Skip to main content

Gaussian Activated Neural Radiance Fields for High Fidelity Reconstruction and Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

Abstract

Despite Neural Radiance Fields (NeRF) showing compelling results in photorealistic novel views synthesis of real-world scenes, most existing approaches require accurate prior camera poses. Although approaches for jointly recovering the radiance field and camera pose exist, they rely on a cumbersome coarse-to-fine auxiliary positional embedding to ensure good performance. We present Gaussian Activated Neural Radiance Fields (GARF), a new positional embedding-free neural radiance field architecture – employing Gaussian activations – that is competitive with the current state-of-the-art in terms of high fidelity reconstruction and pose estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    f is also conditioned on viewing direction for modeling view-dependent effect, for which we omit here in the derivation for simplicity.

References

  1. Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36

    Chapter  Google Scholar 

  2. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: fewer views and faster training for free. arXiv preprint arXiv:2107.02791 (2021)

  3. Gao, C., Saraf, A., Kopf, J., Huang, J.B.: Dynamic view synthesis from dynamic monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5712–5721 (2021)

    Google Scholar 

  4. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866 (2020)

    Google Scholar 

  5. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7154–7164 (2019)

    Google Scholar 

  6. Hertz, A., Perel, O., Giryes, R., Sorkine-Hornung, O., Cohen-Or, D.: SAPE: spatially-adaptive progressive encoding for neural optimization. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  7. Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5846–5854 (2021)

    Google Scholar 

  8. Jiang, C., et al.: Local implicit grid representations for 3d scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6001–6010 (2020)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. (TOG) 9(3), 245–261 (1990)

    Article  MATH  Google Scholar 

  11. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)

    Google Scholar 

  12. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)

    Google Scholar 

  13. Lindell, D.B., Martel, J.N., Wetzstein, G.: AutoInt: automatic integration for fast neural volume rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14556–14565 (2021)

    Google Scholar 

  14. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  15. Meng, Q., et al.: GNeRF: GAN-based neural radiance field without posed camera. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6351–6361 (2021)

    Google Scholar 

  16. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3d reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  17. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  18. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  19. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3d representations without 3d supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)

    Google Scholar 

  20. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  21. Park, K., et al.: Nerfies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)

    Google Scholar 

  22. Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)

    Google Scholar 

  23. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems 20 (2007)

    Google Scholar 

  24. Ramasinghe, S., Lucey, S.: Beyond periodicity: towards a unifying framework for activations in coordinate-MLPs. arXiv preprint arXiv:2111.15135 (2021)

  25. Ramasinghe, S., Lucey, S.: Learning positional embeddings for coordinate-MLPs. arXiv preprint arXiv:2112.11577 (2021)

  26. Ramasinghe, S., MacDonald, L., Lucey, S.: On regularizing coordinate-MLPs. arXiv preprint arXiv:2202.00790 (2022)

  27. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14335–14345 (2021)

    Google Scholar 

  28. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  29. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3d-aware image synthesis. Adv. Neural. Inf. Process. Syst. 33, 20154–20166 (2020)

    Google Scholar 

  30. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  31. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3d-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  32. Su, S.Y., Yu, F., Zollhoefer, M., Rhodin, H.: A-NeRF: surface-free human 3d pose refinement via neural rendering. arXiv preprint arXiv:2102.06199 (2021)

  33. Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6229–6238 (2021)

    Google Scholar 

  34. Tancik, M., et al.: Block-NeRF: scalable large scene neural view synthesis. arXiv preprint arXiv:2202.05263 (2022)

  35. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  36. Tewari, A., et al.: Advances in neural rendering. arXiv preprint arXiv:2111.05849 (2021)

  37. Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-NeRF: scalable construction of large-scale NeRFs for virtual fly-throughs. arXiv preprint arXiv:2112.10703 (2021)

  38. Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2021)

    Google Scholar 

  39. Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF: neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021)

  40. Xian, W., Huang, J.B., Kopf, J., Kim, C.: Space-time neural irradiance fields for free-viewpoint video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9421–9431 (2021)

    Google Scholar 

  41. Xu, Z.-Q.J., Zhang, Y., Xiao, Y.: Training behavior of deep neural network in frequency domain. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 264–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_22

    Chapter  Google Scholar 

  42. Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.Y.: INeRF: inverting neural radiance fields for pose estimation. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1323–1330. IEEE (2021)

    Google Scholar 

  43. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)

    Google Scholar 

  44. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  45. Yüce, G., Ortiz-Jiménez, G., Besbinar, B., Frossard, P.: A structured dictionary perspective on implicit neural representations. arXiv preprint arXiv:2112.01917 (2021)

  46. Zheng, J., Ramasinghe, S., Lucey, S.: Rethinking positional encoding. arXiv preprint arXiv:2107.02561 (2021)

  47. Zhu, Z., et al.: NICE-SLAM: neural implicit scalable encoding for SLAM. arXiv preprint arXiv:2112.12130 (2021)

Download references

Acknowledgment

We thank Chen-Hsuan Lin, Huangying Zhan, and Tong He for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Fang Chng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2247 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chng, SF., Ramasinghe, S., Sherrah, J., Lucey, S. (2022). Gaussian Activated Neural Radiance Fields for High Fidelity Reconstruction and Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics