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Abstract. We propose Neural Deformable Fields (NDF), a new repre-
sentation for dynamic human digitization from a multi-view video. Re-
cent works proposed to represent a dynamic human body with shared
canonical neural radiance fields which links to the observation space with
deformation fields estimations. However, the learned canonical represen-
tation is static and the current design of the deformation fields is not
able to represent large movements or detailed geometry changes. In this
paper, we propose to learn a neural deformable field wrapped around
a fitted parametric body model to represent the dynamic human. The
NDF is spatially aligned by the underlying reference surface. A neural
network is then learned to map pose to the dynamics of NDF. The pro-
posed NDF representation can synthesize the digitized performer with
novel views and novel poses with a detailed and reasonable dynamic ap-
pearance. Experiments show that our method significantly outperforms
recent human synthesis methods.

Keywords: neural implicit representation, volumetric rendering, novel
view synthesis, dynamic motion, human shape and appearance modelling

1 Introduction

Vision-based human performance capture has seen great progress in recent years
due to fast development in both hardware and reconstruction algorithms like
novel learning-based representation. It enables a wide variety of applications such
as tele-presence, sportscast, and mixed reality. The enduring pandemic restricts
our travel and public activities, which makes human performance digitization a
research topic with great social and economic implications.

Human performance digitization can be roughly divided into human perfor-
mance capture and human animation. Traditionally, to achieve high-fidelity hu-
man performance capture including geometry and texture reconstruction, dense
camera rigs [5,8,9] and controlled lighting conditions [2,6] are required. These
systems are extremely bulky and expensive, which limits their popularity. Nev-
ertheless, these conventional capture systems could still fail under multi-person
scenarios due to severe occlusion, which leads to ambiguity in appearance, pose,
and motion sampling. After performance capture, human animation requires
skilled artists to manually create a skeleton suitable for the human model and
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carefully design skinning weights [11] to achieve realistic animation, which re-
quires countless human labor.

This paper aims to reduce the cost and improve the flexibility of human
performance digitization. Many recent works have investigated the potential of
neural implicit fields in novel view synthesis. NeRF [20] proposed a neural im-
plicit representation that can be effectively learned from multi-view images. The
neural implicit representation is rendered to realistic images from novel views
with volume rendering. However, NeRF has a high requirement for the camera
numbers and it can only model a static scene which does not apply to multi-view
videos of dynamic humans. To extend NeRF to dynamic scenes, an effective idea
is to aggregate all observations over different video frames [26,22,24,23,12]. D-
NeRF [26] and Nerfies [22] decompose a reconstruction into a canonical neural
radiance field and a set of deformation fields that transform points in observa-
tion space to canonical space. To further simplify the learning of the deformation
fields, Animatable NeRF [24] resorts to a parametric human body model as a
strong geometry prior to the deformation fields. However, we claim that the cur-
rent design of a shared canonical space and deformation fields prevents these
methods from learning large movements and detailed geometry changes such as
wrinkles of clothes as shown in the experiment.

To solve the above problems, rather than learning shared canonical neural
radiance fields from multi-view videos, we use Neural Deformable Fields (NDF)
to represent a dynamic scene. Specifically, we unwrap observation space to NDF
space using the surface of a parametric body model as reference. NDF space is
automatically aligned across frames and we further adopt the skeletal pose as
posterior condition to model the dynamic changes. As a result, NDF space is
more compact than the original observation space and it can model the dynamic
changes caused by different poses. After training, we are able to animate the
performer to different views and poses with a high degree of realism.

We evaluate our method on ZJU-MoCap [25] and DynaCap [7] datasets that
capture dynamic humans in complex motions with synchronized cameras. The
results show that our method can achieve high-fidelity reconstructions, especially
for realistic dynamic changes in novel pose synthesis. The code is avaliable at
https://github.com/HKBU-VSComputing/2022_ECCV_NDF.

In summary, the contributions of this paper are following:

– We propose a compact novel representation called NDF, which can model
the dynamic changes caused by different poses.

– The experiment results demonstrate significant improvement on the novel
pose synthesis task, especially the detailed and realistic dynamic changes
caused by different poses.

2 Related Works

Learning-based Scene Representations. According to the dimensionality of
representation, several paradigms have been investigated for 3D content embed-
ding in the context of image-based novel view synthesis. Multiplane image (MPI)

https://github.com/HKBU-VSComputing/2022_ECCV_NDF
https://github.com/HKBU-VSComputing/2022_ECCV_NDF
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[31,19], voxels [28,16], point cloud [1,3], and neural radiance fields [20,30,18,4,13]
have all been under intense research focus recently. MPI learns scene represen-
tation in the form of fronto-parallel color and α planes, and novel views are
rendered via homography-wraping. Sitzmann et al. [28] proposed to learn a deep-
voxel representation by dividing the 3D space into discrete 3D units that embed
learned features, which was further replaced with a continuous learnable function
[29]. Mildenhall et al. [20] proposed to represent the scene as a neural radiance
field (NeRF) by directly mapping a continuous 5D coordinate to the volume den-
sity and view-dependent emitted radiance. NeRF has special advantages in that
it can represent a continuous scene in arbitrary resolution and it can be effec-
tively learned from multi-view images. Our method follows NeRF to reconstruct
scenes from images and further extends it to dynamic scenes.
Neural Implicit Representation for Human. Habermann et al. [7] leverage
a 3D scanned person-specific template to learn motion-dependent geometry as
well as motion- and view-dependent dynamic textures from multi-view videos.
The requirement of a high-quality 3D scanning restricted its use. Several recent
works resort to learning a shared representation via deformable functions (in
the form of NeRF [26,22,27,21]). Restricted by the design choice of the function,
it is difficult for these methods to model relatively large movements efficiently
and they show limited generalizability to novel poses. Liu et al. [15] learns a
person-specific embedding of the actor’s appearance given a monocular video
and a textured mesh template of the actor. Neural Body [25] learns neural rep-
resentations over the same set of latent codes anchored to the deformable human
model SMPL [17], and naturally integrate observations across frames. The spar-
sity allows it to effectively aggregate observations across frames but the result
shows it losses details like wrinkles of clothes. Neural Actor [14] learns an un-
posed implicit human model via inverse linear blend skinning functions (LBS).
The model cannot handle surface dynamics and certain geometric information
has been lost during the generation of 2D texture maps. Animatable NeRF [24]
can animate the performer to novel poses however it requires fine-tuning on the
novel pose frames. This would be impossible when applied to a completely novel
pose that the performer has never done. Our method does not require fine-tuning
and can be directly applied to completely novel poses after training.

3 Proposed Method

Problem Setup. Given a training set of T -frame multi-view video of a dynamic
human target over a sparse set of K synchronized and calibrated cameras: I =
{Ikt } (t = 1 . . . T, k = 1 . . .K), our goal is to digitize this performer using the
proposed Neural Deformable Field (NDF) representation for both novel-view
synthesis (NVS) and novel pose synthesis (NPS). Specifically, in the NVS task,
we synthesize free-viewpoint renderings of the performance with novel camera
angles. In the NPS task, we synthesize renderings with novel, unseen poses.

We build the NDF representation based on the state-of-the-art volumetric
rendering model - Neural Radiance Field (NeRF) [20], which predicts the color c
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Fig. 1. Overview of proposed method. We query points in observation space, infer
their densities and colors in NDF space and adopt volume rendering technique to
synthesize images. For a given point x = (x, y, z) in observation space, we project it to
NDF space with surface projection Pθ and further adopt deformation net D to slightly
adjust the projection point ũ = (ũ, ṽ, l̃) in NDF space. A radiance field is then learned
to predict the color c and density σ for the point ũ in the unwrapped NDF space. The
predicted color c and density σ is then assigned back to the observation-space point x.
Finally, volume rendering is used to synthesize an image in the observation space.

and density σ at spatial location x ∈ R3 and view direction d ∈ S2 via a neural
network F : (x,d) 7→ (c, σ). Subsequently, volumetric rendering functions are
used to render the final pixel color. The differentiable rendering process enables
optimization via comparing the output image with ground truth without 3D
supervision. However, there are mainly two challenges in this setting. First, in
our problem setup, only K = 4 cameras are used, which is much less than what
is sufficient to train a NeRF network. Second, due to the dynamic property of
the human target, directly training a NeRF with all the frames will always cause
artifacts and produce a coarse result.

To address these challenges, NDF fits a parametric human body model SMPL
to associate 3D points among different video frames and learns a neural implicit
field wrapped around and driven by the SMPL surface:

N : (D(Pθ(x)),d, θ) 7→ (c, σ), (1)

where Pθ is a projection function which projects a point’s spatial location x
to NDF space conditioned on the posed SMPL model with parameter θ. D
is a non-linear deformation function which keeps the surface continuity in the
projection process. With the spatial alignment reference provided by the SMPL
surface, NDF efficiently accumulates visual observations from the multi-view
video frames; and given the strong geometry prior, NDF learns a geometry-
guided field instead of a volume, which greatly reduces the learning complexity,
leading to a much higher modelling efficiency. The details of each module will
be introduced in this section.
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3.1 SMPL as Projection Reference with Non-linear Deformation

To decrease NeRF’s high requirement of camera numbers, a typical solution is to
learn a deformation function Φt(x) : R3 7→ R3 to map sample points x in frame t
to a shared canonical space [24] [26]. However, restricted by current design, these
methods cannot deal with large movements or detailed geometry changes such
as clothes wrinkles. To overcome these drawbacks, we resort to the texture map
of SMPL as a reference to align 3D points across different frames and jointly
train an integral NeRF model.

SMPL [17] is a skinned vertex-based model, which is defined as a function
of shape parameters β, pose parameters θ and a rigid transformation W using
Linear Blending Skinning (LBS). The template model T̄ includes pre-defined
6890 vertices and their connections. With the pose-blend shape BP (θ) and shape-
blend shape BS(β), the posed mesh M(θ, β) is got from the following equation:

M(θ, β) = W(T̄+BS(β) +BP (θ)). (2)

In this paper, we assume the posed mesh is pre-computed from the multi-view
video and use the texture map of this mesh to conduct the projection function
Pθ from observation space to NDF space.

Coordinates Projection. As shown in Figure. 1, a 3D point x = (x, y, z)
is projected to a point u∗ = (u∗, v∗, l∗) in the unwrapped Neural Deformable
Fields (NDF) space with the projection function Pθ : x 7→ u∗. Pθ first projects
the point x to the closest point x′ ∈ R3 on the fitted SMPL surface. x′ has a
2D texel coordinate (u∗, v∗) which is defined over SMPL’s texture map and is
calculated via:

(u∗, v∗, f∗) = argmin
u,v,f

∥x−Bu,v(V[F(f)])∥22, (3)

where f ∈ {1 . . . NF } is the triangle index, V[F(f)] is the three vertices of triangle
F(f), (u, v) : u, v ∈ [0, 1] are the texel coordinates on the texture map andBu,v(·)
is the barycentric interpolation function. SMPL is designed for modelling skinned
human body and cannot capture surface dynamic changes. To model the dynamic
geometry that deviates from the SMPL surface, we extend NDF to 3 dimensions
with the euclidean distance l∗ between x and x′ being the third dimension.

Non-linear Deformation. We have projected an observation-space point x
to u∗ in NDF space using the UV coordinate of its nearest point on the SMPL
surface as a reference. However, the continuous real surface will become discon-
tinuous after projection. As shown in Figure 2(b), the two yellow points located
on the continuous real surface in observation space will be closest to the same
vertex on the SMPL surface if they locate in the same intersection of surface
normals. After projection, the two yellow points will have the same u∗, v∗ but
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Fig. 2. A simplified 2D demonstration of transformation from the (x, y, z) camera co-
ordinates (a) to the (u, v, l) NDF coordinates with and without non-linear deformation
in (c) and (b), respectively.

different l∗ in the NDF space. This will cause discontinuity at (u∗, v∗) and hinder
the learning of neural radiance fields. To solve this problem, we adopt a defor-
mation net to slightly adjust the projection coordinate. As shown in Figure 2(c),
this non-linear deformation can unwrap the surface fragment between the sur-
face normal interval and the continuity of the real surface can be maintained.
Formally, the deformed projection location ũ = (ũ, ṽ, l̃) is described as following:

△u∗,△v∗,△l∗ = D(γu(u
∗, v∗, l∗), θ), (4)

ũ, ṽ, l̃ = u∗ +△u∗, v∗ +△v∗, l∗ +△l∗, (5)

where D(·) is the deformation net and γu(·) is the position embedding of u∗. Note
that the deformation aims to maintain the surface continuity in projection, but
not to align points to a shared canonical space as in D-NeRF [26] and Nerfies [22].

3.2 Neural Deformable Fields

Rendering. For a given 3D spatial location x along the target camera’s trac-
ing ray direction d, a point ũ will be found in the NDF space via projection
and non-linear deformation as described above. The density for the point x will
be estimated using an MLP Mσ: σ(x) = Mσ(γu(ũ), θ). The color will be esti-
mated with another MLP Mc: c(x) = Mc(γu(ũ), γd(d), θ), with an additional
embedding γd(d) for viewing direction, which ensures view-dependent effects.

The final image will be rendered via volumetric rendering [10] using numerical
quadrature with N consecutive samples {x1, . . . , xN} along the tracing ray:

Iout =

N∑
n=1

(

n−1∏
m=1

e−σ(xm)·δm) · (1− e−σn·δn) · c(xn). (6)

Here δn = ||xn − xn−1||2 denotes the quadrature segment along the ray.
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Geometry-guided Sampling Strategy. To further facilitate the learning pro-
cess of NDF, we use the fitted SMPL as geometry guidance to sample points more
effectively and cancel the hierarchical sampling adopted in the original NeRF.
Specifically, as shown in Figure 1, we take uniform samples but only accept
samples if the projection distance l∗ is smaller than a hyper-parameter δN .

Remark. NDF representation is lightweight, detailed, and intuitive. As com-
pared with volumetric representations, its underlying geometrical linkage is well-
defined by posed SMPL, resulting in reduced dimensionality for geometry rea-
soning, therefore significantly reducing model complexity and is much easier to
train. The feature space of NDF span the whole UV dimension, which records
much more details compared with Neural Body [25], where shared canonical
features are only located at SMPL vertices. By learning neural radiance fields
conditioned on the pose, NDF can recover more intuitive dynamics related to
changing pose rather than having to learn how to change query position in the
canonical space through a per-frame deformation field like in Neural Actor [14].

3.3 Deformable Fields for Novel Pose Synthesis

Pose-driven NeRF By projecting points from the observation space to the
NDF space, we are able to jointly learn a shared neural radiance field across
frames. However, this representation would be only capable to capture a static
geometry though it can be deformed to different poses. To model the dynamic
change of human body geometry, we resort to the skeletal pose of SMPL as the
posterior to infer the dynamic changes, i.e. we change the model from simply
learning N : (D(Pθ(x)),d) 7→ (c, σ) to learning N : (D(Pθ(x)),d, θ) 7→ (c, σ),
where θ is the pose parameters of SMPL. In SMPL, the pose parameters θ is
the axis-angle representation of the relative rotation of part k with respect to
its parent in the kinematic tree. Besides being used for changing pose, θ is also
used to generate a pose-blend shape that describes the shape deformation caused
by different poses. Inspired by this, we infer from pose θ the dynamics of the
scene. In practice, we apply an additional feature extractor to extract high-level
features of pose parameters which contain significantly more information than
the pure pose parameters. The extracted pose features are then concatenated
with the position embedding of ũ and fed into the following neural networks.

Animation After training, NDF can be generalized to novel views or poses that
do not occur in the training data I. Specifically, given a viewing direction d, a
shape parameter β and a skeletal pose θ got from a motion capture system or
designed by hand, we calculate the mesh vertices through Equation 2. Then we
sample points around the SMPL surface and render an image viewing from d
with Equation 6.

Remark. NDF does not need to be fine-tuned on novel pose images com-
pared with Animatable NeRF [25] and can be applied to only sparse cameras
compared with Neural Actor [14], where dense cameras are needed to pre-
compute a realistic texture map. This animation ability only from sparse cameras
would have a wide range of potential applications in VR or the metaverse.
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4 Experiment

4.1 Dataset and Metrics

ZJU-MoCap [25] records multi-view videos with 21 synchronous cameras and
collects the shape parameters of SMPL as well as the global translation and the
SMPL’s pose parameters with an off-the-shelf SMPL tracking system [32]. Fol-
lowing [25], we choose 9 sequences and 4 uniformly distributed cameras are used
for training and the remaining cameras for testing. The video clips for evaluating
novel view synthesis and novel pose synthesis are also the same with [25].
DynaCap. To further evaluate the generalization ability of our method, we
select two sequences D1 and D2 from the DynaCap dataset [7]. These two se-
quences record a performer with over 50 synchronous cameras. We fit neutral
SMPL to these cameras using [32] and uniformly select 10 cameras for training
and 5 cameras for testing.
Metrics. Following typical protocols [20] and works most related to us [24] [25],
we evaluate our method on image synthesis using two metrics: peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM).

4.2 Performance on NVS and NPS

We compare our method with state-of-the-art view synthesis methods [25,24]
that also use SMPL models and can handle dynamic scenes. Neural Body [25]
represents the dynamic scene with an implicit field conditioned on a shared set
of latent codes anchored on the vertices of SMPL and renders the images using
volume rendering. Animatable NeRF [24] predicts the blend weights for each
sample point and aggregates observations across frames to a shared canonical
representation and further improves on novel pose synthesis by fine-tuning on
novel pose images. All methods train a separate network for each scene.

Evaluation on novel view synthesis. Table 1 shows the comparison of
our method with Neural Body [25] and Animatable NeRF [24] on ZJU-MoCap
dataset. Our method outperforms Animatable NeRF [24] by a margin of 0.49
in terms of the PSNR metric and 0.01 in terms of the SSIM metric. It also
performs close to Neural Body. Moreover, our method maintains its superiority
when applied to DynaCap dataset as shown in Table 3.

Figure 3 presents the qualitative comparison of our method with [25,24] on
the ZJU-MoCap dataset. Both [25] and [24] have difficulty in recovering fine
details of the dynamic scene. Neural Body [25] turns to over-smooth the result
as shown in the third person and the fourth person of Figure 3. The clothes seam
of the third person almost disappears and the small wrinkles on the clothes of
the fourth person also disappear. Animatable NeRF [24] shows more artifacts as
the blur of the first person’s face and the second person’s clothes. In contrast,
our method can always recover realistic details like the hem of the third person.

Figure 5 further presents the qualitative comparison on the DynaCap dataset.
For the first two rows of novel view synthesis, our method can always recover
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Novel view: visualcomp_nv

(b) Animatable NeRF (c) NDF (ours) (d) Ground Truth(a) Neural Body

Fig. 3. Qualitative results of novel view synthesis on the ZJU-MoCap dataset.

realistic details. For the second row, Neural Body [25] losses wrinkles on the
back and Animatable NeRF [24] suffers from artifacts. While our method can
reproduce high-quality wrinkles on the back.

Evaluation on novel pose synthesis. Table 2 shows the comparison of our
method with Neural Body [25] and Animatable NeRF [24] on novel pose synthe-
sis. The result shows that our method outperforms compared method on most of
the sequences and performs best for the average metrics. Note that Animatable
NeRF [24] needs to be fine-tuned on novel pose images while our method can be
directly applied to novel pose synthesis.

The qualitative results are shown in Figure 4. Neural Body [25] learns latent
codes for training frames and does not model the dynamic change with respect to
poses, thus it always suffers from artifacts when applied to novel pose synthesis.
Though fine-tuned on novel pose images, Animatable NeRF [24] has difficulty in
modelling large movements and also leads to blur result. Our method is able to
recover details such as the hem of clothes for the third person even when applied
to novel pose synthesis.

The bottom 2 rows of Figure 5 show the qualitative comparison on the Dy-
naCap dataset. Neural Body [25] fails to recover the face of the second person
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Table 1. Results of novel view synthesis on the ZJU-MoCap dataset in terms of PSNR
and SSIM (higher is better). “NB” means Neural Body. “AN” means Animatable
NeRF. The best and the second best results are highlighted in red and blue, respectively.

PSNR SSIM

NB [25] AN [24] OURS NB [25] AN [24] OURS

313 30.39 29.27 29.84 0.970 0.962 0.969
315 26.53 24.22 25.71 0.954 0.922 0.949
377 27.49 26.63 26.85 0.950 0.941 0.946
386 28.66 26.78 28.21 0.928 0.891 0.923
387 25.52 24.75 24.52 0.922 0.913 0.911
390 27.25 26.19 26.33 0.920 0.915 0.913
392 29.41 27.79 28.40 0.944 0.928 0.937
393 27.41 26.06 26.73 0.934 0.916 0.926
394 28.65 27.53 27.98 0.939 0.925 0.932

average 27.92 26.58 27.17 0.940 0.924 0.934

Table 2. Results of novel pose synthesis on the ZJU-MoCap dataset in terms of PSNR
and SSIM (higher is better)

PSNR SSIM

NB [25] AN [24] OURS NB [25] AN [24] OURS

313 23.49 23.61 23.29 0.898 0.908 0.903
315 19.38 19.45 19.50 0.847 0.854 0.857
377 23.89 25.03 25.18 0.914 0.927 0.928
386 25.63 25.14 26.33 0.877 0.878 0.893
387 21.75 22.94 22.41 0.865 0.892 0.880
390 23.81 24.51 24.11 0.868 0.889 0.881
392 25.66 24.15 25.62 0.908 0.900 0.914
393 23.30 23.97 24.03 0.891 0.899 0.902
394 23.76 24.29 24.29 0.876 0.893 0.890

average 23.41 23.68 23.86 0.883 0.893 0.894

and Animatable NeRF produces severe artifacts on the face and hands, while
our method can produce reliable realistic face and hands for the second person.

4.3 Temporal Consistency

NDF uses pose as condition which changes continuously and smoothly over time,
while Neural Body and Animatable NeRF separately learn appearance codes for
different frames. This endows NDF with better temporal consistency as can be
seen from Figure 6. The red circles point out the flickering part of previous
methods while NDF always shows better temporal consistency.
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(b) Animatable NeRF (c) NDF (ours) (d) Ground Truth(a) Neural Body

Novel pose: visualcomp_np
Fig. 4. Qualitative results of novel pose synthesis on the ZJU-MoCap dataset.

4.4 Ablation Study

We conduct ablation studies on one subject (313) of the ZJU-MoCap [25] dataset
in terms of the novel view synthesis and novel pose synthesis performance. We
test the impact of the surface distance l̃, the impact of using pose as the condition
to model dynamic change, the impact of projection from observation space to
NDF space, the impact of deformation net, and the reliance of specific reference
surface to show the effectiveness of our choice.

Impact of the surface distance l̃ in NDF rendering. To capture the dy-
namic geometry that cannot be captured by naked SMPL surface, we adopt the
distance from a query point to its closest point on SMPL as the third dimension
to model the NDF space as a field rather than a naked SMPL surface. To test
the impact of this design, we only sample points on the SMPL surface thus the
l̃ for projected points are all 0. As shown in the first column of Figure 7 and Ta-
ble 4, modelling the NDF space as naked SMPL surface causes severe artifacts,
especially for clothes that cannot be captured by SMPL surface.

Using pose as condition to model dynamic change. In this experiment,
we cancel using pose as the condition and jointly learn a shared canonical NDF
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(b) Animatable NeRF (c) NDF (ours) (d) Ground Truth(a) Neural Body

visualcomp_nactort
Fig. 5. Qualitative results of novel view synthesis and novel pose synthesis on the Dy-
naCap dataset. Top 2 rows: novel view synthesis. Bottom 2 rows: novel pose synthesis.

for all frames. As shown in the second column of Figure 7, the model cannot
handle dynamic changes and produces blur rendering at dynamic regions.

Impact of projection from observation space to NDF space. In this
experiment, we directly use the observation-space coordinates (x, y, z) as input
to the neural network. The model needs to learn the mapping from pose to the
whole 3D volume however it is severely difficult. As shown in the third column
of Figure 7, though the model can synthesize novel views of the performer, it
totally fails on novel pose synthesis.

Impact of deformation net. The deformation net aims to maintain the sur-
face continuity after projection as claimed in Figure 2. As shown in the fourth
column of Figure 7, the face and shoes become slightly noisier and we infer this
is because the triangle surfaces of SMPL are small and dense on the face and
feet. The result confirms the effectiveness of our design of the deformation net.

Reliance of specific reference surface. NDF does not rely on a specific
texture map as the reference surface. To validate this, we replace the default
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Table 3. Results of novel view synthesis and novel pose synthesis on the DynaCap
dataset in terms of PSNR and SSIM (higher is better).

PSNR SSIM

NB [25] AN [24] OURS NB [25] AN [24] OURS

novel view 23.96 22.99 24.73 0.889 0.872 0.904
novel pose 21.19 20.98 21.42 0.828 0.828 0.841

NB

AN

Ours

Fig. 6. Qualitative results of continuous frames to show temporal consistency. The red
circles point out the flickering part of previous methods.

texture map of SMPL with a self-designed texture map which can be found in
the supplementary material. We cut the seam of the SMPL mesh in Blender and
unwrap the mesh into one piece in the UV space. As shown in the fifth column
of Figure 7 and Table 4, with the 1-piece texture map as reference surface, the
face becomes slightly blurred but the whole effect is still robust. This is because
the UV region corresponding to the face occurs to be much smaller than in the
default texture map of SMPL. The result shows that our method does not rely
on a specific texture map and a self-designed texture map can also be used to
unwrap points from observation space to NDF space.

5 Limitations and Future Works

Learning neural radiance fields conditioned on pose in NDF space enables us to
obtain impressive performances on human digitization. However, our method has
a few limitations. 1) Currently our method has a high requirement for the fitting
effect of SMPL. Hopefully, in the future, we can integrate the fitting of SMPL
in the pipeline and make the fitting and rendering benefit from each other. 2) In
more complex scenes, the dynamic content depends both on pose and temporal
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1-piece texturenaked model w/o deformw/o pose w/o projection Ground Truthfull model

Fig. 7. Qualitative results of ablations. The first row and second row show the visual
results for novel view synthesis and novel pose synthesis, respectively.

Table 4. PSNR results of novel view synthesis and novel pose synthesis of abla-
tions(higher is better).

naked
model

w/o
pose

w/o
projection

w/o
deform

1-piece
texture

full
model

novel view 23.65 21.98 29.73 29.72 29.93 29.75
novel pose 21.71 20.43 18.42 23.35 23.38 23.41

information. A potential solution is to train the model with an auto-regressive
way to model the relationship to temporal information.

6 Conclusions

We propose a novel representation of Neural Deformable Fields (NDF) to model
dynamic humans. We unwrap observation space to NDF space using a parametric
body model as a reference. Then a neural radiance field conditioned on skeletal
pose is learned and volume rendering is used to render the pixel color. After
training from multi-view videos, our method can synthesize the performer with
arbitrary view direction and pose. Extensive experiments on ZJU-MoCap and
DynaCap demonstrated that our method outperforms the state-of-the-art in
terms of rendering quality and produces faithful pose-dependent appearance
changes and wrinkle patterns.
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