Skip to main content

Structure and Motion from Casual Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

Abstract

Casual videos, such as those captured in daily life using a hand-held camera, pose problems for conventional structure-from-motion (SfM) techniques: the camera is often roughly stationary (not much parallax), and a large portion of the video may contain moving objects. Under such conditions, state-of-the-art SfM methods tend to produce erroneous results, often failing entirely. To address these issues, we propose CasualSAM, a method to estimate camera poses and dense depth maps from a monocular, casually-captured video. Like conventional SfM, our method performs a joint optimization over 3D structure and camera poses, but uses a pretrained depth prediction network to represent 3D structure rather than sparse keypoints. In contrast to previous approaches, our method does not assume motion is rigid or determined by semantic segmentation, instead optimizing for a per-pixel motion map based on reprojection error. Our method sets a new state-of-the-art for pose and depth estimation on the Sintel dataset, and produces high-quality results for the DAVIS dataset where most prior methods fail to produce usable camera poses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 29–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_3

    Chapter  Google Scholar 

  2. Bescos, B., Fácil, J.M., Civera, J., Neira, J.: Dynaslam: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)

    Article  Google Scholar 

  3. Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., Davison, A.: CodeSLAM–learning a compact, optimisable representation for dense visual SLAM. In: CVPR (2018)

    Google Scholar 

  4. Bogdan, O., Eckstein, V., Rameau, F., Bazin, J.C.: Deepcalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras. In: Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production (2018)

    Google Scholar 

  5. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  6. Casser, V.M., Pirk, S., Mahjourian, R., Angelova, A.: Depth prediction without the sensors: leveraging structure for unsupervised learning from monocular videos. In: AAAI (2019)

    Google Scholar 

  7. Chen, Y., Schmid, C., Sminchisescu, C.: Self-supervised learning with geometric constraints in monocular video: Connecting flow, depth, and camera. In: ICCV, pp. 7063–7072 (2019)

    Google Scholar 

  8. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. TPAMI 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  9. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. arXiv preprint arXiv:1406.2283 (2014)

  10. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. TPAMI 40, 611–625 (2018)

    Article  Google Scholar 

  11. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  12. Izadi, S., et al.: Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In: UIST 2011 Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568. ACM, October 2011

    Google Scholar 

  13. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS 2017, Red Hook, NY, USA, pp. 5580–5590. Curran Associates Inc. (2017)

    Google Scholar 

  14. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: IROS (2013)

    Google Scholar 

  15. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations, December 2014

    Google Scholar 

  16. Kopf, J., Rong, X., Huang, J.B.: Robust consistent video depth estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  17. Li, X., Zhang, B., Sander, P.V., Liao, J.: Blind geometric distortion correction on images through deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4855–4864 (2019)

    Google Scholar 

  18. Luo, X., Huang, J., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation. In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) (2020)

    Google Scholar 

  19. López, M., Marí, R., Gargallo, P., Kuang, Y., Gonzalez-Jimenez, J., Haro, G.: Deep single image camera calibration with radial distortion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11809–11817 (2019). https://doi.org/10.1109/CVPR.2019.01209

  20. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5667–5675 (2018)

    Google Scholar 

  21. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  22. Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: CVPR (2015)

    Google Scholar 

  23. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: ICCV (2011)

    Google Scholar 

  24. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  25. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44, 1623–1637 (2020)

    Article  Google Scholar 

  26. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  27. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  28. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  29. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  30. Teed, Z., Deng, J.: DROID-SLAM: deep visual SLAM for monocular, stereo, and RGB-D cameras. In: NeurIPS (2021)

    Google Scholar 

  31. Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: estimating shape and motion with hierarchical priors. TPAMI 30(5), 878–892 (2008)

    Article  Google Scholar 

  32. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - a modern synthesis. In: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice (1999)

    Google Scholar 

  33. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  34. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991). https://doi.org/10.1109/34.88573

    Article  Google Scholar 

  35. Yang, N., von Stumberg, L., Wang, R., Cremers, D.: D3VO: deep depth, deep pose and deep uncertainty for monocular visual odometry. In: CVPR (2020)

    Google Scholar 

  36. Yu, F., Gallup, D.: 3d reconstruction from accidental motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3986–3993 (2014)

    Google Scholar 

  37. Zhang, Z., Cole, F., Tucker, R., Freeman, W.T., Dekel, T.: Consistent depth of moving objects in video. ACM Trans. Graphics (TOG) 40(4), 1–12 (2021)

    Google Scholar 

  38. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jian-bin Huang for providing the official results of RCVD [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhoutong Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 127 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Cole, F., Li, Z., Rubinstein, M., Snavely, N., Freeman, W.T. (2022). Structure and Motion from Casual Videos. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics