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Abstract. Traditionally, 3D indoor scene reconstruction from posed im-
ages happens in two phases: per-image depth estimation, followed by
depth merging and surface reconstruction. Recently, a family of methods
have emerged that perform reconstruction directly in final 3D volumetric
feature space. While these methods have shown impressive reconstruction
results, they rely on expensive 3D convolutional layers, limiting their ap-
plication in resource-constrained environments. In this work, we instead
go back to the traditional route, and show how focusing on high quality
multi-view depth prediction leads to highly accurate 3D reconstructions
using simple off-the-shelf depth fusion. We propose a simple state-of-
the-art multi-view depth estimator with two main contributions: 1) a
carefully-designed 2D CNN which utilizes strong image priors alongside
a plane-sweep feature volume and geometric losses, combined with 2)
the integration of keyframe and geometric metadata into the cost vol-
ume which allows informed depth plane scoring. Our method achieves a
significant lead over the current state-of-the-art for depth estimation and
close or better for 3D reconstruction on ScanNet and 7-Scenes, yet still
allows for online real-time low-memory reconstruction. Code, models and
results are available at https://nianticlabs.github.io/simplerecon

1 Introduction

Generating 3D reconstructions of a scene is a challenging problem in computer
vision which is useful for tasks such as robotic navigation, autonomous driving,
content placement for augmented reality and historical preservation [47,77]. Tra-
ditionally, such 3D reconstructions are generated from 2D depth maps obtained
using multi-view stereo (MVS) [56,11], which are then fused into a 3D represen-
tation from which a surface is extracted [57,31]. Recent advances in deep learning
have enabled convolutional methods to outperform classical methods for depth
prediction from multiple stereo images, spearheaded by GC-Net [32] and MVS-
Net [78]. Key to these methods is the use of 3D convolutions to smooth and
regularize a 4D (C ×D ×H ×W ) cost volume, which performs well in practice
but is expensive in both time and memory. This could preclude their use on low
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Fig. 1. Qualitative preview of our method. Our method significantly improves
upon previous state-of-the-art monocular MVS methods [12] in depth prediction and
matches the current volumetric state-of-the-art in full scene reconstruction [64].

power hardware e.g. smartphones, where overall compute energy and memory
are limited. The same is true of recent depth estimators which use LSTMs and
Gaussian processes for improved depth accuracy [12,23].

A new stream of work started by ATLAS [46] (and extended by e.g. [65,2,7])
performs the reconstruction directly in 3D space by predicting a truncated signed
distance function (TSDF) from a 4D feature volume computed from the input
images. Again, these works give good results but use expensive 3D convolutions.

In this paper we go back to basics, showing that, surprisingly, it is possible to
obtain state-of-the-art depth accuracy with a simple 2D CNN augmented with a
cost volume. Our method also gives competitive scores in 3D scene reconstruc-
tion using off-the-shelf TSDF fusion [47], all without expensive 3D convolutions.
Key to our method is the novel incorporation of cheaply available metadata into
the cost volume, which we show significantly improves depth and reconstruc-
tion quality. Our main contributions are: (1) The integration of keyframe and
geometric metadata into the cost volume using a multi-level perceptron (MLP),
which allows informed depth plane scoring, and (2) A carefully-designed 2D
CNN that utilizes strong image priors alongside a plane-sweep 3D feature vol-
ume and geometric losses. We evaluate our ‘back-to-basics’ method against all
recent published methods on the challenging ScanNetv2 [10] dataset on both
depth estimation and 3D scene reconstruction (Sec. 4), and show it generalizes
on 7-Scenes [18] data (Table 1) and casually captured footage (Fig. 6).

By combining our novel cost volume metadata with principled architectural
decisions that result in better depth predictions, we can avoid the computational
cost associated with 3D convolutions, potentially enabling use in embedded and
resource-constrained environments. We have released code, models and precom-
puted results at https://nianticlabs.github.io/simplerecon

https://nianticlabs.github.io/simplerecon
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2 Related Work

Our method is related to prior work in stereo depth estimation, multi-view depth
estimation, and 3D reconstruction.

2.1 Depth from Calibrated Stereo Pairs

Many methods for estimating depth use calibrated stereo pairs of images in order
to estimate disparity, which can be translated into depth using camera param-
eters and the intra-axial distance between the camera positions. Early methods
compare patches [22,82,44], similar to work in optical flow estimation [16]. This
laid the groundwork for GCNet [32], which built on earlier plane-sweep stereo
works [8,29] to develop now-ubiquitous cost-volume-based depth estimation. The
typical architecture is feature extraction from input images, then feature match-
ing and reduction into a cost volume, followed by convolutional layers to output
the final disparity. Further improvements include post-processing the cost vol-
ume [4,83,84,6] using multiscale information, carefully designed network layers
that mimic classical refinement methods, and spatial pyramid pooling. The best
results typically come from running 3D convolutions on a 4D (C ×D×H ×W )
cost volume, pioneered by Chang et al. in PSMNet [4]; this can be very com-
putationally expensive. A more attractive option is to create a 3D cost volume
(D×H×W ) by reducing along the feature dimension, meaning 2D convolutions
can be used for further processing [71,79]; however, this typically comes at the
expense of depth quality. In this work we show how, with simple tricks and clever
reduction techniques, a method with a 3D cost volume can outperform existing
4D cost volume methods for both depth estimation and 3D scene reconstruction.

2.2 Multi-view Stereo Depth

Multi-View Stereo (MVS) is a more general problem which aims to estimate
depth at a reference viewpoint using one or more additional source viewpoints
captured from arbitrary locations. Knowledge of camera intrinsics and extrinsics
for both reference and source views are generally assumed, but can also be
estimated offline using e.g. structure-from-motion [57] or on-line using inertial
and camera tracking, like that provided by ARKit or ARCore.

Classical MVS methods typically use patch matching with photometric con-
sistency to estimate a depth map followed by depth fusion and refinement [17,58].
In contrast, early learning-based methods backprojected dense image features
from multiple viewpoints into 3D volumes representing the entire scene and
then predicted voxel occupancy or surface probability from a fused 3D volume
[27,30]. Recent methods, inspired by binocular stereo matching techniques, com-
bine these approaches, performing epipolar-geometry-consistent matching on im-
age pixels (e.g. in MVDepthNet [70] and DeepMVS [25]), or extracted features
(e.g. in DPSNet [26] and DeepVideoMVS [12]) to produce a matching cost vol-
ume. The cost volume can optionally be reduced using a dot product [12] or
mean absolute difference [71,48], and then processed using convolutional layers.
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Further works incorporate additional scene information to regularize the cost
volume and refine the final output by using reference image features [78], by
taking into account occlusions [39] and moving objects [76], or with a Gaussian
process prior [23]. Others have proposed methods to combine multiple reference
views, e.g. by pooling in DeepMVS [25] or averaging the feature volumes in
DPSNet [26,39]. Aside from use of keyframe image values and features in a cost
volume, depth-estimation approaches have used temporal information in varying
ways, such as LSTMs to fuse volumes over multiple frames [68,12,51], or by a
test-time optimization of reprojection error [3,5,42,45,61,33]. However, all these
approaches use only the color image as inputs, discarding additional information
such as viewing direction and relative pose estimation after the cost volume is
computed. In this work, we extend the matching cost volume into a matching
feature volume, which uses readily-available metadata to produce higher-quality
depth maps.

2.3 3D Scene Reconstruction from Posed Views

Classical methods for creating dense 3D reconstructions from images typically
compute dense depth per-view, such as [58], followed by a surface reconstruction
such as Delaunay triangulation [34] or Poisson surface reconstruction [31]. The
seminal work Kinect Fusion [47] demonstrated real-time 3D scene reconstruction
from depth-maps using a volumetric truncated signed distance field (TSDF)
representation [9], from which a mesh can be obtained using marching cubes [40].
A family of methods improved on it, allowing it to work more efficiently on larger
scenes [73,49,28,52], to handle moving objects [59,55], or to perform loop closure
[74], all of which solidified TSDF fusion as a key component of real-time mapping.

Recent deep learning methods forego depth estimation, instead extracting
2D image features from keyframes and backprojecting these features into 3D
space to produce a 4D feature volume [63]. In ATLAS [46], 3D convolutions on
such a feature volume are used to regress a TSDF for the scene, which signifi-
cantly improved reconstruction quality over the then-state-of-the-art method of
learning-based MVS followed by traditional TSDF fusion [47]. NeuralRecon [65]
extended this to refine the TSDF in a coarse-to-fine manner using recurrent lay-
ers, while TransformerFusion [2] and VoRTX [64] further improved performance
using transformers [69] to learn feature matching. Recently methods proposed
combining volumetric reasoning – via a 3D encoder-decoder – with MVS recon-
struction; either iteratively in the case of 3DVNet [54] or using pose-invariant
3D convolutional layers in VolumeFusion [7].

Although these methods produce high-quality reconstructions, the use of 3D
convolutions, transformers, or recurrent layers makes them computationally ex-
pensive and memory-intensive. Furthermore, they predict the whole scene TSDF
at once, making real-time use impossible, or rely on complex sparsification [65]
or attention mechanisms [2] to allow for progressive updates. In contrast, we take
a simpler approach: by focusing on predicting high-quality depth maps, we are
able to use efficient off-the-shelf TSDF fusion methods such as Infinitam [52].
This allows our method to achieve real-time and progressive 3D reconstructions
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Fig. 2. Overview of our method. Our key contribution is the injection of cheaply-
available metadata into the feature volume. Each volumetric cell is then reduced in
parallel with an MLP into a feature map before input into a 2D encoder-decoder [87].

at low compute and memory footprints, with accuracy competitive with volu-
metric methods but without the use of 3D convolutions.

3 Method

We take as input a reference image I0, a set of source images In∈{1,...,N−1},
as well as their intrinsics and relative camera poses. At training time we also
assume access to a ground truth depth map Dgt aligned with each RGB image;
at test time our aim is to predict dense depth maps D̂ for each reference image.

3.1 Method Overview

Our depth estimation model sits at the intersection of monocular depth esti-
mation [13,19] and MVS via plane sweep [8]. We augment a depth prediction
encoder-decoder architecture with a cost volume; see Figure 2. Our image en-
coder extracts matching features from the reference and source images for input
to a cost volume. The output of the cost volume is processed using a 2D convolu-
tional encoder-decoder network, augmented with image level features extracted
using a separate pretrained image encoder.

Our key insight is to inject readily available metadata into the cost volume
alongside the typical deep image features, allowing the network access to useful
information such as geometric and relative camera pose information. Figure 3
shows in detail the construction of our feature volume. By incorporating this
previously unexploited information, our model is able to significantly outperform
previous methods on depth prediction without the need for costly 4D cost volume
reductions [32,78], complex temporal fusion [12], or Gaussian processes [23].



6 Sayed et al.

Metadata
4D metadata 

feature volume

dot products

features

rays

angles

depths

pose distances

masks

Visual
Features

Fig. 3. Metadata insertion. Typical MVS systems predict depth from warped fea-
tures or differences between features e.g. dot products. We additionally include cheaply-
available metadata for improved performance. Indices (k, i, j) are omitted for clarity.

We first describe our novel metadata component and explain how it is incor-
porated into the network (Section 3.2). We then set out our network architecture
and losses (Sections 3.3 and 3.4), giving best practices for depth estimation.

3.2 Improving the Cost Volume with Metadata

In traditional stereo techniques, there exists important information which is
typically ignored. In this work, we incorporate readily available metadata into
the cost volume, allowing our network to aggregate information across views
in an informed manner. This can be done both explicitly via appending extra
feature channels and implicitly via enforcing specific feature ordering.

We propose injecting metadata into our network by augmenting image-level
features inside the cost volume with additional metadata channels. These chan-
nels encode information about the 3D relationship between the images used to
build the cost volume, allowing our network to better reason about the relative
importance of each source image for estimating depth for a particular pixel.

Our cost volume is therefore a 4D tensor of dimension C × D × H × W ,
where for each spatial location (k, i, j), k is the depth plane index, we have a
C dimensional feature vector. This vector comprises reference image features
f0k,i,j and a set of warped source image features ⟨f⟩nk,i,j for n ∈ [1, N ], where
⟨ ⟩ indicates that the features are perspective-warped into the reference camera
frame, along with the following metadata components:

Feature dot product — The dot product between reference image features
and warped source image features, i.e. f0 · ⟨f⟩n. This is commonly used as
the only matching affinity in the cost volume.

Ray directions r0k,i,j and rnk,i,j ∈ R3 — The normalized direction to the 3D
location of a point (k, i, j) in the plane sweep from the camera origins.

Reference plane depth z0k,i,j — The perpendicular depth from the reference
camera to the point at position k, i, j in the cost volume.

Reference frame reprojected depths znk,i,j — The perpendicular depth of
the 3D point at position k, i, j in the cost volume to source camera n.
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Relative ray angles θ0,n — The angle between r0k,i,j and rnk,i,j .

Relative pose distance p0,n — A measure of the relative pose distance be-
tween the pose of the reference camera and each source frame [12]:

p0,n =

√
||t0,n||+ 2

3
tr(I−R0,n) (1)

Depth validity masks mn
k,i,j — This binary mask indicates if point (k, i, j)

in the cost volume projects in front of the source camera n or not.

An overview of these features is given in Fig 3. Each resulting fk,i,j is pro-
cessed by a simple multi layer perceptron (MLP), outputting a single scalar value
for each location (k, i, j). This scalar can be thought of an initial estimate of the
likelihood that the depth of pixel i, j is equal to the kth depth plane.

Metadata motivation — We argue that by appending metadata-derived fea-
tures into our cost volume, the MLP can learn to correctly weigh the contribution
of each source frame at each pixel location. Consider for instance the pose dis-
tance ps,n; it is clear that for depths farther from the camera, the matching
features from source frames with a greater baseline would be more informative.
Similarly, ray information can be useful for reasoning about occlusions; if fea-
tures from the reference frame disagree with those from a source frame but there
is a large angle between camera rays, then this could be explained by an occlu-
sion rather than incorrect depth. Depth validity masks can help the network to
know whether to trust features from source camera n at (k, i, j), By allowing our
network access to this kind of information, we give it the ability to conduct such
geometric reasoning when aggregating information from multiple source frames.

Implicit metadata incorporation — In addition to explicitly providing
metadata as extra features, we also propose implicitly encoding metadata via
feature ordering. This is made possible by the inherent order dependence of
MLP networks, which we exploit by choosing the ordering in which we stack
our source features fn. We advocate ordering fn by frame pose distance ps,n, a
measure shown by [12,23] to be effective for optimal keyframe selection. This
ordering allows the MLP to learn a prior on pose distance and feature relevance.

Our experiments show that by including metadata in our network, both ex-
plicitly via extra feature channels and implicitly via feature ordering, we can
obtain a significant boost to depth estimation accuracy, bringing with it im-
proved 3D reconstruction quality; see Table 4. Whilst previous works have in-
cluded tensors related to camera intrinsics [14] and extrinsics [86] for monocular
depth estimation, we believe that our use of metadata is a novel innovation for
multi-view-stereo depth estimation.

3.3 Network Architecture Design

Our network is based on a 2D convolutional encoder-decoder architecture similar
to prior works such as [12,71]. When constructing such networks, we find that
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there are important design choices which can give significant improvements to
depth prediction accuracy. We specifically aim to keep the overall architecture
simple, avoiding complex structures such as LSTMs [12] or GPs [23], and making
our baseline model lightweight and interpretable.

Baseline cost volume fusion — While RNN-based temporal fusion methods
are often used [65,12], they significantly increase the complexity of the system.
We instead make our baseline cost-volume fusion as simple as possible and find
that simply summing the dot-product matching costs between the reference view
and each source view leads to results competitive with state-of-the-art depth
estimation techniques, as shown in Table 1 with the heading “no metadata”.

Image encoder and feature matching encoder — Prior depth estimation
works have shown the impact of more powerful image encoders for the task of
depth estimation, both in monocular [20,72,53] and multi-view estimation [71].
DeepVideoMVS [12] make use of an MnasNet [66] as their image encoder, chosen
for its relatively low latency. We propose instead utilizing a still-small but more
powerful EfficientNetv2 S encoder [67], the smallest of its family. While this
does come with a cost of increased parameter count and 10% slower execution,
it yields a sizeable improvement to depth estimation accuracy, especially for
precise metrics such as Sq Rel and δ < 1.05. See Table 4 for full results.

For producing matching feature maps, we use the first two blocks from
ResNet18 [21] for efficiency, we experimented with FPN [37] following [12], which
slightly improved accuracy at the expense of a 50% slower overall run-time.

Fuse multi-scale image features into the cost volume encoder — In
2D CNN based deep stereo and multi-view stereo, image features are typically
combined with the output of the cost volume at a single scale [71,36].

More recently, DeepVideoMVS [12] instead proposed concatenating deep im-
age features at multiple scales, adding skip connections between the image en-
coder and cost volume encoder at all resolutions. Whilst this has been shown
to be helpful for their LSTM-based fusion network, we find that it is similarly
important for our architecture.

Number of source images — While other methods show diminishing returns
as additional source frames are added [12], our method is better able to incorpo-
rate this additional information and displays increased performance with up to
8 views. We posit that incorporating additional metadata for each frame allows
the network to make a more informed decision about the relative weightings of
each frame’s features when inferring the final cost. In contrast, methods such
as MVDepthNet [70], MVSNet [78], ManyDepth [71] and ATLAS [46] give each
frame equal weight during a update, thus potentially overwhelming the most
useful information with lower-quality features.

3.4 Loss

We supervise our training using a combination of geometric losses, inspired by
recent MVS methods [12,13,78,25,78] as well as monocular depth estimation
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techniques [20,35,81,53]. We find that careful choice of loss function is required
for best performance, and that supervising intermediate predictions at lower
output scales substantially improves results.

Depth regression loss — We follow [13] and densely supervise predictions
using log-depth, but use an absolute error on log depth for each scale s,

Ldepth =
1

HW

4∑
s=1

∑
i,j

1

s2
| ↑gt log D̂s

i,j − logDgt
i,j |, (2)

where we upsample each lower scale depth using nearest neighbor upsampling [12]
to the highest scale we predict at with the ↑gt operator. We average this loss per
pixel, per scale and per batch. Our experiments found this loss to perform better
than the scale-invariant formulation of Eigen et al. [13,1], while producing much
sharper depth boundaries, resulting in higher fused reconstruction quality.

Multi-scale gradient and normal losses — We follow [35,81,53] and use a
multi-scale gradient loss on our highest resolution network output

Lgrad =
1

HW

4∑
s=1

∑
i,j

|∇↓s D̂i,j −∇↓sDgt
i,j |, (3)

where ∇ is first order spatial gradients and ↓s represents downsampling to scale
s. Inspired by [80] we also use a simplified normal loss, where N is the normal
map computed using the depth and intrinsics (see supp. mat. for details),

Lnormals =
1

2HW

∑
i,j

1− N̂i,j ·Ni,j . (4)

Multi-view depth regression loss — We use ground-truth depth maps for
each source view as additional supervision by projecting predicted depth D̂ into
each source view and averaging absolute error on log depth over all valid points,

Lmv =
1

NHW

∑
n

∑
i,j

| log D̂0→n
i,j − logDgt

n,i,j | (5)

where D̂0→n is the depth predicted for the reference image of index 0, projected
into source view n. This is similar in concept to the depth regression loss above,
but for simplicity is applied only on the final output scale.

Total loss — Overall our total loss is:

L = Ldepth + αgradLgrad + αnormalsLnormals + αmvLmv, (6)

with αgrad = 1.0 = αnormals = 1.0, and αmv = 0.2, chosen experimentally using
the validation set.
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ScanNetv2 7Scenes

Abs Diff↓ Abs Rel↓ Sq Rel↓ δ < 1.05 ↑ δ < 1.25 ↑ Abs Diff↓ Abs Rel↓ Sq Rel↓ δ < 1.05 ↑ δ < 1.25 ↑

DPSNet [26] 0.1552 0.0795 0.0299 49.36 93.27 0.1966 0.1147 0.0550 38.81 87.07
MVDepthNet [70] 0.1648 0.0848 0.0343 46.71 92.77 0.2009 0.1161 0.0623 38.81 87.70
DELTAS [62] 0.1497 0.0786 0.0276 48.64 93.78 0.1915 0.1140 0.0490 36.36 88.13
GPMVS [23] 0.1494 0.0757 0.0292 51.04 93.96 0.1739 0.1003 0.0462 42.71 90.32
DeepVideoMVS, fusion [12]* 0.1186 0.0583 0.0190 60.20 96.76 0.1448 0.0828 0.0335 47.96 93.79
Ours (no metadata) 0.0941 0.0467 0.0139 70.48 97.84 0.1105 0.0617 0.0175 57.30 97.02
Ours 0.0885 0.0434 0.0125 73.16 98.09 0.1045 0.0575 0.0153 59.78 97.38

Table 1. Depth evaluation. For each metric, the best-performing method is marked
in red, the second-best in orange, and the third-best in yellow. Results for previous
methods were taken from [12], or evaluated for each method using their keyframes.
*We boosted [12]’s scores by using three inference frames instead of two. [12] also use
a custom 90/10 split; we show SimpleRecon results using this in the supplementary.

3.5 Implementation Details

We implemented the method using PyTorch [50,15,75] and we use an Efficient-
NetV2 S backbone [67], with a decoder similar to UNet++ [87], and use the
first 2 blocks of ResNet18 (R18) for matching feature extraction. Please see sup-
plementary material for a detailed architecture description. We train with the
AdamW optimizer [41] for 100k steps – approximately 9 epochs – with a weight
decay of 10−4, and a learning rate of 10−4 for 70k steps, 10−5 until 80k, then
dropped to 10−6 for remainder, which takes 36 hours on two 40GB A100 GPUs.
Models with the lowest validation loss are used for evaluation. We resize images
to 512× 384 and predict depth at half that resolution. When training, random
color augmentations to brightness, contrast, saturation, and hue are applied per
image using TorchVision [43] with δ = 0.2 for all parameters, and horizontal flips
with a probability of 50%. Keyframes are selected following DeepVideoMVS [12].

4 Experiments

We train and evaluate our method on the 3D scene reconstruction dataset Scan-
Netv2 [10], which comprises 1,201 training, 312 validation, and 100 testing scans
of indoor scenes, all captured with a handheld RGBD sensor. We also evaluate
our ScanNetv2 models without fine-tuning on 7-Scenes [60] using [12]’s test split.

4.1 Depth Estimation

In Table 1, we evaluate the depth predictions from our network using the metrics
established in Eigen et al. [13]. We also introduce a tighter threshold tolerance
δ < 1.05 to differentiate between high quality models. We directly compare to
previously published results, including DeepVideoMVS [12], on ScanNetv2 and
7-Scenes (Table 1).

We use the standard test split for ScanNetv2 and the test split defined by [12]
for 7-Scenes. We compute depth metrics for every keyframe as in [12] and average
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Volumetric Comp↓ Acc↓ Chamfer↓ Prec↑ Recall ↑ F-Score ↑

RevisitingSI [24] No 14.29 16.19 15.24 0.346 0.293 0.314
MVDepthNet [70] No 12.94 8.34 10.64 0.443 0.487 0.460
GPMVS [23] No 12.90 8.02 10.46 0.453 0.510 0.477
ESTDepth [38] No 12.71 7.54 10.12 0.456 0.542 0.491
DPSNet [26] No 11.94 7.58 9.77 0.474 0.519 0.492
DELTAS [62] No 11.95 7.46 9.71 0.478 0.533 0.501
DeepVideoMVS [12] No 10.68 6.90 8.79 0.541 0.592 0.563
COLMAP [58] No 10.22 11.88 11.05 0.509 0.474 0.489
ATLAS [46] Yes 7.16 7.61 7.38 0.675 0.605 0.636
NeuralRecon [65] Yes 5.09 9.13 7.11 0.630 0.612 0.619
3DVNet [54] Yes 7.72 6.73 7.22 0.655 0.596 0.621
TransformerFusion [2] Yes 5.52 8.27 6.89 0.728 0.600 0.655
VoRTX [64] Yes 4.31 7.23 5.77 0.767 0.651 0.703
Ours No 5.53 6.09 5.81 0.686 0.658 0.671

Table 2. Mesh Evaluation. We use [2]’s evaluation. The Volumetric column desig-
nates whether a method is a volumetric 3D reconstruction method; other MVS methods
that produce only depth maps were reconstructed using standard TSDF fusion.

across all keyframes in the test sets. Surprisingly, our model, which uses no 3D
convolutions, outperforms all baselines on depth prediction metrics. In addition,
our baseline model with no metadata encoding (i.e. using only the dot product
between reference and source image features) also performs well in comparison
to previous methods, showing that a carefully designed and trained 2D network
is sufficient for high-quality depth estimation. We show qualitative results for
depth and normals in Fig. 4 and Fig. 5 respectively.

4.2 3D Reconstruction Evaluation

Our 3D reconstructions are evaluated using the standard protocol established
by TransformerFusion [2]. Their evaluation uses a ground truth mesh based pre-
diction mask to cull away parts of the prediction such that methods are not
unfairly penalized for predicting potentially correct geometry that is missing in
the ground truth. Scores are shown in Table 2. Our simple depth-based method
outperforms state-of-the-art depth estimators for fusion by a wide margin. Al-
though we do not perform global refinement of the resulting volume after fusion,
we are still able to outperform more expensive volumetric methods in some met-
rics, showing overall competitive performance with lower complexity.

We also compute scores using the ATLAS [46] mesh evaluation protocol.
However, we find this evaluation is inconsistent; comparing a ground truth mesh
against itself does not result in a score of zero, nor does performance on metrics
match inspection for visual quality or correlate well across methods. These scores,
and more details on this discrepancy, are given in the supplementary.

4.3 3D Reconstruction Latency

For online and interactive 3D reconstruction applications, reducing the latency
from sensor reading to 3D representation update is crucial. Most recent recon-
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Volume Update Mode Breakdown Update Latency (ms)↓ F-Score↑

ATLAS [46] Volume 3D CNN 2D CNN (29ms) + 3D CNN (353ms) 382ms 0.636

NeuralRecon* [65] 3D Chunk Fusion + GRU 2D CNN (12ms) + GRU (78ms) 90ms 0.619

3DVNet [54] Iterative 3D CNN Refine Depths and Feature Cloud (23875ms) 23875ms 0.621

TransformerFusion [2] Transformer Fusion + 3D CNN 2D CNN (131ms) + Refinement (195ms) 326ms 0.655

VoRTX [64] Transformer Fusion + 3D CNN 2D CNN (23ms) + Refinement (4527ms) 4550ms 0.703

Ours TSDF Fusion 2D Depth CNN (70ms) + TSDF fuse (2ms) 72ms 0.671

Table 3. Frame integration latencies for 3D reconstruction. We measure latency
as the time to incorporate a new image measurement to a 3D representation. Note that
NR reports time amortized over all keyframes. *requires sparse 3D convolutions.

struction methods use 3D CNN architectures [65,46,64,2] that require expensive
and often specialized hardware for sparse matrix computation. This makes them
prohibitive for applications on low power devices (smartphones, IoE devices)
where both compute and power are limited, or may simply not support the op-
erations. Reconstruction methods often report amortized frame time, where the
total compute time for select keyframes is averaged over all frames in a sequence.
While this is a useful metric for full offline scene reconstruction performance, it
is not indicative of online performance, especially when considering latency.

In Table 3 we compute the per-frame integration time given a new RGB
frame. Some methods may not be designed to run on every keyframe. Notably,
NeuralRecon [65] updates a chunk in world space when 9 keyframes have been
received. However, for fairness across methods, we do not count the time spent
waiting to satisfy a keyframe requirement and assume that the output of imme-
diately available frames with potentially subpar pose distances is comparable to
how the method was intended to perform. For methods that require a 3D CNN,
we report the time for one 2D keyframe integration and a complete pass of their
3D CNN network. Although our method is slower than methods such as [65]
on a per-keyframe basis, we can quickly perform updates to the reconstructed
volume using online TSDF fusion methods, resulting in low update latencies.

4.4 Ablations

In order to show the importance of our best practices and novel contributions, we
ablate different parts of our network and training routine. Results for depth esti-
mation and mesh reconstruction metrics on ScanNet [10] are shown for ablations
in Table 4, following the evaluation procedures in Section 4.

Baseline — We first show that using no MLP and 16 feature channels, reduced
using a dot product, our performance greatly suffers. Interestingly, using 64
feature channels instead of 16 degrades accuracy while being significantly slower.

Frame ordering — We compare two models where we shuffle the ordering of
the keyframes, instead of relying on the pose distance. As we can see while both
models suffer from random ordering, the full model, which has access to the pose
distance as metadata, does not suffer as much.
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Fig. 4. Depth predictions on ScanNet. Our model produces significantly sharper
and more accurate depths than the baselines. See sup. mat. for additional results.

Source Frame DVMVS [12] IDNSolver [85] Ours GT

Fig. 5. Estimated Normals on ScanNet. Our model produces significantly sharper
normals. We compute the estimated normals from depth, see supp. mat. for details.

Metadata — In this section all the models make use of the MLP cost vol-
ume reduction, but we vary the input of that MLP. We start with our baseline
model, using only the feature dot products aggregated using a sum. We then add
the features, their depth and validity mask, reduced using our MLP. We keep
adding more metadata until we reach our full model. Accuracy increases with
the amount of information provided to the model.

Views — In addition, we show that our method can incorporate information
from many source views. As we increase from 2 views to 8, our performance con-
tinues to improve. In contrast, DeepVideoMVS’s performance remains relatively
constant when using more than three source frames [12]. In addition, we ablate
the cost volume entirely by zeroing its output (creating a monocular method),
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Depth evaluation Mesh eval

Abs Diff↓ Sq Rel↓ RMSE↓ δ < 1.05 ↑ δ < 1.25 ↑ Chamfer↓ F-score↑

Ours w/ all metadata, 8 ordered frames, dot prod CV 16c, ENv2S + R18 0.0885 0.0125 0.1468 73.16 98.09 5.81 67.1

Ours baseline w/ dot product CV 16c 0.0941 0.0139 0.1544 70.48 97.84 6.29 64.2
Ours baseline w/ dot product CV 64c 0.0944 0.0140 0.1548 70.49 97.84 6.08 65.4

Ours w/o metadata, shuffled frames 0.0920 0.0135 0.1521 71.59 97.91 6.04 65.6
Ours w/ metadata, shuffled frames 0.0906 0.0129 0.1490 72.09 98.03 5.92 66.3

Ours baseline w/ dot product CV 16c 0.0941 0.0139 0.1544 70.48 97.84 6.29 64.2
Ours dot + feats + mask + depth 0.0904 0.0132 0.1509 72.63 98.03 5.92 66.5
Ours dot + feats + mask + depth + ray + angle 0.0896 0.0127 0.1481 72.76 98.09 5.88 66.6
Ours dot + feats + mask + depth + ray + angle + pose distance 0.0885 0.0125 0.1468 73.16 98.09 5.81 67.1

Ours w/ 1 frame – w/o CV 0.1742 0.0374 0.2330 40.96 90.03 9.26 47.0
Ours w/ 2 frames 0.1230 0.0198 0.1803 57.15 96.21 7.51 56.7
Ours w/ 4 frames 0.1036 0.0151 0.1611 65.62 97.60 6.57 62.3

Ours w/ metadata but w/ MnasNet at 320 × 256 (matching [12]) 0.0947 0.0146 0.1587 71.24 97.68 5.92 66.3

Table 4. Ablation Evaluation. Ablation evaluation on depth and reconstruction
metrics using DVMVS keyframes for ScanNet. Scores for our full method are bolded.

leading to greatly decreased performance, showing that a strong metric depth
estimate from the cost volume is required to resolve scale ambiguity.

Fig. 6. Fused meshes on unseen data. Our model generalizes on unseen environ-
ments, including outdoors, captured on smartphone. See video for live reconstruction.

5 Conclusion

We propose SimpleRecon, which produces state-of-the-art depth estimations and
3D reconstructions, all without the use of expensive 3D convolutions. Our key
contribution is to inject cheaply available metadata into the cost volume. Our
evaluation shows that metadata boosts scores, and in partnership with our set of
careful architecture design choices leads to our state-of-the-art depths. Moreover,
our method does not preclude the use of 3D convolutions or additional cost vol-
ume and depth refinement techniques, allowing room for further improvements
when compute is less restricted. Ultimately, our back-to-basics approach shows
that high-quality depths are all you need for high-quality reconstructions.

Acknowledgments — We thank Aljaž Božič [2], Jiaming Sun [65] and Arda
Düzçeker [12] for quickly providing useful information to help with baselines.
Mohamed is funded by a Microsoft Research PhD Scholarship (MRL 2018-085).
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