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Abstract. We present a method that learns neural shadow fields which
are neural scene representations that are only learnt from the shadows
present in the scene. While traditional shape-from-shadow (SfS) algo-
rithms reconstruct geometry from shadows, they assume a fixed scan-
ning setup and fail to generalize to complex scenes. Neural rendering
algorithms, on the other hand, rely on photometric consistency between
RGB images, but largely ignore physical cues such as shadows, which
have been shown to provide valuable information about the scene. We
observe that shadows are a powerful cue that can constrain neural scene
representations to learn SfS, and even outperform NeRF to reconstruct
otherwise hidden geometry. We propose a graphics-inspired differentiable
approach to render accurate shadows with volumetric rendering, predict-
ing a shadow map that can be compared to the ground truth shadow.
Even with just binary shadow maps, we show that neural rendering can
localize the object and estimate coarse geometry. Our approach reveals
that sparse cues in images can be used to estimate geometry using dif-
ferentiable volumetric rendering. Moreover, our framework is highly gen-
eralizable and can work alongside existing 3D reconstruction techniques
that otherwise only use photometric consistency.

Keywords: Scene Representations, Differentiable Rendering, 3D Scene
Reconstruction, Shape-from-Shadows, Volume Rendering

1 Introduction

Recovering 3D geometry from 2D images remains an extremely important, yet
unsolved problem in computer vision and inverse graphics. Considerable progress
has been made in the field when assumptions are made, such as bounded scenes,
diffuse surfaces, and specific materials. However, reconstruction algorithms still
remain largely susceptible to real world effects, such as specularity, shadows, and
occlusions [34]. This susceptibility is largely due the variation in different mate-
rials and textures, and a non-unique mapping from 3D geometries to 2D images.
Even though these effects cause issues for many methods, they also provide valu-
able information about the scene and geometry of the object. For example, cues
like self-shadows provide vital information about an object’s concavities, while
shadows cast on the ground plane provide information about its geometry. More-
over, shadows are independent of textures and surface reflectance models and
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Fig. 1. Exploiting physical cues in neural rendering. Our approach takes sparse
binary shadow masks captured with varying camera positions under fixed lighting and
uses our proposed differentiable shadow rendering model to estimate shadow maps,
thereby learning neural scene representations. We can visualize the learned implicit
representations by rendering estimated depth maps and estimated shadow maps from
novel views. We also run marching cubes [15] on our learned representations to get
explicit meshes for a quantitative analysis.

are a strong cue in overhead imagery where vertical surfaces, like facades, are
sampled poorly, whereas oblique lighting can expose this geometry. Exploiting,
instead of ignoring these cues, can make algorithms robust and the fundamental
problem of 3D reconstruction less ill-posed.

Previous works in recovering 3D shape of objects by exploiting physical cues
has relied on constructing inverse models to explicitly handle and exploit cues
such as shadows, shading, motion, or polarization [2] [41] [40]. These approaches
are physically anchored as they use properties of light or surface reflectance
models to exploit cues and only need up to a single image to reconstruct simple
objects. Albeit successful under strict assumptions about lighting, camera, and
the object, these models typically cannot handle complex scenes and do not
translate well into real-world scenarios as creating inverse models to capture
complex physical phenomenon soon becomes intractable and hard to optimize.

To combat the problem of real world variability, modern methods such as [31]
[17] [22] [28] [37] [13] have largely been data-driven by directly learning 3D repre-
sentations on real-world scenes based on photometric consistency. Such methods
employ an analysis-by-synthesis approach to solve the problem by using machine
learning to search the space of possible 3D geometries and an inverse model to
synthesize the scene based on the predicted geometries. These approaches typ-
ically only optimize the photometric loss between different camera viewpoints
and show success in learning implicit representation by rendering novel views.
However, because they do not explicitly handle these physical cues in their for-
ward model, they fail in scenarios with complex lighting [29], specularity [39], or
reflections [6].

∗ Equal contribution
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Motivated by the above observations, we explore what can be learned by
exploiting physical cues in a data-driven neural rendering framework. In this pa-
per, we investigate whether the neural rendering framework can learn geometry
from physical cues without the assumptions made by the aforementioned meth-
ods. We study the use of shadows cast by objects onto themselves and nearby
surfaces as the only source of information for 3D reconstruction. While modern
approaches for 3D reconstruction ignore such cues, we aim to exploit them. Our
unsupervised approach uses only shadows to reconstruct the scene by leveraging
recent advances in volumetric rendering and machine learning, and therefore pro-
poses a physically anchored data-driven framework to the problem of shape from
shadows. Moreover, unlike previous work in shape from shadows, we present a
novel method that uses differentiable rendering in the loop to iteratively recon-
struct the object based on a loss function instead of iteratively refining the object
through explicit carving. Specifically, we use an efficient shadow rendering tech-
nique called shadow mapping as the forward model and make it differentiable
so that it can be used as an inverse model to iteratively reconstruct the ob-
ject. Our work also reveals that from limited cues the differentiable volumetric
rendering component can quickly converge to localize and reconstruct a coarse
estimate of the object when such cues are explicitly modeled by a forward model.
Our work also suggests that neural rendering can exploit shadows to recover
hidden geometry, which otherwise may not be discovered by photometric cues.

1.1 Contributions

Our contributions in this paper are the following:

– A framework that directly exploits physical cues like shadows in neural ren-
derers to recover scene geometry.

– A novel technique that integrates volumetric rendering with a graphics-
inspired forward model to render shadows in an end-to-end differentiable
manner.

– Results showing that our framework can learn coarse scene representations
from just shadows masks. We evaluate the learned representations qualita-
tively and quantitatively against vanilla neural rendering approaches. To the
best of our knowledge, we are the first to show that it is possible to learn
neural scene representations from binary shadow masks.

2 Related Work

Shape from Shadows. Shadowgram imaging deals with estimating the shape
of an object through a sequence of shadow masks captured with light sources at
various locations. These methods typically assume a controlled and fixed object
scanning setup [27] [36]. Martin & Aggarwal [16] introduced a volumetric space
carving approach to SfS which outputs a visual hull around the object by carving
out voxels lying outside the visual cone. Other work takes a more probabilistic



4 Tiwary K. et al.

Fig. 2. Overview of the proposed pipeline We train a neural network to predict
opacity at points along the camera and light rays. The opacities are used by the volu-
metric renderer to output the ray-termination distance which we use to estimate the
z-buffer from the camera and the light perspective, the latter also known as the shadow
map. The estimated z-buffer is fed into a Projection step that projects the camera
pixels and their associated depths into the light’s reference frame. The shadow map is
indexed to obtain the corresponding depth values at these new points. The projected
depths and indexed depths go through a Soft Comparison step which outputs pre-
dicted cast shadows in the scene from the camera’s perspective. A loss is computed on
the predicted and the ground-truth shadow mask.

approach to the shape-from-silhouettes problem to make the algorithm more
robust to errors [9]. However, interpreting shadows as silhouettes means that
self-shadows are not handled, thus motivating Savarese et al. [27] to propose a
method to “carve” out objects based on self-shadows to create more complete
reconstructions.

In contrast, our work takes a differentiable approach to solving the problem
through learning. Instead of an explicit carving of voxels we first construct a
differentiable forward model that casts shadows based on some geometry. Then,
we let the machine learning component predict geometry, which is synthesized
by the renderer to cast shadows. Finally, we optimize this setup based on a mean
square error between predicted and ground truth shadow masks.

Neural Rendering Broadly speaking, a neural rendering framework is com-
posed of a differentiable renderer, which can render the scene based on input
parameters and is able to differentiate the scene w.r.t. those input parameters.
While there are many formulations of differentiable renderers [21] [14] [10] [8]
that can synthesize scenes, state-of-art approaches have shown tremendous suc-
cess by relying on differentiable volumetric rendering [20]. Volumetric rendering
approaches can realistically render complex scenes and are gradient-friendly.
Thus, typical approaches train a neural network to encode the scene and op-
timize it for photometric consistency between input 2D images from different
viewpoints [17] [28] [18] [19]. Recent methods such as [6] [33] [29] [3] explicitly
account for specularity, reflections and other such phenomenon, however, the
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Fig. 3. Figure (a): A point x ∈ R3 in the scene is defined to be in shadow if no direct
path exists from the point x to the light source, implying that there must be an
occluding surface between x and the light source. We differentiably render the scene’s
depth from the camera and the light’s perspective at each pixel and then project the
camera pixel and its depth into the light’s frame of reference. We then index the light’s
depth map, or z-buffer, to get zL1 . We note that zL1 is less than zL2 , i.e. there must be an
occluding surface as a ray projected from the light’s perspective terminates early. This
implies that this point is in shadow. Figure (b) shows a 2D slice of our approach and
represents a volume (cloud) with the shadow mask unraveled. The network learns an
opacity per point (dots) via the shadow mapping objective which penalizes predicted
geometries that don’t cast perfect ground truth shadows. Through this, the networks
learns 3D geometry that is consistent across all shadows maps for all cameras given a
particular light source.

goal of these works are to improve novel view synthesis. Thus, these methods
still rely on learning the scene using photometric information.

In contrast, our work deals with 3D reconstruction, not novel view synthesis,
and explores what can be learned by relying on shadow cues in the scene. Our
framework only operates in the shadow input and output space to infer a 3D
representation of the scene. In addition, similar to [26] [38], our work also reveals
that differentiable volumetric rendering is a powerful component that can learn
the scene by only relying on sparse physical cues. While volumetric approaches
rely on a photometric cues, differentiable rasterization [8] [12] has been shown to
reconstruct 3D mesh using single low dimensional images of ShapeNet objects
[4] by only using silhouettes. However, these methods fail to show success on
high dimensional images, while our approach can scale up to higher dimensional
images. Concurrent work by Liu et al. [11] also leverages shadows to perform
3D reconstruction, but integrates learned object priors, whereas we solely rely
on binary shadow masks and use volumetric rendering.

Shadows in Graphics. Graphics deals with the forward model and shadow
mapping [35] is one of the most efficient techniques to render shadows in a
scene given the scene’s geometry, camera viewpoint and light position. While
differentiability is not important for graphics, we make the shadow mapping
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framework differentiable to work with modern 3D reconstruction algorithms.
We describe the algorithm and our implementation in Section 3.

3 Neural Representations From Shadows

Our goal is to recover the scene through shadows cast on the other objects or onto
itself. Our method recovers shadows in an image by applying a threshold on that
image thereby making no distinction between types of shadows. We show how
we model the shape-from-shadows problem using differentiable rendering and
implicit representations in Section 3.1 and our graphics-inspired differentiable
forward model in Section 3.2. In Section 3.3, we discuss our additional techniques
that we use to enable optimization on binary shadow masks.

3.1 Scenes as Neural Shadow Fields

Implicit Scene Representations. Similar to Mildenhall et al. [17], we rep-
resent a continuous scene by parametrizing it using a learnable function fθ.
However, our approach does not include any photometric component, therefore
we represent the scene as a 3D function with input x = (x, y, z) and a volumetric
density σ as output.

γ(x) =

(
sin(20πx), cos(21πx), ..., sin(2L − 1πx), cos(2L − 1πx)

)
fθ : RL −→ R+; (γ(x)) 7→ (σ)

(1)

We use a positional-encoded 3D point γ(x), {γ(x) ∈ RL,x ∈ R3} as input, which
maps to an associated volumetric density σ ∈ R+ [17] [30]. In contrast, f does
not encode view dependant color and is independent to viewing direction.
Volumetric Renderer. We define a volumetric renderer Rvol that takes N
opacities {σ}Ni=1 at N discretely sampled points {x}Ni=1 along a ray r.

Rvol :
[
R+

]N
i=1

−→
[
R+

]N
i=1

; ({σ}Ni=1) 7→ (d) (2)

Since we only have binary shadows as input, we modify the renderer to output
the ray termination distance, d, instead of the radiance at that ray. Rvol is not a
trainable component, but the ray termination distance, d, is differentiable w.r.t.
the input opacities. The estimated ray-termination distance, range, is computed
as follows:

D̂(r) =

N∑
i=1

Tiαiti;Ti =

i−1∏
j=1

(
1− αj

)
;αi =

(
1− e−σiδi

)
(3)

We sample r(t) at points {t0, ..., tN} and evaluate the function r(t) = o + td
to get sampled points {x0, ..., xN} in the scene. Ti is defined as the cumulative
transmittance from t0 until ti and δi = ti+1 − ti which is the distance between
two samples. σi is the estimated opacity at point i by a learned function fθ. In-
tuitively, the renderer gives us the ray termination distance for each ray shooting
through a pixel.



Towards Learning Neural Representations from Shadows 7

Fig. 4. Qualitative Results. We observe that for overhead views of the scene where
the vertical surface of the vase is sampled poorly in the RGB space, vanilla NeRF
fails to exploit geometry cues hidden in cast shadows compared to our approach. Our
method doesn’t impose any object priors therefore it infers a geometry that will mini-
mize the difference between the predicted and true shadow. Column 4 illustrates that
rendered shadows are very similar, indicating that the differentiable rendering frame-
work can indeed learn geometry from sparse shadow cues. Some parts of the objects
such as the upper face of cuboid are never in shadow, therefore our approach yields
no reconstruction for those surfaces, further showing that the geometry is indeed only
learnt from cast shadows. We extract the mesh from the volume using marching cubes
and visualize it here using a point-cloud SDF representation.

3.2 Differentiable Shadow Mapping

We define any point x ∈ R3 in the scene to be in shadow if no direct path
exists from point x to the light source L. This logic implies that there must be
some object or an occluding surface between the point x and L that occludes
the light ray from reaching point x. In graphics, shadow mapping [35] uses
this observation to construct a forward model to render efficient and accurate
shadows in the scene based on known light and camera sources. Our approach
makes this efficient shadow rendering forward model differentiable so that it can
be used as an inverse model. We then pose the problem of shape from shadows
and use our proposed inverse model to estimate the 3D geometry of the scene.
Estimated z-buffer. We first evaluate the renderer from the camera’s perspec-
tive to get the estimated ray termination distance, or range map, D̂cam for all
rays coming out of the binary shadow map. However, shadow mapping requires
the depth perpendicular to the image plane, i.e along the z axis of the camera’s
local coordinate system. This depth is equivalent to a z-buffer in graphics and we
refer to this value as the depth at that pixel. We define a function g to estimate
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the z-buffer Ẑ from the range map D̂.

ẑu,v = g(du,v) =
du,v

||(u, v, 1) · E||2
(4)

The function takes a ray shooting from a pixel (u, v) and a predicted range, D̂
u,v

cam

as input. E is the rotational component of the camera’s extrinsic matrix, du,v

is the ray termination distance from camera’s focal point, and ẑu,v is the depth
along the z-axis from the pixel (u, v). We also compute the estimated z-buffer
from the light’s perspective, which we refer to as the estimated shadow map.
Projection. With the estimated depths at each pixel from the camera and the
light source, we now need to estimate which camera pixels are in shadow given
the particular light source. As illustrated in Figure 3, we do this by projecting
all pixels and their associated depths visible by the camera into the light’s frame
of reference. We then use this projected coordinate to index the shadow map to
get the depth to that point from the light’s perspective. We formally write this
as follows:

(U l
cam, V l

cam, Ẑl
cam) = (Ucam, Vcam, Ẑcam) · Plight from cam

Ẑ
U l

c,V
l
c

light = Ẑlight

[
U l
cam, V l

cam

] (5)

Here, Ẑcam ∈ RH×W is the estimated z-buffer from the camera’s perspective
at pixels {Ucam, Vcam} ∈ RH×W . Plight from cam is the projection matrix to

the light’s reference frame from the camera’s. We denote (U l
cam, V l

cam, Ẑl
cam)

as the pixels and depth in camera’s frame (subscript) projected into the light’s

frame, denoted by the superscript l. We index the shadow map, Ẑlight ∈ RH×W ,
at the projected camera pixels to retrieve the depth of the projected camera

pixels from the light source. This is denoted as Ẑ
U l

c,V
l
c

light which is the shadow map

indexed at pixel locations U l
c, V

l
c . In practice, not all pixels will project within the

shadow map’s height and width constraints specified at the start of training. In
graphics, these pixels are usually ignored, however, we clamp all our projections
to lie within the height and width bounds to maintain differentiability.
Soft Comparison. Once we have the depths to the projected camera pixels
and the depths from the light source to those pixels in the same reference frame,
we can then compare them to discover if the camera pixel is in shadow. As
illustrated by Figure 3, if the depth from the light source to a point is less than
the depth from the camera projected into the light’s frame, it means that the
light ray must have intersected an object before reaching that point. Thus, that
point must be in shadow. Based on this logic, we formulate a soft comparison,
which compares different depths to output the predicted binary shadow mask as
follows:

∆Ẑlight =

(
Ẑl

cam − Ẑ
U l

c,V
l
c

light

)
M̂binary = max

(
∆Ẑlight

β
, ϵ

) (6)
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We denote M̂ ∈ RH×W as the output of the entire pipeline: predicted shadow
masks. The input to our soft comparison is the projected camera z-buffer into

the light’s frame, Ẑl
cam, and the shadow map indexed at the projected points

Ẑ
U l

c,V
l
c

light from the Projection step. β is a scaling hyper-parameter used to enlarge
or decrease the difference, and ϵ is a threshold. We also formulate a “smoother”
version of the predicted shadows:

M̂smooth = S
(
normalize

(
∆Ẑlight, µmin, µmax

))
(7)

Here, µmin, µmax are used to control the normalization function and S is the
sigmoid function.

3.3 Optimization

To enable convergence, we smooth the binary ground truth shadow masks M to
better guide the framework in predicting accurate shadow masks.
Distance Transform. Binary images contain limited information for differ-
entiation as the gradient is zero everywhere except for the edges where it is
one. To encourage our model to estimate better shadow masks, thereby learning
a better 3D model, we use a distance transform on the ground truth shadow
masks. Specifically, we scale pixel intensities of a binary shadow mask by their
distance to the nearest shadow edge. We modify the weighted distance transform
in [25] for our approach. The transformed binary shadow mask, w(M, σ) = Mw

is computed as follows:

w(M, σ) = M+

(
wc(M) + w0 · exp

(
− (d1(M) + d2(M))2

2σ2

))
(8)

Here, M is the ground truth binary shadow mask computed after applying a
fixed threshold on binary images. wc is weight map to balance class frequencies,
w0 and σ are hyper parameters. d1 and d2 are distances to the nearest and second
nearest cell, respectively. We note from our experiments that this particular
distance transform yields the most consistent convergence compared to other
distance transforms, such as blurring.
Shadow Mapping Loss. We optimize our entire framework on binary shadow
masks and train the MLP on the following loss:

Lsm = ||w(M, σ)− M̂||2 (9)

Here, w(M, σ) is the σ weighted ground truth shadow mask, and M̂ is the
predicted shadow mask from Equation (7).

4 Implementation

4.1 Dataset

We create a dataset of objects, including a cuboid, vase, chair and bunny in
blender and render images of size 800 × 800. Although our approach does not
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Fig. 5. Real-World Experimentation: We use the exact same pipeline and training
scheme to reconstruct a 3D mesh from real-world data. We take a video on the iPhone
to generate poses for light and camera using COLMAP [43](video link) and extract
shadows using an intensity threshold. We show that our method can reconstruct a
finer mesh of the hand from the real-world images. We highlight that our method can
more easily generalize from sim2real in comparison to photometric approaches since
we learn from only shadow masks, which are invariant to many real-world effects, such
as texture.

have any constraints on the number or positions of light and camera, we fix one
light source and randomly sample 200 camera positions on along the upper half
of a sphere around the object. In simulation, we only consider top down/satellite
views with the light source being very far away from the camera and the object
to represent a distant “sun-like” source although this assumption was relaxed in
real world dataset. Our dataset motivates the use of shadows for 3D reconstruc-
tion because in overhead imagery, vertical surfaces, like facades, are sampled
poorly, whereas oblique lighting can expose this geometry. Link to the dataset
is provided in the supplementary section. Details about the real world dataset
is also provided in the supplementary section.

4.2 Training Details

We use a faster implementation of NeRF [17] from [24], which uses PyTorch
Lightning as its backend [23] [5]. We down sample all images from 800 × 800
to 64 × 64 to fit on one RTX-3080 GPU. We use the same positional encoding
scheme, γ(x) and the MLP configuration fθ used in [17]. For camera projec-

https://drive.google.com/file/d/1Bqi5WQqUoA062zyhrKAL9ntS0bnQhzga/view?usp=sharing
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Scene RMSE Shadow Mesh RMSE Vanilla NeRF

Cuboid 0.0078 0.097
Vase 0.010 0.0.011
Bunny 0.0109 0.0106
Chair 0.0092 0.0096

Table 1. We quantitatively analyze the quality of the reconstructed meshes by running
ICP [1] on meshes generated by our proposed method, which only uses binary shadows
masks, and meshes generated by a vanilla NeRF trained on full RGB images. We show
RGB images from Vanilla NeRF in the supplementary along with training details.

tions, we write a custom Planar Projection Camera class that encapsulates the
projections and readily works with OpenGL and blender cameras. We gradually
decreases the σ (Equation 8) from {150, 100, 50} during training to encourage the
network to learn coarse to fine geometry. We also train a Vanilla NeRF model on
RGB images of the same scene on resolution 64×64. To reconstruct the meshes,
we run marching cubes on the learned implicit representations. More informa-
tion on the exact training details is given in the supplementary section, including
details about our more efficient differentiable shadow mapping implementation,
which decreases the training time by half.

5 Results

Evaluation Details. We evaluate the performance of our method using root
mean square error (RMSE) between the predicted point cloud and the ground
truth point cloud, acquired with the iterative closest point (ICP) [1] algorithm,
as reported in Table 1. In addition, we assess the visual quality of the predicted
depth and shadow masks, and surface mesh, as shown in Figures 4 and 6. The
thresholds used to get the mesh from a volumetric representation are given in
supplementary material.
Simulated 3D Reconstruction Results.We show the learned scene represen-
tations qualitatively by converting them to explicit meshes and rendering them
using a signed distance function (SDF). Figure 4 shows the estimated meshes
from our method on four object types. We compare our meshes to meshes gener-
ated by running vanilla NeRF on RGB images, and the ground truth by running
marching cubes on the volume. Our datasets are rendered with overhead camera
viewpoints, which enables shadows to be exploited. Given the binary and sparse
nature of shadow masks in terms of their information content, we observe that
our forward model coupled with the differentiable rendering framework converges
to good coarse estimates of object geometry. Moreover, in the case of vases, the
mesh reconstruction benefits from exploiting shadows as the algorithm can use
hidden cues present in the scene, such as the curvature of the vase, which are
only partially visible when relying on photometric cues. We also show predicted
depth maps and shadow masks on novel camera viewpoints not used during
training in the supplementary materials.
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Fig. 6. Evolution of depth maps during training through a novel camera
viewpoint. We visualize how the proposed forward model and differentiable rendering
framework quickly converges to localize the object based on sparse shadow cues present
and then slowly refines the coarse estimate on novel camera viewpoints. We believe that
these results reveal that the differentiable volumetric rendering is a powerful framework
that can rely on exploiting such physical cues to infer scene information.

Real-World Reconstruction Results. We show our method’s ability to con-
verge to a fine mesh on real-world data of a hand in Fig. 5. Information on data
acquisition is provided in the supplementary materials. We first note that our
method is robust to coarse light poses as there are visible shadows from the
estimated light’s pose in Fig. 5 (please refer to the supplement for details). Our
method is able to converge to a fine mesh of the hand, including the fingers and
the space between them. We use only 74 shadow masks which makes our method
versatile to environments with limited camera views and rarer objects, and no
object priors. Moreover, we also show the convergence of the estimated shadow
masks, disparity and depth maps from a novel viewpoint. The final estimated
shadow mask shown in Fig. 5 is similar to the validation shadow mask and also
contains some shadow artifacts due to the threshold segmentation. Additionally,
the sim2real gap is not present for our pipleine as it only uses object shadows.

Lastly, we briefly discuss how the data-driven components finds the easiest
solution that is consistent with our physics-driven forward model but not the
actual world. We note that our training data only has views of cast shadows and
does not contain any self-shadows which are present on the back of the hand.
This causes the algorithm to instead estimate the mesh of the table and create
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a hollow imprint of the hand such that the specified shadow constraint is met.
We note that a stand-alone mesh of the hand can be recovered from this imprint
and that the recovered mesh is a possible solution given the shadow masks and
proposed model. Imposing object priors or adding an extra view of self-shadow
to the training set could result in a stand-alone mesh.

Novel Viewpoint Rendering. We observe predicted depth and shadow masks
rendered from novel viewpoints in Figure 6. The depth maps converge quite
quickly to localize the object even when optimizing on the sparse physical cue
of shadows. We posit that this convergence shows how powerful differentiable
rendering is for exploiting physical cues to enable better 3D reconstruction.
The depth maps converge slowly and we nudge the convergence by gradually
decreasing the sigma values for the distance transform. The use of the distance
transform leads to blurrier boundaries, however, the rendered mesh shows that
a reasonably coarse 3D estimate is captured.

Quantitative Analysis. We also run our datasets on a vanilla NeRF [17] im-
plementation [24]. At lower resolutions and overhead viewpoints, we see that the
NeRF approach fails to provide a reasonable fine mesh. We believe this failure
is due to the down-sampling of images to 64×64, which may also be a reason as
to why our meshes fail to capture fine details. We run ICP [1] on the generated
points cloud and show on-par results to the NeRF approach. Our goal, how-
ever, is not to outperform NeRF but to show the effectiveness of differentiable
rendering framework in exploiting physical cues instead of ignoring them. The
main takeaway from Table 1 is that differentiable volumetric renderers do not
need to rely on 8 bit RGB information to reconstruct accurate meshes, but can
also leverage other sources of information in the image in addition to relying on
photometric cues.

Limitations. In cases such as the cuboid and the vase, we observe that the
renderer converges to a predicted mesh that minimizes the shadow masks and
the predicted shape even though it is typically a coarse estimate that envelopes
the entirety of the object. This means that we see artifacts such as the pointed
curve in the vase mesh, or the curvature of the bunny. Since our algorithm only
has geometry information where the binary shadow mask is true, areas that are
never in shadow have no surface, which leads to incomplete meshes. Imposing
a prior can be a solution to this problem. Moreover, our method also assumes
known lighting position, which may not always be available.

6 Discussion

Exploiting Physical Cues. One of the major goals of our work is to propose
a framework within neural rendering that can readily exploit and learn from,
instead of ignore, sparse physical cues, such as shadows. We believe that Fig.
5 shows that sparse physical cues like shadows, actually encode a lot of hidden
information about the scene and can indeed be exploited. By constructing ex-
plicit differentiable forward models and leveraging gradient-friendly volumetric
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rendering, we can exploit these cues in conjunction with relying on photometric
consistency between images.
Differentiable Shadow Rendering. In rasterization, shadow computation is
done through shadow mapping as it is well suited and efficient. However, shadow
computation in ray tracing are expensive as every ray needs to compute a path
to the light source. Therefore, many ray tracing approaches also use shadow
mapping to compute shadows efficiently. We use shadow mapping in our neural
rendering approach as well. Our approach is similar to the shadow mapping in
graphics as it assumes a binary label on shadows and does not consider soft
shadows or ambient lighting. However, we invert shadow mapping and exploit
it to do 3D reconstruction, not to render photorealistic images. Moreover, our
approach is readily extendable to varying light and camera sources.

6.1 Future Work

We observe that volumetric rendering can converge onto coarse estimates of the
object geometry by only relying on shadows, and can be extended to problems
such as non-line-of-sight imaging (NLOS) [32] and imaging behind occluders [7].
As shadows themselves are never the only cue present to reconstruct the scene,
our work can also be easily integrated with existing NeRF approaches that rely
only on photometric cues as our shadow loss 7 can be used as a regularizer or an
auxiliary loss, especially as shadows are invariant to viewpoint changes, surface
reflectance properties, or texture changes.

6.2 Conclusions

We show that modern neural rendering techniques can learn neural scene rep-
resentations (neural shadow fields) and encode 3D geometry just from binary
shadow masks. We are motivated by traditional shape-from-X algorithms that
typically construct physics-driven inverse models that can exploit cues for 3D
reconstruction. We observe that data-driven neural rendering frameworks ignore
cues such as shadows, relying on on photometric cues instead. We thus propose
a graphics-inspired differentiable shadow rendering component that leverages a
volumetric renderer to encode a scene solely from its shadows.
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