+SGMNet [31] - 72.3 / 85.3 / 97.9

Localization with matching pairs generated by HLoc

SP [9]+SuperGlue [30] 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100.0
LoFTR [13] 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0
Ours 89.4 / 95.6 / 99.0 77.5 / 91.6 / 99.5
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4.3 Ablation Study

To validate the effectiveness of different design components of our method, we
conduct ablation experiments on ScanNet dataset [47] following the same setting
in Section 4.1. Specifically, we compare three designs of attention structure:

– Single-Level Attn.: A design with only global attention at coarsest feature
maps without the need of flow estimation. In this design, global context is
well captured, whereas essential locality in motion smoothness is omitted
and fine-grained message exchange becomes difficult.

– Multi-Level Attn.: A design with the hierarchical attention framework pro-
posed in this paper, except that the size of local attention span is fixed to
13 px, i.e., the statistical mean of the adaptive attention span used in our
network.

– Adaptive Span Attn.: Our full design that enables hierarchical attention with
adaptive attention span. By this means, the need of context for different
pixels is dynamically decided regarding different matchability.

As presented in Table 5, both hierarchical global-local attention and adaptive
attention span improve overall performance by a considerable margin, validating
the essentiality of our network designs.

Table 5. Ablation study on ScanNet
dataset [47].

Method
Pose Estimation AUC

@5◦ @10◦ @20◦

Single-Level Attn. 22.65 40.72 59.06
Multi-Level Attn. 24.85 44.86 62.71
Adaptive Span Attn. 25.61 46.04 63.33

Table 6. Flow estimation accuracy.

Stage <6px (%)
5σ (px)

Matchable Unmatchable Total

Iter#1 69.1 9.2 19.4 13.4
Iter#2 71.2 8.2 20.2 12.5
Iter#3 72.0 7.8 23.8 12.6
Iter#4 72.3 7.7 27.1 13.3

4.4 Understanding ASpanFormer

Flow estimation. We analyze the flow estimation through multiple iterations.
As shown in Table 6, precision of flow regression is gradually improved as atten-
tion iterations are performed and converges after four iterations.

As for uncertainty estimation, we split all pixels into two categories, match-
able and unmatchable pixels, identified by ground-truth camera poses and depths,
and report their mean standard deviation (σ). On one hand, mean σ decreases
with iterations for matchable pixels, as the network becomes more certain about
its flow prediction in later stages. On the other hand, the network gradually
increases uncertainty values of unmatchable pixels to prevent over-confidence to
a certain region.
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Left image overlayed with uncertainty map v.s. right image

Fig. 5. Visualization of uncertainty map which is predicted along with flows, warmer
color indicates smaller uncertainties.

Uncertainty map. In Figure 5, we provide visualization of uncertainty map
of flow prediction. Overlapping and non-overlapping regions are firstly distin-
guished, while uncertainty values in textureless regions are usually larger, indi-
cating context of larger size is required during cross attention.

Runtime evaluation. We evaluate the runtime of proposed method and com-
pare it with LoFTR [13] where both methods apply Transformer backend. The
runtime speed is tested on 100 randomly sampled ScanNet image pairs (640×480)
with a NVIDIA V100 GPU. Runtime differs only on Attention Module compared
with LoFTR, as we adopt the same Local Feature CNN backbone and coarse-
to-fine matching module. As shown in Table 7, the proposed method is overall
slightly slower than LoFTR due to the more complicated attention operation.

Table 7. Runtime speed evaluated on 640×480 images.

Stage
Runtime (ms)

LoFTR Ours

Local Feature CNN 32.2 32.2
Attention Module 24.6 40.5
Matching 40.9 40.8
Total 97.7 113.5

5 Conclusion

In this paper, we have proposed a novel Transformer framework based on feature
hierarchy, whose attention span is adaptively decided so as to acquire capabilities
to capture both long-term dependencies as well as fine-grained details in local
regions. State-of-the-art results validates the effectiveness of our method. With
more engineering optimizations, we are looking forward to wider application of
our method in real use.
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Appendix

A Implementation Details

In this section, we provide more details about our network implementation.

A.1 Network Settings

We use the same ResNet-18 for initial feature extractor as that in LoFTR, which
outputs feature maps in two resolution, 1

8 and 1
2 . The 1

8 feature map is passed
into our transformer-based network for updating, while the 1

2 is used in fine
matches coordinates refinement. For dual-softmax in coarse matching, we adopt
a learnable temperature which is initialized as 10.

We use four GLA blocks to update features. For hierarchical attention, we
fix the coarsest feature maps in resolution H0,W0, where (H0,W0) = (15, 20)
for indoor settings and (H0,W0) = (36, 36) for outdoor settings.

A.2 Flow Regression

As stated in Sec. 3.4, we use an MLP to regress auxilary flow map in each GLA
block. Given D-dimensional feature in pixel, we use MLP with shape (D,64,4)
to regress a 4-dimensional feature f . For corresponding coordinates ux, uy, We
normalize the first two values with sigmoid function and recover them to the
range of image resolution. For the standard variance σx, σy, we regress the last
two values as their logarithm. Formally,

[ux, uy] = Sigmoid(f [: 2]) ∗ [H,W ], [σx, σy] = exp(f [2 :]) (10)

where H,W are image height and width.

A.3 Training Details

For both indoor and outdoor training, we adopt the same muti-step training
strategy as that in officially released LoFTR code. More specifically, the learning
rate is linearly warmed-up in this first epoch and then halved every two or three
epochs. The learning rate curve is illustrated in Fig. 6.

A.4 Visual Localization Details

We refer to hierachical localization pipeline (https://github.com/cvg/Hierarchical-
Localization) to perform viusal localization experiments on Aachen Day-Night
and InLoc datasets.

For Aachen Day-Night, we first triangulate reference models by using only
coarse matches across images. We then generate fine level matches between query
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Fig. 6. Learning rate curve across iterations.

images and database images, where the database images are taken as left images,
so that the fine level matches can be registered to triangulated 3D tracks.

For InLoc dataset, we directly generate fine level matches between query and
database images, where the 2D match points on reference images are projected
to 3D space through the provided depth map. We omit image pairs with fewer
than 25 matches.

A.5 Some Effective Designs

We provide ablations for some additional useful designs in our network: (1)
learnable temperature for softmax at each level. (2)Convolution-based FFN. (3)
Normalized positional encoding when testing resolution differs from training
resolution. An ablation study for these techniques is provided in Tab. 8 and
Tab. 9.

Learnable Temperature. As stated in Sec. 3.4, message Mf ,Mm,M c are
computed from different levels of feature maps through global or local attention,
where softmax are applied to tokens in different numbers. A concern about
softmax is the that the number of tokens largely affect the final distribution. To
balance the impact of different token number in global/local attention, we adopt
three learnable temperature parameters τf , τm, τc for softmax in fine, medium
and coarse level features respectively.

Convolutional FFN. As shown in Sec. 3, our networks is fully based on cross
attention for cross-view message passing, while self attention is absent. Deviat-
ing from common practice that employs self attention for intra-image message
passing, we find in our experiment that adopting 3 × 3 convolution in FFN to
replace self attention and MLP-based FFN leads to better overall performance.

Normalized Positional Encoding. Positional encoding (PE) in LoFTR is
defined as,
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PEi(x, y) =


sin(wk · x), i = 4k

cos(wk · x), i = 4k + 1

sin(wk · x), i = 4k + 2

cos(wk · x), i = 4k + 3

A concern about this PE is that unseen coordinate will be used in encoding
when testing resolution differs from training resolution, which harms the net-
work’s capability of precise localization and boundary awareness. To mitigate
the issue, we adopt a simple normalization technique,

PEi
n(x, y) = PEi(x ∗ α, y ∗ β) (11)

α = Wtain/Wtest, β = Htrain/Htest (12)

where W/Htrain/test are width/height of training/testing image. We find this
normalization boost the performance of our method when training/testing image
resolution differ. Aligning testing/training PE is especially critical for precise
flow prediction, since it relies on PE to regress flow coordinate.

In Tab. 9, we provide ablation study results for normalized positional en-
coding (NPE). The results are obtained on MegaDepth dataset with all images
resized to 1152 resolution, while the models are trained in 832 resolution.

Table 8. Ablations on network designs
on ScanNet [47] dataset. SA+MLP-FFN,
means adopting 1/4 downsampled self at-
tention after each GLA block and replac-
ing all 3×3 conv in FFN of both self/cross
attention with MLP.

Method
Pose Estimation AUC

@5◦ @10◦ @20◦

AspanFormer w/o learnable temperature 25.0 45.7 62.3
AspanFormer w SA+MLP-FFN 24.8 45.5 62.0
AspanFormer 25.6 46.0 63.3

Table 9. Ablation study of Normal-
ized Positional Encoding (NPE) on
MegaDepth dataset [48].

Method
Pose Estimation AUC

Flow Acc.

@5◦ @10◦ @20◦

AspanFormer w/o NPE 52.8 69.6 81.1 22.6
AspanFormer 55.3 71.5 83.1 72.3

B Flow Loss

We formulate flow supervision as most-likelihood estimation for Gaussian distri-
bution P .

Lflow = − 1

|Dgt|
∑
ij

log(P (Dgt
ij |Φij)) (13)
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where Dgt
ij = (xij , yij) is the ground truth flow and φij = (uijx , u

ij
y , σ

ij
x , σ

ij
y )

are predicted parameters at location (i, j). Substituting into Gaussian distribu-
tion formula, we have

Lflow = − 1

|Dgt|
∑
ij

log[
1

2πσij
x σ

ij
y

exp(− (xij − uijx )2

2σij
x

2 −
(yij − uijy )2

2σij
y

2 )] (14)

=
1

|Dgt|
∑
ij

[log2π + logσij
x + logσij

y +
(xij − uijx )2

2σij
x

2 +
(yij − uijy )2

2σij
y

2 ] (15)

In implementation, we let wij
x = logσij

x , w
ij
y = logσij

y and omit constant
terms, then

Lflow =
1

|Dgt|
∑
ij

[wij
x + wij

y +
1

2
e−2w

ij
x (xij − uijx )2 +

1

2
e−2w

ij
y (yij − uijy )2] (16)

Intuitively, this loss formulation is a weighted sum of L2-distance between
estimated flows and ground truth flows. wij

x +wij
y is a regularization term encour-

aging lower uncertainty. The overall effect of flow loss is to minimize uncertainty
and flow estimation error simultaneously.

C Additional Quantitative Results

We provide in this part additional experiment results on YFCC100M dataset
and Image Matching Challenge 2022 (IMC 2022) kaggle benchmark.

C.1 Results on YFCC100M

YFCC100M contains a collection of internet images across various tourism land-
marks. We adopt the test set from 4 selected landmark sequences as is done
in previous works [32,30,31]. 1000 image pairs are sampled from each sequence,
which yields 4000 pairs test set in total. We use OpenCV ransac for two-view
pose estimation, where the RANSAC threshold for all methods is set to 5×10−4

in normalized image coordinate space. Experiment results are given in Tab. 10,
where our method outperforms all comparative methods.

C.2 Results on Image Matching Challenge 2022

We submit our method to Image Matching Challenge (IMC) 2022 and report
the results in Tab. 11. We resize the input image to a fixed resolution [1472,832]
and use OpenCV USAC MAGSAC to estimate fundamental matrix, where the
RANSAC threshold is set to 0.2 pixel. The results show that our method con-
sistently outperforms other strong comparative baselines.
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Table 10. Two-view pose estimation re-
sults on YFCC100M [49] dataset in out-
door scenes.

Method
Pose Estimation AUC

@5◦ @10◦ @20◦

SP [9]+SuperGlue [30] 38.1 58.8 74.7
RootSIFT+SGMNet [31] 35.5 55.2 71.9

DRC-Net [17] 29.5 50.1 66.8
PDC-Net+(H) [50] 39.1 60.1 76.5
LoFTR [13] 42.4 62.5 77.3
Ours 44.5 63.8 78.4

Table 11. Two-view pose estimation re-
sults on IMC 2022 kaggle benchmark. The
Results of MatchFormer and QuadTree
attention are reported by the 4th solution
on Kaggle discussion forum [58].

Method
Pose Estimation mAA

Private Public

SP [9]+SuperGlue [30] 0.724 0.728
LoFTR [13] 0.783 0.772
MatchFormer [51] 0.783 0.774
QuadTree [21] 0.817 0.812
Ours 0.838 0.833

D Additional Visualizations

We provide more visualization results in this part. In Fig 7, we provide qual-
itative comparisons between SuperGlue, LoFTR and our methods. In Fig 8,
we provide flow predictions across GLA block iterations. In Fig 9, we provide
additional visualization of uncertainty heatmap and corresponding adaptive at-
tention spans.
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OursLoFTRSP + SuperGlue

OursLoFTRSP + SuperGlue

Fig. 7. Visualizations of matches obtained through SuperGlue, LoFTR and ASpan-
Former(ours). Our methods produces more accurate and denser matches compared
with both SOTA sparse and dense matching networks.
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Target ImageSource Image Iter #1 Iter #2 Iter #3 Iter #4

Fig. 8. Visualizations of flow prediction across GLA iterations. We filter flow predic-
tions with high uncertainty. Note that the flow map are in 1

8
(60 × 80) resolution. As

more GLA blocks are employed for feature updating, the flow map gradually prune
occluded or non-overlap regions.

Fig. 9. Visualizations of uncertainty heatmap(left) and adaptive attention span(right).
Our network sharply focuses on regions with rich and distinctive textures with small
attention span, while larger contexts are extracted for the low texture or uncertain
regions. Specially, very large attention spans are generated for non-overlapping or oc-
cluded areas, preventing falsely focusing on certain regions.
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