2207.10606v1 [cs.CV] 21 Jul 2022

arxXiv

Approximate Differentiable Rendering
with Algebraic Surfaces

Leonid Keselman and Martial Hebert

Carnegie Mellon University, Pittsburgh PA, USA
{lkeselma,hebert}@cs.cmu.edu

Abstract. Differentiable renderers provide a direct mathematical link
between an object’s 3D representation and images of that object. In
this work, we develop an approximate differentiable renderer for a com-
pact, interpretable representation, which we call Fuzzy Metaballs. Our
approximate renderer focuses on rendering shapes via depth maps and
silhouettes. It sacrifices fidelity for utility, producing fast runtimes and
high-quality gradient information that can be used to solve vision tasks.
Compared to mesh-based differentiable renderers, our method has for-
ward passes that are 5x faster and backwards passes that are 30x faster.
The depth maps and silhouette images generated by our method are
smooth and defined everywhere. In our evaluation of differentiable ren-
derers for pose estimation, we show that our method is the only one
comparable to classic techniques. In shape from silhouette, our method
performs well using only gradient descent and a per-pixel loss, without
any surrogate losses or regularization. These reconstructions work well
even on natural video sequences with segmentation artifacts.

Project page: https://leonidk.github.io/fuzzy-metaballs

Keywords: differentiable rendering, metaballs, implicit surfaces, pose
estimation, shape from silhouette, gaussian mixture models

1 Introduction

Rendering can be seen as the inverse of computer vision: turning 3D scene de-
scriptions into plausible images. There are countless classic rendering methods,
spanning from the extremely fast (as used in video games) to the extremely
realistic (as used in film and animation). Common to all of these methods is
that the rendering process for opaque objects is discontinuous; rays that hit no
objects have no relationship to scene geometry and when intersections do occur,
they typically only interact with the front-most component of geometry.

Differentiable Rendering is a recent development, designing techniques (often
sub-gradients) that enable a more direct mathematical relationship between an
image and the scene or camera parameters that generated it. The easy access
to derivatives allows for statistical optimization and natural integration with
gradient-based learning techniques. There exist several recent differentiable ren-
derers which produce images comparable in fidelity to classic, non-differentiable,
photorealistic rendering methods [37,51,54,83].

https://leonidk.github.io/fuzzy-metaballs

2 Leonid Keselman and Martial Hebert

Ve = 7/

X >)

Components Depth Alpha Normals Phong

Fig. 1: Our differentiable renderer producing images of Stanford bunny,
using a representation with 400 parameters. From left to right: the 40 compo-
nents at one standard deviation, followed by our differentiable renderer generat-
ing depth, alpha, surface normals and a shaded image.

Our paper presents a different approach: a differentiable renderer focused
on utility for computer vision tasks. We are interested in the quality and com-
putability of gradients, not on matching the exact image formation task. We
willingly sacrifice fidelity for computational simplicity (and hence speed). Our
method focuses on a rendering-like process for shapes which generates good gra-
dients that rapidly lead to viable solutions for classic vision problems. Other
methods may produce more pleasing images, but we care about the quality of
our local minima and our ability to easily find those minima. Our experiments
show how, compared to classic methods, differentiable renderers can be used to
solve classic vision problems using only gradient descent, enabling a high degree
of robustness to noise such as under-segmented masks or depth sensor artifacts.

Our approach is built on a specific 3D representation. Existing represen-
tations often have undesirable properties for rendering or optimization. Point
clouds require splatting or calculating precise point sizes [82]. Meshes explicitly
represent the object surface, making changes of genus difficult. Other repre-
sentations require optimization or numerical estimation of ray-shape intersec-
tions [6,51]. Our proposed method is formulated with independent rays, repre-
sents object surfaces implicitly and computes ray termination in closed form.

Most existing differentiable renders focus on GPU performance. However,
GPUs are not always available. Many robotics platforms do not have a GPU [71]
or find it occupied running object detection [$1], optical flow [67] or a SLAM
method [52]. While a single method may claim to be real-time on a dedicated
GPU [68], an autonomous system requires a sharing of resources. To run in paral-
lel with the countless GPU-friendly techniques of today, CPU-friendly methods
are desirable. Thus, while our method is implemented in JAX [8], supporting
CPU and GPU backends, our focus is typically on CPU runtimes.

Lastly, in the era of deep learning, techniques which support gradient-based
optimization are desirable. Since our objects have an explicit algebraic form,
gradients are simple and easy to compute. Importantly, every pixel has a non-zero
(if very slight) relationship with each piece of geometry in the scene (even those
behind the cameral). This allows for gradient flow (up to machine precision),
even when objects start far from their initialization. While this can also true of
large over-parmaterized implicit surfaces (such as NeRF [51]), our representation
is extremely compact and each parameter has approximate geometric meaning.

Approximate Differentiable Rendering with Algebraic Surfaces 3

2 Related Work

Early work in 3D shape representation focused on building volumes from partial
observations [3] but most modern methods instead focus on surface representa-
tion. Meshes, point clouds and surfels [56] focus on representing the exterior of
an object. In contrast, our method works by representing volumes, and obtaining
surface samples is implicit; similar to recent work on implicit neural surfaces [51].

In using low-fidelity representations, our work is hardly unique. Often learning-
based methods settle for pseudorendering [11] or even treating images as layers
of planar objects [74]. Settling for low fidelity contrasts sharply with a wide
array of differentiable renderers focused on accurate light transport, which are
slower but can simulate subtle phenomena [4,33]. High-quality results can also
be obtained by using learning methods and dense voxel grids [13].

Differentiable Rendering has many recent works. OpenDR [141] demonstrated
pose updates for meshes representing humans. Neural Mesh Renderer [30] devel-
oped approximate gradients and used a differentiable renderer for a wide array
of tasks. SoftRasterizer [12] developed a subgradient function for meshes with
greatly improved gradient quality. Modular Primitives [37] demonstrated fast,
GPU-based differentiable rendering for meshes with texture mapping. Differen-
tiable Surface Splatting [32] developed a differentiable renderer for point clouds
by building upon existing rendering techniques [87]. Conversion of point clouds
to volumes is also differentiable [28]. Pulsar [38] uses spheres as the primary
primitive and focuses on GPU performance. PyTorch3D [57] implements several
of these techniques for mesh and point cloud rendering. Some methods exploit
sampling to be generic across object representation [12]. Many methods integrate
with neural networks for specific tasks, such as obtaining better descriptors [40]
or predicting 3D object shape from a single images [10,70].

The use of an algebraic surface representation, which came to be known as
metaballs can be attributed to Blinn [6]. These algebraic representations were
well studied in the 1980s and 1990s. These include the development of ray-tracing
approximations [24,78,79] and building metaball representations of depth im-
ages [53]. Non-differentiable rendering metaballs has many methods, involving
splatting [2], data structures [20,65] or even a neural network [26].

Metaballs, especially in our treatment of them, are related to the use of
Gaussian Mixture Models (GMMSs) for surface representation. Our method could
be considered a differentiable renderer for GMMs. Gaussian Mixture Models as
a shape representation has some appeal to roboticists [55,66]. Methods developed
to render GMMs include search-based methods [62] and projection for occupancy
maps [55]. Projection methods for GMMs have also found application in robot
pose estimation [27]. In the vision community, GMMs have been studied as a
shape representation [16] and used for pose estimation [14,15]. In the visual
learning space, GMMs [25], or their approximations [19] have also been used.

Concurrent work also uses Gaussians for rendering. VoGE [75] uses existing
volume rendering techniques [19,51]. Others use a DGT to build screen-space
Gaussians for point clouds [1]. In contrast, our contribution is the development
of an approximate differentiable renderer that produces fast & robust results.

4 Leonid Keselman and Martial Hebert

3 Fuzzy Metaballs

Our proposed object representation, dubbed Fuzzy Metaballs, is an algebraic,
implicit surface representation. Implicit surfaces are an object representations
where the surface is represented as

F(x,y,z) =0. (1)

While some methods parameterize F' with neural networks [51], Blinn’s al-
gebraic surfaces [0], also known as blobby models or metaballs, are defined by

F(z,y,z) = ZAiP(x7y, z) =T, (2)

where P(z,y, z) is some geometric component and 7" is a threshold for sufficient
density. While Blinn used isotropic Gaussians (hence balls), in our case, we use
general multidimensional Gaussians that form ellipsoids:

Pa) = 15| Fexp (37— 075 -). 3)

In contrast to classic metaballs, we relax the restriction on T being a hard
threshold set by the user and instead develop a ray-tracing formulation for Gaus-
sians which implicitly defines the surface; hence fuzzy metaballs. To achieve this,
we develop two components: a way of defining intersections between Gaussians
and rays (Section 4.1), and a way of combining intersections across all Gaussians
(Section 4.2). In our definition, all rays always intersect all Gaussians, leading
to smooth gradients. The fuzzy surface locations are not viewpoint invariant.

Our implementation is in JAX [8], enabling CPU and GPU acceleration as
well as automatic backpropogation. The rendering function that takes camera
pose, camera rays and geometry is 60 lines of code. To enable constraint-free
backpropogation, we parameterize X ~! with its Cholesky decomposition: a lower
triangular matrix with positive diagonal components. We ensure that the diag-
onal elements are positive and at least 1076, The determinant is directly com-
puted from a product of the diagonal of L. When analyzing ray intersections,
one can omit the | X |_% term as maximizing requires only the quadratic form.
For example, & is replaced with a ray intersection of ¥t with ¥ € R? and t € R

s(vt) = (vt —)" 27 (vt — p), (4)

giving a Mahlanobis distnance [47] that is invariant to object scale and allows us
to use constant hyperparameters, irrespective of object distance. Using proba-
bilities would be scale-sensitive as equivalent Gaussians that are further are also
larger and would have smaller likelihoods at the same points.

To produce an alpha-mask, we simply have two hyperparameters for scale
and offset and use a standard sigmoid function:

a=o0o <ﬁ4 [Z i exp(f%s(vt))

+ 55) . (5)

Approximate Differentiable Rendering with Algebraic Surfaces 5

4 Approximate Differentiable Rendering

Instead of using existing rendering methods, we develop an approximate renderer
that produces smooth, high-quality gradients. While inexact, our formulation
enables fast and robust differentiable rendering usable in an analysis by synthesis
pipeline [5]. We split the process into two steps: intersecting each component
independently in Section 4.1 and combining those results smoothly in Section 4.2.

4.1 Intersecting Gaussians

What does it mean to have a particular intersection of a ray with a Gaussian?
We propose three methods. The linear method is where the ray intersects the
Gaussian at the point of highest probability. Maximizing Eq. (4) is solved by

Ty=1y
=t =" (6)
vT X1y
An alternative view is a volume model, intersecting at the maximum magni-
tude of the gradient of the Gaussian:

IVp(t0) | = P(tv)* = (tv —)" 57 2 (o —). (7)

Obtaining the gradient of Eq. (7) and setting it equal to zero leads to a cubic
equation, hence the cubic method. Defining m = X'y and r = Xv leads to:

0=—t3(rTr)(vTr)
+2 [(mTr + rTm)(v"r) + (rTr)(v"'m)]

—t [(me)(UTr) + (mTr +rTm)(vTm) — rTr]
+(mTm)(wTm) —rT'm.

While standard formulas exist for the cubic, the higher order polynomial all-
but-ensures that numerical issues will arise. We implement a numerically stable
solver for the cubic [7]. However, even the numerically stable version produces
problematic pixels in 32bit floating point. Errors at a rate of about 1 in 1,000
produce NaNs and make backpropagation impossible.

The quadratic method approximates the cubic by intersecting the Gaussian
at the one standard deviation ellipsoid. Clipping the inside of square roots to be
non-negative leads to reasonable results when the ray misses the ellipsoid.

Ty — TS 4+ T =1
a=vTx"ly b= 20Ty c=ptX u—1

Figures 2 and 3 illustrate all three methods. The linear method produces
smooth surfaces and the quadratic surface shows the individual ellipsoids pro-
truding from the surface of the object and the cubic shows artifacts.

In 3D evaluation on objects, for a forward pass, the linear method is the
fastest, the quadratic method takes 50% longer and the cubic method takes
twice as long as the linear method. The quadratic method has the lowest errors

in depth and mask errors. However, due to its stability, in all evaluation outside
this section, we use the linear method.

6 Leonid Keselman and Martial Hebert

Linear Quadratic Cubic

Fig.2: Two dimensional version of our approximate renderer with camera rays
cast from the center left. Three components are shown by their contour maps
and their intersections with dots. The blended results are shown with red rays.

Linear Quadratic Cubic

N
Ny
{
A

- = =
errors: mask (28) errors: mask (28) errors: mask (31)
depth (14) depth (12) depth (13)

Fig. 3: Visual examples of normal maps from different methods of ray inter-
section, along with the respective mask and depth errors. See Section 4.1 for
details

4.2 Blending intersections

We present a particular solution to the hidden-surface problem [64]. Our method
is related to prior work on Order Independent Transparency (OIT) [17,50] but
extended to 3D objects with opaque surfaces. We combine each pixel’s ray-
Gaussian intersections with a weighted average

1
tr = iti. 8
f Zl w; Z,:w ()

The weights are an exponential function with two hyperparameters 5; and
B2 balancing high-quality hits versus hits closer closer to the camera:

w; = exXp <,818(’Uti)h(ti) — %ti> . (9)
We include a term (7)) for the rough scale of the object. This, along with use

of Eq. (4) allows our rendering to be invariant to object scale. We also include
an extra term to down-weight results of intersections behind the camera with a

simple sigmoid function:
h(t)=0c <@t) . (10)

Approximate Differentiable Rendering with Algebraic Surfaces 7

Table 1: Runtimes in milliseconds with y 4 ¢ for rendering images and per-
forming gradient updates in pose estimation with comparable fidelity (Section 6).
CPU performance may be a fairer comparison as our method is 60 lines of JAX [§]
code and lacks a custom CUDA kernel. CUDA numbers use 160 x 120 images
on a Quadro P2000, while CPU use 80 x 60 images on an i5-7287U.

Method Forward Backwards| Forward Backwards
CUDA CUDA CPU CPU
Point Cloud [57] 12.1+0.5 23.4+0.5 18.0+1.0 23.8 +£4.0
Pulsar [38] 7.8 +£0.3 11.2+04 16.4+1.4 63.6 £ 7.9
SoftRas Mesh [12,57] 170+ 0.4 27.24+0.5 21.5+2.0 384.7+93.8
Fuzzy Metaballs 3.0 £ 0.2 9.6 + 0.5 ‘ 3.0+£0.15 13.2+14

Our blending solution requires only O(N) evaluations of Gaussians for each ray.

4.3 Obtaining Fuzzy Metaballs

A representation can be limited in utility by how easily one can convert to
it. We propose that, unlike classic Metaballs, Fuzzy Metaballs have reasonably
straightforward methods for conversion from other formats.

Since we’ve developed a differentiable renderer, one can optimize a Fuzzy
Metaball representation from a set of images. One could use several different
losses, but experiments with silhouettes are described in Section 7.2.

If one has a mesh, the mathematical relationship of Fuzzy Metaballs and
Gaussian Mixture Models can be exploited by fitting a GMM with Expectation-
Maximization [13]. With Fuzzy Metaballs being between a surface and volume
representation, there are two forms of GMM one could fit. The first is a surface
GMM (sGMM) as used by many authors [16,32,66], where a GMM is fit to points
sampled from the surface of the object. The second is to build a volumetric GMM
(vGMM). To build a vGMM, one takes a watertight mesh [31], and samples
points from the interior of the object. Fitting a GMM to these interior points
is what we call a volumetric GMM. Both representations can then further be
optimized using the differentiable renderer. Our experiments show that both
forms of GMM initialization work well, but we use vGMMSs in our experiments.

Extraction is also straightforward. Point clouds can easily be sampled from
our proper probability distributions. Extracting a mesh is possible by running
marching cubes [45] with an optimized iso-surface level. Details in Appendix F.

5 Data

We use ten models for evaluation: five from the Stanford Model Repository [39]
(arma, buddha, dragon, lucy, bunny), three from Thingil0K [36] (gear, eiffel,
rebel) and two from prior rendering literature (yoga, plane). All ten are used for

8 Leonid Keselman and Martial Hebert

reconstruction, and seven are used for pose estimation. We selected objects with
different scales, genus, and variety in features. We choose 40 component FMs
based on prior literature suggesting 20 to 60 GMMs for object representation [14].

Perturbation Sensitivity

5
Point Cloud

4 == PyTorch3D Mesh
>
= Mesh
‘© Fuzzy Metaballs
3
o)
8]
5
o 2
[72]
o] el s
o

1

0 200 400 600 800 1000 1200 1400 1600

Number of Parameters

Fig. 4: Perturbation sensitivity is the average error in pose when registration
is performed with ground truth pose as initialization. See Section 6 for details.
The underlying ground truth is a decimated mesh, so only the mesh representa-
tion approaches exactly zero error while other asymptote at a higher mark.

6 Comparing Representations

Fairly comparing object representations requires some notion of what to hold
constant. As the parameter counts of each representation increase, so do their
representational ability. It would be unfair to compare a million point point-
cloud against a 100 face triangle mesh. Since our goal is utility in vision tasks,
our definition of fidelity will also be task-centric.

In this case, our metric of fidelity will be a representation’s perturbation
sensitivity. We define this as the pose error obtained when optimizing an object’s
camera pose given a depth map, when the optimization process was initialized
with ground truth camera pose. The given depth map is of the full representation
object, but the methods are evaluated using lower fidelity versions, leading to
perturbations of optimal pose and our fidelity metric. Pose errors are reported
using the geometric mean of rotation error and translation error.

Results of our fidelity experiments can be seen in Fig. 4. We evaluate point
clouds and meshes using a standard Iterative Closest Point (ICP) method [85],
with the point clouds randomly subsampled and the meshes undergoing decima-
tion [18]. We also use PyTorch3D [57], a differential mesh renderer, and obtain its

Approximate Differentiable Rendering with Algebraic Surfaces 9

perturbation curve. These experiments are conditional on an experimental setup
and methods used, and thus these results may change under different conditions.
In our experiments, a 40 component Fuzzy Metaball (the size we throughout
across this paper) produces a pose uncertainty equivalent to a 470 point point
cloud (roughly triple the parameter count of a fuzzy metaball) and 85 vertex,
170 triangle mesh (roughly twice the parameter count). These are the sizes use
throughout the rest of the paper, in our attempt to keep comparisons fair.

7 Experiments

For comparison against other Differentiable Renderers, we use the methods im-
plemented in PyTorch3D [57], which has a wide variety of techniques with well-
optimized routines. The mesh rendering method is an implementation of the Sof-
tRasterizer [12]. For point clouds, PyTorch3D cites Direct Surface Splatting [32],
while also implementing the recent Pulsar [38].

With the fidelity of different object representations normalized out (Sec-
tion 6), we can compare the runtime performance in a fair way, with times
shown in in Table 1. On the CPU, where comparisons are more equal (due to
lacking a custom CUDA Xkernel), our renderer is 5 times faster for a forward
pass, and significantly faster (30x) for a backwards pass compared to the mesh
rendering methods. The point cloud renderer is more comparable in runtime to
ours but need a pre-specified point size, often producing images with lots of holes
(when points are too small) or a poor silhouette (when points are too big).

To the demonstrate the ability our differentiable renderer to solve classic
computer vision tasks, we look at pose estimation (Section 7.1) and 3D recon-
struction from silhouettes (Section 7.2). Our renderer is a function that takes
camera pose and geometry, and produces images. It seems natural to take im-
ages and evaluate how well either camera pose or geometry can be reconstructed,
when the other is given. All five hyperparameters for our rendering algorithm
(B1,2,3,4,5) were held constant throughout all experiments.

Since pose estimation and shape from silhouette (SFS) are classic computer
vision problems, there are countless methods for both tasks. We do not claim to
be the best solution to these problems, as there are many methods specifically
designed for these tasks under a variety of conditions. Instead, we seek to demon-
strate how our approximate differentiable renderer is comparable in quality to
typical solutions, using only gradient descent, without any regularization.

7.1 Pose Estimation

Many differential renderers show qualitative results of pose estimation [12,82].
We instead perform quantitative results over our library of models rendered from
random viewpoints. Methods are given a perturbed camera pose (+45° rotation
and a random translation up to 50% of model scale) and the ground truth
depth image from the original pose. The methods are evaluated by their ability
to recover the original pose from minimizing image-based errors. The resulting

10 Leonid Keselman and Martial Hebert

Table 2: Pose Estimation Results. Pose Errors are reported with a geometric
mean of rotation and translation error. The reported numbers are mean + IQR.
We report results clean data and data with simulated depth and silhouette noise.

Parameters Noise-Free Error Noisy Error

Initialization 20.2 + 18 20.2 £+ 18
Pulsar [38] 1,200 20.2 + 18 20.2 + 18
Point Cloud [57] 1,200 18.5 £ 16 18.4 £ 16
SoftRas Mesh [12] 750 14.9 £ 15 17.0 £ 17
Equal Fidelity ICP (Plane) [85] 1,200 10.8 £ 12 8.2 + 3.3
Equal Fidelity ICP (Point) [85] 1,200 7.6 £ 9.9 8.7+ 6.6
High Fidelity ICP (Plane) [85] 120,000 8.2+ 0.8 8.0+ 3.6
High Fidelity ICP (Point) [85] 120,000 6.2 £ 3.7 6.8 £ 3.3
Fuzzy Metaballs 400 4.0+ 1.5 4.2 + 2.1

pose is evaluated for rotation error and translation error. We quantify the score
for a model as the geometric mean of the two errors. All methods are tested on
the same random viewpoints and with the same random perturbations.

For Fuzzy Metaballs, we establish projective correspondence [59] and opti-
mize silhouette cross-entropy loss averaged over all pixels:

CE(w, &) = alog(d) + (1 — a)log(l — &). (11)

Estimated alpha is clipped to [107%,1 — 107%] to avoid infinite error. We also
evaluate with an additional depth loss of M SE(z, 2) where |z| normalizes the
errors to be invariant to object scale and comparable in magnitude to CE(«, &).

(- 2)

|2l

MSE(z,2) = ‘ (12)

2

There is a subtle caveat in the gradients of Fuzzy Metaballs. The gradient of
the translation scales by the inverse of model scale.. We correct for this by scaling
the gradients by n%. Alternatively one could scale the input data to always be
of some canonical scale [30]. To maintain scale invariance, we limit our use of
adaptive learning rate methods to SGD with Momentum.

We provide point cloud ICP results for point-to-point and point-to-plane
methods [59] as implemented by Open3D [35]. For the differentiable rendering
experiments, we use PyTorch3D [57] and tune its settings (Appendix E). All
differentiable rendering methods use the same loss, learning rate decay criteria
and are run until the loss stops reliably decreasing.

Pose Estimation Results Overall results are found in Table 2 and a more
detailed breakdown in Fig. 5. All methods sometimes struggle to find the correct
local minima in this testing setup. Prior differentiable renderers significantly

Approximate Differentiable Rendering with Algebraic Surfaces 11

under-performed classic baselines like ICP, while our approximate renderer even
outperforms the ICP baselines under realistic settings with synthetic noise.

ICP on noise-free data had bimodal results: it typically either recovered the
correct pose to near machine precision or it fell into the wrong local minima.
Despite having a higher mean error, ICP’s median errors on noise-free data were
% of Fuzzy Metaballs (FMs). With noisy data, this bimodal distribution disap-
pears and Fuzzy Metaballs outperform on all tested statistical measures. FMs
even outperformed ICP with high-fidelity point clouds, suggesting a difference
in method not just fidelity. This may be due to our inclusion of a silhouette loss,
the benefits of projective correspondence over the nearest neighbors used by this
ICP variant [35] or the strengths of visual loss over geometric loss [72].

N
o
o

arma
8 - happy
lucy
bunny
dragon
eiffel
- rebel

=
v

Pose Error
=
o

[XX X

v

[)

Initialization PyTorch3D Plane ICP Pt ICP Plane 40k ICP Pt 40k ICP Fuzzy Metaballs
mean = 20.2 mean = 17.0 mean = 8.2 mean = 8.0 mean = 7.6 mean = 7.0 mean = 4.0
median =19.8 median =154 median=3.9 median=4.2 median=3.8 median=3.7 median =16
ql =10.9 ql=8.4 ql=2.6 ql =3.0 ql=2.7 ql=27 ql=1.0
g3 =289 q3=25.1 q3=7.0 93 =8.0 q3=6.4 93=6.1 q3=27

Fig.5: Noisy Pose Estimation Dashed lines are averages for the method, while
the black diamonds show the average for that method and model. Here Fuzzy
Metaballs win in all statistical measures, typically by a factor of ~ 2.

7.2 3D Reconstruction

Reconstruction experiments are common in the differential rendering litera-
ture [38,32]. However, instead of optimizing with annotations of color [37] or
normals [32], we instead only optimize only over silhouettes, as in the classic
Shape From Silhouette (SFS) [11]. Unlike many prior examples in the litera-
ture, which require fine-tuning of several regularization losses [57,32], we use no
regularization in our experiments and can keep constant settings for all objects.

We initialize with a sphere (isosphere for meshes, an isotropic Gaussian of
points for point clouds and a small blobby sphere for Fuzzy Metaballs). Given
a set of silhouette images and their camera poses, we then optimize silhouette
loss for the object. In our experiments, we use 64 x 64 pixel images and have 32
views. For these experiments, we resize all models to a canonical scale and use
the Adam [35] optimizer. For baseline hyperparameters, we use the PyTorch3D
settings with minimal modification. For SoftRas, we use a twice subdivided ico-
sphere. For NeRF [51], we use a two layer MLP with 30 harmonic function
embedding with 128 hidden dimension and the same early exit strategy as FMs.

12 Leonid Keselman and Martial Hebert

Table 3: Shape from Silhouette reconstruction fidelity as measured by
cross-entropy silhouette loss on 32 novel viewpoints for each of 10 sample models.
Runtimes were the average per model and performed on CPU. Results show pto.

Time (s) Noise-Free Recon. Noisy Recon.
Error Error
Voxel Carving [18,85] 82 0.31 £ 0.100 1.119 +0.367
PyTorch3D Point [57] 185 0.075 + 0.066 0.100 + 0.079
PyTorch3D Mesh [412] 3008 0.062 £+ 0.049 0.072 £ 0.051
NeRF [51] 7406 0.032 £ 0.022 0.062 £+ 0.063
Fuzzy Metaballs 68 0.040 £+ 0.015 0.055 + 0.016

Inspired by artifacts seen in real videos (Fig. 9), we produce a noisy silhouette
dataset where training data had % of each silhouette under-segmented (Fig. 8) in
16 of 32 images by clustering silhouette coordinates [61] and removing a cluster.

O e e e -
V¥

- e e & 0

Fig.6: Shape from Silhouette (SFS) reconstructions. On the left is a 40
component Fuzzy Metaball result and the right is the mesh ground-truth of
about 2,500 faces, both colored by depth maps.

Shape From Silhouette Results We show qualitative reconstructions from
Fuzzy Metaballs (Fig. 6), along with quantitative results against baselines (Ta-
ble 3) and some example reconstructions from all methods (Fig. 8).

Overall, we found that our method was significantly faster than the other
differentiable renderers, while producing the best results in the case of noisy
reconstructions. Classic voxel carving [15] with a 384% volume was reasonably
fast, but the 32 views of low resolution images didn’t produce extremely sharp
contours (Fig. 24). With under-segmentation noise, voxel carving fails completely
while the differentiable renderers reasonably reconstruct all models.

Among the differentiable renders, we can see how the mesh-based approach
struggles to change genus from a sphere to the Eiffel tower. The point cloud
renderer lacks the correct gradients to successfully pull spurious points into the
model. NeRF [51] performs reasonably well in shape from silhouette, even with
spurious masks. In fact, it was the best performer for noise-free data, and in a

Approximate Differentiable Rendering with Algebraic Surfaces 13

majority of the reconstructions in noisy data (its mean performance was hurt
by results on eiffel and lucy with long thin surfaces). NeRF is a sophisticated
model with many settings, and it may have a configuration where it successfully
reconstructs all the models, but due to its dense volumetric rendering and use
of an MLP, it is 100x slower than our low degree of freedom representation.

] & ;“.L

Iteration: 0 Iteration: 8 Iteration: 12 teration: 16 Iteration: 25 Iteration: 32 Iteration: 58 Iteration: 98 Iteration: 114

Fig. 7: Shape from Silhouette steps Top row shows synthetic data with recon-
structed depth. Bottom row shows reconstructed masks for a CO3D video [58].

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs
Included
W Removed &
W
.

e S))' > >" -
L

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Included
W Removed

TR S S S 1

Fig.8: Shape from Silhouette Results with simulated under-segmentation.

8 Discussion

The focus of our approximate differentiable rendering method has been on shape.
While it is possible to add per-component colors to Fuzzy Metaballs (Fig. 20),
that has not been the focus of our experiments. Focusing on shape allows us to
circumvent modeling high-frequency color textures, as well as ignoring lighting
computations. This shape-based approach can use data from modern segmen-
tation methods [23] and depth sensors [33]. Low-degree of freedom models have
a natural robustness and implicit regularization that allows for recovery from

14 Leonid Keselman and Martial Hebert

FM SFS Depth FM SFS Mask Mask-RCNN Mask

(a) Depth and silhouette from a shape-from-silhouette reconstruction.

FM SFS Mask 10% FM SFS Mask 50% Mask-RCNN Mask

(b) Recovering from undersegmentation in the ground truth masks. While a
50% threshold does a good job recovering the head, better recovery can be shown with
a 10% threshold, also recovering the leg.

FM SFS Mask 10% FM SFS Mask 50% Mask-RCNN Mask

(c) Recovering from oversegmentation in ground truth masks. Even the o =
10% threshold only leads to minor over-segmentation in the mask, suggesting a setting
that be appropriate in general.

Fig.9: Shape from silhouette reconstruction on natural images from
a handheld cell phone video, using COLMAP [60] and Mask RCNN [23] for
automatic camera poses and silhouettes. The low degree of freedom leads to
natural regularization and recovery from errors in ground truth.

significant artifacts present in real systems. For example, Fig. 9 shows robust
recovery from real over/under-segmentation artifacts in video sequences.

Our approximate approach to rendering by using OIT-like methods creates a
trade-off. The downside is that small artifacts can be observed since the method
coarsely approximates correct image formation. The benefits are good gradients,
speed & robustness, all of which produce utility in vision tasks.

Compared to prior work [38,12], our results do not focus on the same areas of
differentiable rendering. Unlike other work, we do not perform GPU-centric op-
timizations [37]. Additionally, prior work focuses on producing high-fidelity color
images (and using them for optimization). Unlike prior work, we benchmark our
method across a family of objects and report quantitative results against classic
baselines. Unlike some popular implicit surface methods such as the NeRF [51]

Approximate Differentiable Rendering with Algebraic Surfaces 15

family, our object representation is low degree of freedom, quick to optimize from
scratch, and all the parameters are interpretable with geometric meaning.
While our experiments focus on classic computer vision tasks such as pose es-
timation or shape from silhouette, the value of efficiently rendering interpretable,
low degree of freedom models may have the biggest impact outside of classic com-
puter vision contexts. For example, in scientific imaging it is often impossible to
obtain high-quality observations since the sensors are limited. For example, in
non-light-of-sight imaging [73], sonar reconstruction [76], lightcurve inversion [29]
and CryoEM [9,84]. In all these contexts, getting good imaging information is
extremely hard and low degree of freedom models could be desirable.

9 Conclusion

Approximate differentiable rendering with algebraic surfaces enables fast analysis-
by-synthesis pipelines for vision tasks which focus on shapes, such as pose estima-
tion and shape from silhouette. For both tasks, we show results with realistic,
simulated noise. The robustness of our approach enables it to runs naturally
on silhouettes extracted from real video sequences without any regularization.
Whereas classic methods can struggle once noise is introduced, differentiable ren-
derers naturally recovery by using stochastic optimization techniques. By using
gradient-based optimization, differentiable rendering techniques provide a ro-
bust solution to classic vision problems. Fuzzy Metaballs can enable low-latency
differential rendering on CPUs. Our formulation connects algebraic surfaces [6]
used in graphics with Gaussian Mixture Models [16] used in vision. These provide
a compact, interpretable representation for shape with many uses.

References

1. Unbiased gradient estimation for differentiable surface splatting via poisson sam-
pling. In: European Conference on Computer Vision (ECCV) (2022)

2. Adams, B., Lenaert, T., Dutré, Ph.: Particle splatting: Interactive rendering of
particle-based simulation data. Report CW 453, KU Leuven (July 2006), http:
//www.cs.kuleuven.be/publicaties/rapporten/cw/CW453.abs.html

3. Agin, G.J.: Representation and Description of Curved Objects. Ph.D. thesis, Stan-
ford University, CA, USA (1972)

4. Bangaru, S., Li, T.M., Durand, F.: Unbiased warped-area sampling for differen-
tiable rendering. ACM Trans. Graph. 39(6), 245:1-245:18 (2020)

5. Bell, C.G., Fujisaki, H., Heinz, J.M., Stevens, K.N., House, A.S.: Reduction of
speech spectra by analysis-by-synthesis techniques. The Journal of the Acoustical
Society of America 33(12), 1725-1736 (1961). https://doi.org/10.1121/1.1908556

6. Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph.
1(3), 235-256 (Jul 1982). https://doi.org/10.1145/357306.357310

7. Blinn, J.F.: How to solve a cubic equation, part 5= Back to nu-
merics. IEEE Computer Graphics and Applications 27(3), 78-89 (2007).
https://doi.org/10.1109/MCG.2007.60

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW453.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW453.abs.html
https://doi.org/10.1121/1.1908556
https://doi.org/10.1145/357306.357310
https://doi.org/10.1109/MCG.2007.60

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

Leonid Keselman and Martial Hebert

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX:
composable transformations of Python+NumPy programs (2018), http://github.
com/google/jax

Brubaker, M., Punjani, A., Fleet, D.: Building proteins in a day. CVPR (June
2015). https://doi.org/10.1109/cvpr.2015.7298929

Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacobson, A., Fidler, S.:
Learning to predict 3d objects with an interpolation-based differentiable renderer.
Advances in Neural Information Processing Systems 32 (2019)

Cheung, K.m.G., Baker, S., Kanade, T.: Shape-from-silhouette across time part i:
Theory and algorithms. International Journal of Computer Vision 62(3), 221-247
(2005)

Cole, F., Genova, K., Sud, A., Vlasic, D., Zhang, Z.: Differentiable surface rendering
via non-differentiable sampling (2021)

Dempster, A., Laird, N., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Royal Stat. Soc. (B) 39(1), 1-38 (1977).
https://doi.org/http://dx.doi.org/10.2307 /2984875

Eckart, B., Kim, K., Kautz, J.: Hgmr: Hierarchical gaussian mixtures for adaptive
3d registration. In: ECCV 2018. pp. 730-746 (2018)

Eckart, B., Kim, K., Troccoli, A., Kelly, A., Kautz, J.: MLMD: Maximum Like-
lihood Mixture Decoupling for Fast and Accurate Point Cloud Registration. In:
3DV. pp. 241-249 (2015). https://doi.org/10.1109/3DV.2015.34

Eckart, B., Kim, K., Troccoli, A., Kelly, A., Kautz, J.: Accelerated Gener-
ative Models for 3D Point Cloud Data. In: CVPR. pp. 5497-5505 (2016).
https://doi.org/10.1109/CVPR.2016.593

Enderton, E., Sintorn, E., Shirley, P., Luebke, D.: Stochastic transparency. In: 13D
’10: Proceedings of the 2010 symposium on Interactive 3D graphics and games. pp.
157-164. New York, NY, USA (2010)

Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
SIGGRAPH. pp. 209-216 (1997). https://doi.org/10.1145/258734.258849
Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape (2020)

Gourmel, O., Pajot, A., Paulin, M., Barthe, L., Poulin, P.: Fitted
BVH for Fast Raytracing of Metaballs. Computer Graphics Forum 3, 7
— 288 (2010). https://doi.org/10.1111/j.1467-8659.2009.01597.x, https://hal.
archives-ouvertes.fr/hal-01516266

Hansen, N.: The cma evolution strategy: A tutorial (2016)

Hansen, N,, Akimoto, Y., Baudis, P.: CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634 (Feb 2019).
https://doi.org/10.5281 /zenodo.2559634, https://doi.org/10.5281/zenodo.
2559634

He, K., Gkioxari, G., Dollar, P., Girshick, R.B.: Mask r-cnn. 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV) pp. 2980-2988 (2017)

Heckbert, P.S.: Fun with gaussians. SIGGRAPH ’86 Advanced Image Processing
seminar notes (1986)

Hertz, A., Hanocka, R., Giryes, R., Cohen-Or, D.: Pointgmm: a neural gmm net-
work for point clouds. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2020)

Horvath, R.: Image-Space Metaballs Using Deep Learning. Master’s thesis, Faculty
of Informatics, TU Wien (Jul 2019), https://www.cg.tuwien.ac.at/research/
publications/2019/horvath-2018-ism/

http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1109/cvpr.2015.7298929
https://doi.org/http://dx.doi.org/10.2307/2984875
https://doi.org/10.1109/3DV.2015.34
https://doi.org/10.1109/CVPR.2016.593
https://doi.org/10.1145/258734.258849
https://doi.org/10.1111/j.1467-8659.2009.01597.x
https://hal.archives-ouvertes.fr/hal-01516266
https://hal.archives-ouvertes.fr/hal-01516266
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://www.cg.tuwien.ac.at/research/publications/2019/horvath-2018-ism/
https://www.cg.tuwien.ac.at/research/publications/2019/horvath-2018-ism/

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Approximate Differentiable Rendering with Algebraic Surfaces 17

Huang, H., Ye, H., Sun, Y., Liu, M.: Gmmloc: Structure consistent visual localiza-
tion with gaussian mixture models. IEEE Robotics and Automation Letters 5(4),
5043-5050 (2020). https://doi.org/10.1109/LRA.2020.3005130

Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with
differentiable point clouds (2018)

Kaasalainen, M., Torppa, J.: Optimization methods for asteroid lightcurve inver-
sion. Icarus 153(1), 24-36 (2001)

Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer (2017)

Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson Surface Reconstruction. In: Sheffer,
A., Polthier, K. (eds.) Symposium on Geometry Processing. The Eurographics
Association (2006). https://doi.org/10.2312/SGP /SGP06,/061-070

Keselman, L., Hebert, M.: Direct fitting of gaussian mixture models. In: 2019
16th Conference on Computer and Robot Vision (CRV). pp. 25-32 (2019).
https://doi.org/10.1109/CRV.2019.00012

Keselman, L., Woodfill, J.I., Grunnet-Jepsen, A., Bhowmik, A.: Intel realsense
stereoscopic depth cameras. CoRR abs/1705.05548 (2017), http://arxiv.org/
abs/1705.05548

King, D.: Automatic learning rate scheduling that really works (Feb 2018), http:
//blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(Poster) (2015), http://arxiv.org/abs/1412.6980

Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and
control of vehicles. ACM Trans. Graph. 28 (May 2009)

Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Transactions on Graphics
39(6) (2020)

Lassner, C., Zollhofer, M.: Pulsar: Efficient sphere-based neural rendering.
arXiv:2004.07484 (2020)

Levoy, M., Gerth, J., Curless, B., Pull, K.: The Stanford 3D scanning repository
5(10) (2005), http://graphics.stanford.edu/data/3Dscanrep/

Li, L., Zhu, S., Fu, H., Tan, P., Tai, C.L.: End-to-end learning local multi-view
descriptors for 3d point clouds (2020)

Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense
3d object reconstruction. In: AAAT Conf. on Artificial Intelligence (AAAI) (2018)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (October 2019)

Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. ACM Trans.
Graph. 38(4), 65:1-65:14 (Jul 2019)

Loper, M.M., Black, M.J.: Opendr: An approximate differentiable renderer. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision — ECCV
2014. pp. 154-169. Springer International Publishing, Cham (2014)

Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163-169 (1987)
Loshchilov, I., Hutter, F.: Cma-es for hyperparameter optimization of deep neural
networks (2016)

Mahalanobis, P.C.: On the generalized distance in statistics. Proceedings of the
National Institute of Sciences (Calcutta) pp. 49-55 (1936)

https://doi.org/10.1109/LRA.2020.3005130
https://doi.org/10.2312/SGP/SGP06/061-070
https://doi.org/10.1109/CRV.2019.00012
http://arxiv.org/abs/1705.05548
http://arxiv.org/abs/1705.05548
http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html
http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html
http://arxiv.org/abs/1412.6980
http://graphics.stanford.edu/data/3Dscanrep/

18

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Leonid Keselman and Martial Hebert

Martin, W.N., Aggarwal, J.K.: Volumetric descriptions of objects from multiple
views. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
5(2), 150-158 (1983). https://doi.org/10.1109/TPAMI.1983.4767367

Max, N.: Optical models for direct volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics 1(2), 99-108 (1995).
https://doi.org/10.1109/2945.468400

McGuire, M., Bavoil, L.: Weighted blended order-independent transparency. Jour-
nal of Computer Graphics Techniques (JCGT) 2(2), 122-141 (December 2013),
http://jcgt.org/published/0002/02/09/

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R.,
Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthe-
sis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision
— ECCV 2020. pp. 405-421. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-58452-8_24

Miller, 1.D., Cladera, F., Cowley, A., Shivakumar, S.S., Lee, E.S., Jarin-Lipschitz,
L., Bhat, A., Rodrigues, N., Zhou, A., Cohen, A., Kulkarni, A., Laney, J., Taylor,
C.J., Kumar, V.: Mine tunnel exploration using multiple quadrupedal robots (2020)
Muraki, S.: Volumetric shape description of range data using “blobby model”. In:
Proceedings of the 18th Annual Conference on Computer Graphics and Interactive
Techniques. p. 227-235. SIGGRAPH 91, Association for Computing Machinery,
New York, NY, USA (1991). https://doi.org/10.1145/122718.122743
Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: A retar-
getable forward and inverse renderer. ACM Trans. Graph. 38(6) (nov 2019).
https://doi.org/10.1145/3355089.3356498

O’Meadhra, C., Tabib, W., Michael, N.: Variable resolution occupancy mapping us-
ing gaussian mixture models. IEEE Robotics and Automation Letters 4(2), 2015—
2022 (2019). https://doi.org/10.1109/LRA.2018.2889348

Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: Surface ele-
ments as rendering primitives. In: Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques. p. 335-342.
SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., USA (2000).
https://doi.org/10.1145/344779.344936

Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020)
Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.:
Common objects in 3d: Large-scale learning and evaluation of real-life 3d category
reconstruction. In: International Conference on Computer Vision (2021)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings
Third International Conference on 3D Digital Imaging & Modeling. pp. 145-152
(2001). https://doi.org/10.1109/IM.2001.924423

Schonberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision
(ECCV) (2016)

Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th
International Conference on World Wide Web. p. 1177-1178. WWW
’10, Association for Computing Machinery, New York, NY, USA (2010).
https://doi.org/10.1145/1772690.1772862

Shankar, K.S., Michael, N.: Mrfmap: Online probabilistic 3d mapping using forward
ray sensor models. In: Robotics: Science and Systems (2020)

Stanfill, B.: Statistical methods for random rotations. Ph.D. thesis, Iowa State
University (2014)

https://doi.org/10.1109/TPAMI.1983.4767367
https://doi.org/10.1109/2945.468400
http://jcgt.org/published/0002/02/09/
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1145/122718.122743
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1145/344779.344936
https://doi.org/10.1109/IM.2001.924423
https://doi.org/10.1145/1772690.1772862

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

81.

82.

Approximate Differentiable Rendering with Algebraic Surfaces 19

Sutherland, I.E., Sproull, R.F., Schumacker, R.A.: A characterization of
ten hidden-surface algorithms. ACM Comput. Surv. 6(1), 1-55 (3 1974).
https://doi.org/10.1145/356625.356626

Szécsi, L., Illés, D.: Real-time metaball ray casting with fragment lists. In: Euro-
graphics (2012)

Tabib, W., O’Meadhra, C., Michael, N.: On-manifold gmm registration.
IEEE Robotics and Automation Letters 3(4), 3805-3812 (Oct 2018).
https://doi.org/10.1109/LRA.2018.2856279

Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
16th European Conference on Computer Vision. pp. 402-419. Germany (2020).
https://doi.org/10.1007 /978-3-030-58536-5_24

Teed, Z., Deng, J.: Droid-slam: Deep visual slam for monocular, stereo, and rgb-d
cameras (2021)

Teed, Z., Deng, J.: Tangent space backpropagation for 3d transformation groups
(2021)

Tewari, A., Zollhofer, M., Kim, H., Garrido, P., Bernard, F., Pérez, P., Theobalt, C.:
Mofa: Model-based deep convolutional face autoencoder for unsupervised monoc-
ular reconstruction. In: 2017 IEEE International Conference on Computer Vision
(ICCV). pp. 3735-3744 (2017). https://doi.org/10.1109/ICCV.2017.401

Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, [.L.,
Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous uav: Research plat-
form for indoor and outdoor urban search and rescue. IEEE Robotics Automation
Magazine 19(3), 46-56 (2012). https://doi.org/10.1109/MRA.2012.2206473
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment
— a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision
Algorithms: Theory and Practice. pp. 298-372. Springer Berlin Heidelberg, Berlin,
Heidelberg (2000)

Tsai, C., Sankaranarayanan, A., Gkioulekas, I.: Beyond volumetric albedo. In:
CVPR (June 2019)

Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 551-560 (2020)

Wang, A., Wang, P., Sun, J., Kortylewski, A., Yuille, A.: Voge: A differentiable
volume renderer using gaussian ellipsoids for analysis-by-synthesis. arXiv preprint
arXiv:2205.15401 (2022)

Westman, E., Gkioulekas, 1., Kaess, M.: Volumetric albedo framework for 3d imag-
ing sonar. In: ICRA (2020)

Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://
github.com/facebookresearch/detectron2 (2019)

Wyvill, G., McPheeters, C., Wyvill, B.: Data structure forsoft objects. The Visual
Computer 2(4), 227-234 (Aug 1986). https://doi.org/10.1007/BF01900346
Wyvill, G., Trotman, A.: Ray-tracing soft objects. In: Chua, T.S., Kunii, T.L.
(eds.) CG International. pp. 469-476. Springer Japan, Tokyo (1990)

Yang, J., Li, H., Jia, Y.: Go-icp: Solving 3d registration efficiently and globally
optimally. In: 2013 IEEE International Conference on Computer Vision. pp. 1457—
1464 (2013). https://doi.org/10.1109/ICCV.2013.184

Yang, S., Scherer, S.: Cubeslam: Monocular 3-d object slam. IEEE Transactions
on Robotics 35(4), 925-938 (2019). https://doi.org/10.1109/TRO.2019.2909168
Yifan, W., Serena, F., Wu, S., Oztireli, C., Sorkine-Hornung, O.: Differentiable sur-
face splatting for point-based geometry processing. ACM Transactions on Graphics
38(6), 1-14 (Nov 2019). https://doi.org/10.1145/3355089.3356513

https://doi.org/10.1145/356625.356626
https://doi.org/10.1109/LRA.2018.2856279
https://doi.org/10.1007/978-3-030-58536-5_24
https://doi.org/10.1109/ICCV.2017.401
https://doi.org/10.1109/MRA.2012.2206473
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1007/BF01900346
https://doi.org/10.1109/ICCV.2013.184
https://doi.org/10.1109/TRO.2019.2909168
https://doi.org/10.1145/3355089.3356513

20

83.

84.

85.

86.

87.

Leonid Keselman and Martial Hebert

Zhang, C., Miller, B., Yan, K., Gkioulekas, 1., Zhao, S.: Path-space
differentiable rendering. ACM Trans. Graph. 39(4), 143:1-143:19 (2020).
https://doi.org/10.1145/3386569.3392383

Zhong, E.D., Lerer, A., Davis, J.H., Berger, B.: Cryodrgn2: Ab initio neural recon-
struction of 3d protein structures from real cryo-em images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 40664075
(October 2021)

Zhou, Q.Y ., Park, J., Koltun, V.: Open3D: A modern library for 3D data process-
ing. arXiv:1801.09847 (2018)

Zhou, Q., Jacobson, A.: ThingilOk: A dataset of 10, 000 3d-printing models. CoRR
abs/1605.04797 (2016), http://arxiv.org/abs/1605.04797

Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface splatting. In: Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques.
p. 371-378. SIGGRAPH 01 (2001). https://doi.org/10.1145/383259.383300

https://doi.org/10.1145/3386569.3392383
http://arxiv.org/abs/1605.04797
https://doi.org/10.1145/383259.383300

Approximate Differentiable Rendering with Algebraic Surfaces 21

A Video Results

Here we describe additional details about the experiment shown in Fig. 9 of
the main paper. Concerning the differentiable renderer: the method, settings
and hyperparameters are identical to those in Fig. 7 and 8 and Section 5.3. We
simply run the method on different input.

We collected a 14 second video with a Samsung S9 cell phone at 1280 x 720
resolution at 30 Hz. The video contains motion blur, auto-exposure, and clearly
visible video compression artifacts, making it unsuitable for some reconstruc-
tion methods. We sub-sampled the video down to 6Hz and ran Mask RCNN [23]
from Detectron2 [77] with the pre-trained weights COCO-InstanceSegmentation
/mask_rcnn R_50_FPN_3x.yaml to detect objects. In our case, the object was de-
tected as part of the teddy bear class, with about 55 viable frames. We ran
COLMAP [60] to obtain camera poses for those frames, where COLMAP suc-
cessfully returned 36 frames with valid camera poses. We ran our SFS pipeline
at 160 x 90 resolution to obtain the results shown. Visual examples from this
pipeline are shown in Fig. 10. All the methods used their default settings; there
was no parameter tuning involved.

A.1 Video Result Analysis

The trajectory shown here only covers about half of the object from a roughly
constant elevation. Complicating the reconstruction is that the camera poses
are imperfect due to estimation and unmodeled camera distortion. Much more
significant is that the Mask RCNN silhouettes used for reconstruction are often
extremely under or over segmented.

Despite these issues in the ”ground truth” used for optimization, the low
degree of freedom of Fuzzy Metaballs allows the model to reasonably recover
from the massive artifacts. While the result in the main paper shows the default
50% threshold, to recover some areas, we have to lower our « threshold to 10%.

22 Leonid Keselman and Martial Hebert

(a) Mask RCNN output for valid frame (b) COLMAP estimate of camera poses

A
i

. . - . L] .

. « & o
. . . - .
(c) All 36 frames used for SFS (d) SFS initialization
» » A2 A2 N » » » A A& 2 »
@ X r x 2 R | B Y A N AR
& & k& & 2 kK ok &k & & &
Y W S S S S WY W S S
&k 2 2 5 3 » ¥y 2 A2 x5 #» #
A 2 2 * » @ ¥ & 2 A A »
(e) Mask RCNN Silhouettes (f) SFS Mask Results

Fig.10: Video-based SFS reconstruction

Approximate Differentiable Rendering with Algebraic Surfaces 23

B Hyper-parameters

Our proposed method has 5 hyper-parameters described in the paper. Briefly,
(1 prioritizes close hits, By prioritizes hits closer to the camera, (3 prioritizes
hits in front of the camera, and 54 and S5 serve as a scale and offset to generate
alpha masks. Since our system is fully algebraic, it is possible to perform gradient
descent into these hyper-parameters (and the functional form of JAX naturally
returns their gradients), but this was not done.

Instead, we optimized them for depth and alpha mask accuracy over a small
simulated dataset of the Stanford bunny using standard black-box optimization
techniques [21,22,46] before running most of our experiments. We found that
the ray-based renderer led to similar optimal hyperparameters across multiple
tested resolutions, across a wide range of mixture components, and across our
linear, quadratic and cubic methods of intersection computation.

init pose 0.56 final pose 0.06

&

true pose 0.07 ground truth

&

Fig. 11: Gear Results with Fuzzy Metaballs Final pose describes the final
pose after gradient-based pose optimization, while true pose is rendered view
from the ground truth pose. Ground truth is the Blender-generated depth map
of the full-fidelity model. The final pose shown here has a rotational error of 23.9
degrees. However, the gear has 15 teeth and hence a 24.0 degree symmetry.

24 Leonid Keselman and Martial Hebert

C Exclusion of gear model

The gear model was selected because of its interesting geometry from ThingilOk [
However, for pose estimation, we exclude its results from the overall average due
to symmetry. Our poses are generated with rotations of uniform axis and an-
gle uniformly between -45 and 45 degrees (uniform-axis random spin [63]). The
gear model however has 15 teeth and a rotational symmetry of 24 degrees when
viewed from one side, as seen in Fig. 11. This can sometimes produce pose errors
with no real geometric error.

The model itself is not symmetric, with 15 gears and a back face with 180
degree symmetry. But with a single view, our testing conditions can generate
poses which are geometrically correct but produce pose errors. The other model
with symmetry, eiffel, only has 90 degree symmetry and our testing conditions
place all random poses in the same local minima.

We don’t use the yoga or plane models for pose estimation as we only latter
added them for the reconstruction experiments. Both models originate from prior
differentiable rendering uses in reconstruction [412,82].

D Pose Estimation Details

We include noise-free results the same seed as the noisy results in the main
paper. Summary plots are shown in Fig. 12 and Fig. 5. In the noise-free case,
we find that Point-to-Point ICP works better. With noise, Point-to-Plane ICP
methods perform better.

D.1 Noise Free

As described in the paper, when ICP methods perform well, they perform ex-
tremely well, an order of magnitude better than the differentiable renderers
(see the log-scale plot), to fractions of a degree since they have high resolution
samples. However, sometimes ICP finds poor local minima and on average our
method performs better, even when ICP has a dense point cloud. Despite having
a better mean, Fuzzy Metaballs (FM) have a median error that is 8 times higher
and a 25th percentile error that is 10 times higher. The increase in robustness
from FM is demonstrated in lower 75th percentile errors.

D.2 Noisy Depth Images

With synthetic noise, both differentiable renderer methods are barely affected,
while the ICP results see a large degradation in peak performance. Under this
experimental condition, Fuzzy Metaballs have the lowest mean, median, 25th
and 75th percentile errors (typically by a factor of 2 compared to ICP).
Interestingly, some of the worst case performance of the ICP methods disap-
pears (lower q3 measurements) when noise is added. We hypothesize that this
occurs due to a form of symmetry breaking that helps avoid singularities and
bad correspondences. Fuzzy Metaballs, being a low fidelity model, experience
nearly no degradation in performance when noise is added to depth images.

).

Pose Error

Approximate Differentiable Rendering with Algebraic Surfaces

— V-V L
PyTorch 3D Plane ICP

Initialization Point ICP Plane 40k ICP Point 40k ICP Fuzzy Metaballs
mean = 20.2 mean = 14.9 mean = 10.8 mean = 7.6 mean = 8.2 mean = 6.2 mean = 4.0
median =19.8 median = 11.9 median = 0.6 median = 0.9 median = 0.1 median = 0.2 median = 1.6
ql =109 ql=6.1 q1=03 ql1 =105 q1=0.1 ql=0.1 =
g3 =289 g3 =211 q3=118 93 =10.4 q3=0.9 q3=38

102

10! 4

100 4

Pose Error

101 4

Initialization PyTorch 3D Plane ICP Point ICP_ Plane 40k ICP _Point 40k ICP Fuzzy Metaballs

25

arma
happy
lucy
bunny
dragon
eiffel
rebel

arma
happy
lucy
bunny
dragon
eiffel
rebel

Fig. 12: Noise Free Pose Estimation Linear scale plot above and log-scale
below. Dashed lines are averages for the method, while the black diamonds show
the average for that method and model. Statistics for each method are listed.
gear model is excluded from statistics.

Pose Error

Initialization

PyTorch3D

Plane ICP

Pt ICP

Plane 40k ICP

Pt 40k ICP

Fuzzy Metaballs
mean = 20.2 mean = 17.0 mean = 8.2 mean = 8.0 mean = 7.6 mean = 7.0 mean = 4.0
median = 19.8 median = 15.4 median = 3.9 median = 4.2 median = 3.8 median = 3.7 median = 1.6
ql =10.9 ql=8.4 ql =26 ql=3.0 ql =27 ql=2.7 q1=1.0
g3 =128.9 q3=125.1 q3=7.0 q3=8.0 q3=6.4 q3=6.1 q3 =27
2
10 0 i S ;
258 08 85 2 e
°
X g@ %? g % H §§ %g o8 '@“g %g
5 1014 o @¥ee®
= -
w
2 100
38 10°4
a
10714
Initialization PyTorch3D Plane ICP Pt ICP Plane 40k ICP Pt 40k ICP Fuzzy Metaballs

Fig. 13: Noisy Pose Estimation Identical visualization to Fig. 12. Linear
figure is identical to that in the main paper.

arma
happy
lucy
bunny
dragon
eiffel
rebel

arma
happy
lucy
bunny
dragon
eiffel
rebel

scale

26 Leonid Keselman and Martial Hebert

7000 —
e Original
6000 === _|onger waiting
10x higher LR
5000 e 10X more blur
] e t{uned
8 4000
1
3000
2000
1000
0 100 200 300
Iterations

Fig. 14: PyTorch3D baseline convergence curves using different hyperparam-
eters for pose estimation. All curves produce roughly equivalent pose errors,
significantly worse than FM or ICP.

E SoftRasterizer performance

One might wonder about why our baseline of PyTorch3D, implementing Soft-
Ras [12], performs so poorly in the pose estimation experiments. Prior work on
differentiable rendering [42,38,82] demonstrates their pose optimization exper-
iments with mostly single, visual examples. These often use color images, and
provide no baselines results from standard methods. Quantitative results in Sof-
tRas [42] examined solving for rotation uncertainty in images of a colored cube
and their resulting rotation errors averaged over 60 degrees. It is perhaps not
surprising that our pose estimation experiments, featuring a family of models,
simultaneous rotation and translation, while optimizing only depth and silhou-
ettes, might challenging these methods.

We used the hyperparameters from the current PyTorch 3D [57] Camera
position optimization sample. We tuned learning rates to behave well with our
depth + silhouette loss function, and followed an automatic learning rate sched-
ule [34]. As can be seen in Fig. 15, the pose optimization performs reasonably
well in reducing image errors. However, the optimized pose still demonstrates
visual errors compared to the ground truth pose. Even worse, the optimization
perturbs the pose in such a way that the pose error at the end of optimization
(16 degrees and 15%) is worse than the pose errors at the perturbed initialization
(12 degrees and 8%), despite the significant reduction in loss.

Approximate Differentiable Rendering with Algebraic Surfaces 27

To check if the hyper-parameters from the PyTorch3D sample was a poor fit,
we searched for settings which produced good pose estimation for a single frame.
We used CMA-ES [21,22], a fairly common black box method [46]. This type of
task-specific hyper-parameter optimization was never performed for our Fuzzy
Metaballs experiments. We only performed these experiments on an existing
baseline to examine how good it might perform in the best case. Convergence
curves can be seen in Fig. 14.

All our manual tweaking of PyTorch3D hyper-parameters produced compa-
rable configurations (17-18 degrees of rotation, 15-16 percent translation). The
automated optimization found a setting which produced 16 degrees of rotation
error and 9 percent of translation error, still worse than the perturbed initializa-
tion. However, these settings used a very high learning rate that proved unstable
with other frames. Lowering to learning rate resulted in settings with a negligible
improvement (2%) to our initial settings. These tests suggest our initial hyper-
parameter choices were a reasonably good setting for the baseline method.

Further parameter search with a constraint on learning rate failed to find
parameters significantly improved from the defaults. Optimization was over 8
parameters: o, y, blurring radius for both depth and silhouette, faces per pixel,
learning rate, and multipliers for depth and silhouette loss.

The results of the PyTorch3D pose optimization, when fed into the Fuzzy
Metaballs renderer suggest these implementations are coherent— the FM opti-
mization run on the same original pose perturbation and model produces a 0.5
degree error and 1.5% pose translation error, while even noisy point-to-point
ICP gets a 2.6 degree and 4.3% translation error.

Both the Fuzzy Metaballs and PyTorch3D optimization use an axis-angle,
3 parameter rotation estimation. These is some evidence suggesting PyTorch
Autograd for SO(3) might be unstable at times in its native form [69]. Lastly,
we suspect that the same scale invariance issues we address in Section 7.1 may
exist for the PyTorch3D baselines. SFS experiments were performed on objects
of roughly unit scale to mitigate this potential issue.

E.1 Pulsar performance

Our attempts to test a recent differentiable renderer, Pulsar, found it performed
very poorly. Not only are there software bugs with the latest PyTorch3D at the
time of writing (0.6.1) where the code clobbers camera data-structures and
requires re-creating them with every call to the render function, but the pose
estimation results were very poor.

We used the same settings as the Point Cloud Differentiable Renderer base-
line we tested, which provided fair results and produced visually similar outputs.
Compared to our base learning rate, reducing it by a factor of two led to flat
loss. Increasing it by a factor of two led to divergence and NaNs.

28 Leonid Keselman and Martial Hebert

initial 14.4% final 5.3% true 4.3%

% . x ~
> - {
2 N J
wn
initial 42.2% final 18.6% true 12.3%
= | .
Q b
gl T # %

Fig. 15: PyTorch3D baseline Visualization of errors seen with pose optimiza-
tion. Initial is an example pose perturbation of the arma model. Final is the
result after pose optimization, and true is the result of the ground truth pose.
Silhouette error is in percent of pixels that are wrong, while depth error is in
average relative depth error. Optimization leads to a reasonable decrease in both.

F Exporting Fuzzy Metaballs

We experiment with exporting fuzzy metaballs as a mesh by running marching
cubes [15]. To find an ideal isosurface level, we run optimization to ensure that
the centroids of the voxels match the silhouettes over a sample set of views. This
leads to results like those in Fig. 16.

Fig. 16: Mesh extracted from a 40 mixture fuzzy metaball using marching cubes

Approximate Differentiable Rendering with Algebraic Surfaces 29

G / \
\.__,/’\' \
(a) 40 component Fuzzy (b) 170 face, 85 vertex (c) 430 Points recon-

Metaballs (400 params) Mesh (810 params) structed [31] (1290
params)

Fig. 17: Equivalent representations visualized, per the experiments in the paper.

G Fuzzy Metaballs as Surface or Volume GMMs

To understand what classical formulation best matches Fuzzy Metaballs, we try
optimizing models with different initializations. We start with both sphere and
EM-fit GMM initializations, with surface and volume versions of both. Quan-
titative results averaged across all 10 models are shown in Fig. 19. Qualitative
results for the Yoga model are shown in Fig. 23.

At low mixture numbers, Fuzzy Metaballs perform more like a volume GMM,
while at high mixture numbers, surface GMMSs work better. Often using a GMM
as a FM model will produce reasonable results. We use constant hyperparameters
from our 40 mixture tuning, and perhaps the out-of-the-box vGMM rendering
could improve by adding proper scaling with component number. Finally, all
initializations respond very well to optimization, and optimized sphere-initialized
models always outperform the models fit with solely with EM.

The Fuzzy Metaballs improve with more components across our entire range
of testing. This suggests the asymptotic behavior seen in the Comparing Rep-
resentations section is due to experimental factors of those experiments, and
not the representation itself. This is somewhat expected as those experiments
use the mesh representation as ground truth and all other formats are sampled.

Lastly, we can see that the fitting process produces no over-fitting as novel
and training frames have identical behavior in Fig. 22.

30 Leonid Keselman and Martial Hebert

(a) Visualizing normal maps while sweeping 81 and B2 demonstrates smoothing.

I)
N)
2)

(b) Sweeping B4 and S5 controls the sharpness and extent of the alpha masks.

Fig. 18: Hyperparameter visualization

4 Before optimization 4 After optimization o After optimization
s 10 10 10
=
)
£ 1
= -
0 0 6x10
S 10 10
* -1
5 4x10
g 1 1 -1
10 50 700 750 10 50 700 w0 3x10 50 700
Number of components Number of components Number of components
Surface Sphere Volume Sphere Surface GMM Volume GMM

Fig.19: Optimizing Fuzzy Metaballs from different initializations.

Approximate Differentiable Rendering with Algebraic Surfaces 31

Probability blend Intersection blend Reference

- e &

Fig. 20: Rendering Fuzzy Metaball color images of a snakeboard [36] with two
forms of blending: one behaves more like a volume where the wheels of the object
can be seen, while the other behaves more like a surface with proper occlusion.
Shown is a 40 component vGMM with a single color per component. Cartoon-like
appearance is from exclusively using ambient lighting.

Original 0=5% noise Masked Pixels Noisy Image

=iz "
L .
e
Lt e L e
] 1 | --IH.ITI
=]
o

Fig.21: Synthetic noise generation. Gaussian noise is combined with per-
turbed silhouettes (red pixels are added, blue are removed).

r
1

ey

== training view === novel viewJ

arma bunny
6540 — 996 5613 — 386 6073 — 853 3516 — 498
8
F)
gea dragon eiffel rebel
5437 — 553 5245 — 625 7331 — 480 7785 — 915
B\ i
5 —
0 50 100 150 0 20 40 60 0 50 100 150 O 50 100 150
epoch epoch epoch epoch

Fig. 22: Optimizing Fuzzy Metaballs from a sphere to a shape. Losses are given
for training frames and novel viewpoints, showing no significant difference.

32 Leonid Keselman and Martial Hebert

10 20 40 60 80 120 160 GT
~ Before
i @ @ 6 6 6 6 6

Before

Optimization ° . . . ‘ . . w

(Volume)

iy g Y g KK Y g

(a) Sphere Initialization

10 20 40 60 80 120 160 GT
Before
o A A A A
(Surface)
Before = s w. B
Optimization "q w g w w w w w
(Volume)
After -g g % w w v w %
Optimization
(Surface)
After
Optimization W W W W w v w v
(Volume)

(b) GMM Initializations

Fig.23: Visual examples of Fuzzy Metaballs at different component numbers,
for different initializations, before and after optimization. All images are 60 by
80 pixels and show depth with color coding. Here, unlike the rest of the paper,
colors are scaled for maximum contrast, not consistency between images. GT is
the ground truth depth map from the mesh rendered by Blender.

Approximate Differentiable Rendering with Algebraic Surfaces 33

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

(,
+
e
+
>
+

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

R
Y
=X
h §
A}
3

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

>
>
o
>
>§
>

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

L 7
A
L ¥
7
L V.
7.

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

o
&
&
&
e
&

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh Fuzzy Metaballs

Y
Y
Y
Y
Loy
Y

i
X
H
X
x

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs
Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

e ® & ®w € e

Fig. 24: Shape from Silhouette Results. The mesh-based representation can-
not change genus from a deformed sphere into the eiffel tower. The point cloud
method leaves spurious points. The classic Voxel Carving method is not that
precise with 3842 volume but only 32 views of low resolution 64 x 64 images.

34 Leonid Keselman and Martial Hebert

Ground Truth

Included
W Removed

“w

Ground Truth

Included
W Removed

Ground Truth

Included
W Removed

. |

Ground Truth

Included
W Removed

Ground Truth

Included
W Removed

Ground Truth

Included
W Removed

»

Ground Truth

Included
W Removed

Ground Truth

Included
W Removed

¥

Ground Truth

Included
M Removed

1

Ground Truth

Included
W Removed

*

Fig. 25: Shape from Silhouette Noisy Results where 16 of the 32 input views

Voxel Carve

Voxel Carve

Voxel Carve

\e

,
Voxel Carve
b
Voxel Carve

Voxel Carve
Voxel Carve

Voxel Carve

-
£l

&
Voxel Carve
d‘"
Voxel Carve

."
&

PyT3D Points

PyT3D Points

PyT3D Points

PyT3D Points

#

PyT3D Points

PyT3D Points

PyT3D Points

ot

PyT3D Points

#

PyT3D Points

®

SoftRas Mesh

~+

SoftRas Mesh

h

SoftRas Mesh

¢

SoftRas Mesh

L 72

SoftRas Mesh

#

SoftRas Mesh

Y

SoftRas Mesh

i

SoftRas Mesh

SoftRas Mesh

$

SoftRas Mesh

NeRF

¥

NeRF
NeRF
1 L

NeRF

&

NeRF

NeRF

NeRF
el

NeRF

NeRF

NeRF

Fuzzy Metaballs

2

Fuzzy Metaballs

R

Fuzzy Metaballs

oY

Fuzzy Metaballs

R

Fuzzy Metaballs

7

Fuzzy Metaballs

Y

Fuzzy Metaballs

A

Fuzzy Metaballs

Fuzzy Metaballs

Fuzzy Metaballs

s & ®

had one eight of the silhouette under-segmented.

	Approximate Differentiable Rendering with Algebraic Surfaces

