
DistPro: Searching A Fast Knowledge
Distillation Process via Meta Optimization

Xueqing Deng1,3, Dawei Sun2, Shawn Newsam3, and Peng Wang1

1 ByteDance Inc. {xueqingdeng,peng.wang}@bytedance.com
2 ECE, UIUC, {daweis2}@illinois.edu

3 EECS, UC Merced, {snewsam}@ucmerced.edu

Abstract. Recent Knowledge distillation (KD) studies show that differ-
ent manually designed schemes impact the learned results significantly.
Yet, in KD, automatically searching an optimal distillation scheme has
not yet been well explored. In this paper, we propose DistPro, a novel
framework which searches for an optimal KD process via differentiable
meta-learning. Specifically, given a pair of student and teacher networks,
DistPro first sets up a rich set of KD connection from the transmit-
ting layers of the teacher to the receiving layers of the student, and in
the meanwhile, various transforms are also proposed for comparing fea-
ture maps along its pathway for the distillation. Then, each combination
of a connection and a transform choice (pathway) is associated with a
stochastic weighting process which indicates its importance at every step
during the distillation. In the searching stage, the process can be effec-
tively learned through our proposed bi-level meta-optimization strategy.
In the distillation stage, DistPro adopts the learned processes for knowl-
edge distillation, which significantly improves the student accuracy es-
pecially when faster training is required. Lastly, we find the learned pro-
cesses can be generalized between similar tasks and networks. In our
experiments, DistPro produces state-of-the-art (SoTA) accuracy under
varying number of learning epochs on popular datasets, i.e. CIFAR100
and ImageNet, which demonstrate the effectiveness of our framework.

1 Introduction

Knowledge distillation (KD) is proposed to effectively transfer knowledge from
a well performing larger/teacher deep neural network (DNN) to a given smaller/
student network, where the learned student network often learns faster or per-
forms better than that with a vanilla training strategy solely using ground truths.

Since its first appearance in DNN learning [15], KD has achieved remark-
able success in training efficient models for image classification [49], image seg-
mentation [27], object detection [4], etc, contributing to its wide application in
various model deployment over mobile-phones or other low-power computing de-
vices [29]. Nowadays, KD has become a popular technique in industry to develop
distilled DNNs to deal with billions of data per-day.

To improve the distillation efficiency and accuracy, numerous handcrafted KD
design schemes have been proposed, e.g., designing different distillation losses

2 F. Author et al.

ResNet-50
Image: 3 x 224 x 224

256 x 56 x 56

256 x 56 x 56

…

Downscaling
2048 x 1 x 1

…512 x 28 x 28

512 x 28 x 28

…1024 x 14 x 14

1024 x 14 x 14

…2048 x 7 x 7

2048 x 7 x 7

Downscaling

Downscaling

Downscaling

MobileNet
Image: 3 x 224 x 224

128 x 56 x 56

128 x 56 x 56

…

Downscaling
1024 x 1 x 1

…256 x 28 x 28

256 x 28 x 28

…512 x 14 x 14

512 x 14 x 14

…1024 x 7 x 7

1024 x 7 x 7

Downscaling

Downscaling

Downscaling

R
es
_B
lo
ck

M
B
_B
lo
ck

feature ABF

feature ABF

feature ABF

feature ABF

feature ABF

(a) ReviewKD
ResNet-50

Image: 3 x 224 x 224

256 x 56 x 56

256 x 56 x 56

…

Downscaling
2048 x 1 x 1

…512 x 28 x 28

512 x 28 x 28

…1024 x 14 x 14

1024 x 14 x 14

…2048 x 7 x 7

2048 x 7 x 7
Downscaling

Downscaling

Downscaling

R
es
_B
lo
ck

MobileNet
Image: 3 x 224 x 224

128 x 56 x 56

128 x 56 x 56

…

1024 x 1 x 1

…256 x 28 x 28

256 x 28 x 28

…512 x 14 x 14

512 x 14 x 14

…1024 x 7 x 7

1024 x 7 x 7

Downscaling

Downscaling

Downscaling

M
B
_B
lo
ck

…

Tr
an
sf
or
m

Tr
an
sf
or
m

Tr
an
sf
or
m

Tr
an
sf
or
m

Tr
an
sf
or
m

(c) DistPro (ours)

weight

Distill processDownscaling

ResNet-50
Image: 3 x 224 x 224

256 x 56 x 56

256 x 56 x 56

…

Downscaling
2048 x 1 x 1

…512 x 28 x 28

512 x 28 x 28

…1024 x 14 x 14

1024 x 14 x 14

…2048 x 7 x 7

2048 x 7 x 7

Downscaling

Downscaling

Downscaling

MobileNet
Image: 3 x 224 x 224

128 x 56 x 56

128 x 56 x 56

…

1024 x 1 x 1

…256 x 28 x 28

256 x 28 x 28

…512 x 14 x 14

512 x 14 x 14

…1024 x 7 x 7

1024 x 7 x 7

Downscaling

Downscaling

Downscaling

R
es
_B
lo
ck

M
B
_B
lo
ck

(b) L2T-ww

Fig. 1: Comparisons of distillation methods for learning process between teacher
and student models. (a) Knowledge Review [5] proposes fixed sampled pathways
by enumerating different configurations. (b) L2T-ww [19], adopts a meta-learning
framework to learn a floating weight for each selected pathway. (c) Our frame-
work learns distillation process for each pathway.

at outputs [27,44], manually assigning intermediate features maps for additional
KD guidance [49,48]. However, recent studies [12,28,47] indicate that the effec-
tiveness of those proposed KD techniques is dependent on networks and tasks.
Some recent works propose to search some configurations to conclude a better
KD scheme. For instance, ReviewKD [5] (Fig. 1(a)) proposes to evaluate a subset
from a total of 16 pathways by enabling and disabling partial of them for image
classification task. It comes to the conclusion that partial pathways are always
redundant. However, our experimental results show that it does not hold to a
semantic segmentation task, and after conducting a research of the pathways, we
may obtain better results. L2T-ww [19] (Fig. 1(b)) takes a further step, it can
not only set up multiple distillation pathways between feature maps, but also
learn a floating weight for each pathway, which shows better performance than
fixed weight. This inspires us to explore deeper to find better KD schemes, and
motivated by the learning rate scheduler, as illustrated in Fig. 1(c), we brings in
the concept of distillation process for each pathway i, i.e. Ai = {αi

t}Tt=1,, where
T is the number of distillation steps. Thus, the importance of each pathway is
dynamic and changes along the distillation procedure, which we find is beneficial
in this paper.

However, searching a process is more difficult than finding a floating weight,
which includes T times more parameters. It is obviously non-practical to solve
them via a brute force way. For example, randomly drawing a sample process,
and performing a full training and validate of the network to evaluate its per-
formance. Thanks to bi-level meta-learning [11,26], we find our problems can be
formulated and tackled in a similar manner for each proposed pathway during
distillation. Such a framework not only skips the difficulty of random exploration
through a valid meta gradient, but also naturally provides soft weighting that
can be adopted to generate the process. Additionally, to effectively apply the
framework and avoid possible noisy gradients from the meta-training, we pro-
pose a proper normalization for each αt = [α0

t , ·, αN
t], where N is number of

Abbreviated paper title 3

pathways. We call our framework DistPro (Distillation Process). In our exper-
iments, we show that DistPro produces better results on various tasks, such
as classification with CIFAR100 [23] and ImageNet1K [8], segmentation with
CityScapes [7] and depth esimation with NYUv2 [33].

Finally, we find our learned process remains similar with minor variation
across different network architectures and tasks as long as it uses the same
proposed pathways and transforms, which indicates that the process can be gen-
eralized to new tasks. In practice, we transfer the process learned by CIFAR100
to ImageNet1K, and show that it improves over the baselines and accelerates
the distillation (2x faster than ReviewKD [5] as shown in Tab. 3).

In summary, our contributions are three-folds 1) We propose a meta-learning
framework for KD, i.e. DistPro, to efficiently learn an optimal process to perform
KD. 2) We verify DistPro over various configurations, architecture and task
settings, yielding significant improvement over other SoTA methods. 3) Through
the experiments, we find processes that can generalize across tasks and networks,
can potentially benefit KD in new tasks without additional searching. Our code
and implementation will be released upon the publication of this paper.

2 Related Works
Knowledge distillation. Starting under the name knowledge transfer [2,42],
knowledge distillation (KD) is later popularized owing to Hinton et.al [15] for
training efficient neural networks. Thereafter, it has been a popular field in
the past few years, in terms of designing KD losses [43,44], combination with
multiple tasks [34,9] or dealing with specific issues, eg few-shot learning [21],
long-tail recognition [45]. Here, we majorly highlight the works that are closely
related to ours, in order to locate our contributions.

According to a recent survey [12], current KD literature include multiple
knowledge types, eg response-based [32], feature-based [36,14] and relation-based [41]
knowledge. In addition, in terms of distillation method, we have offline [15], on-
line [3] and self-distillation [51]. For distillation algorithms, various distillation
criteria are proposed such as adversarial-based [43], attention-based [18], graph-
based [25] and lifelong distillation [6] etc. Finally, based on a certain task, KD
can also extend with different task-aware metrics, eg speech [34], NLP [9] etc. In
our principle, we hope all the surveyed KD schemes, ie knowledge types, methods
under certain task settings, can be pooled with a universal way to a search space,
in order to find the best distillation. While in this paper, we take the first step
towards this goal by exploring a sub-field in this whole space, which is already
a challenging problem to solve. Specifically, we adopt the setting of offline dis-
tillation with feature-based and response-based knowledge, where both network
responses and intermediate feature maps are adopted for KD. For KD method,
we use attention-based methods to compare feature responses, and apply the KD
model to vision tasks including classification, segmentation and depth estimation

Inside this field, knowledge review [5] and L2T-ww [19] are the most related
to our work. The former investigates the importance of a few pathways and pro-
pose a knowledge review mechanism with a novel connection pattern, ie, residual

4 F. Author et al.

Student:

Teacher:

...

Loss Loss Loss

𝑴!,!,! 𝑴!,!,# 𝑴!,!,$...

Loss Loss Loss

𝑴!,#,! 𝑴!,#,# 𝑴!,#,$...

Loss Loss Loss

𝑴%,%,! 𝑴%,%,# 𝑴%,%,$...

Student feature map Teacher feature map Transform block Loss term

𝑭!& 𝑭#& 𝑭%&

𝑭!' 𝑭#' 𝑭%'

Legend:

{𝛼'
!,!,!} {𝛼'

!,!,#} {𝛼'
!,!,$} {𝛼'

!,#,!} {𝛼'
!,#,#} {𝛼'

!,#,$} {𝛼'
%,%,!} {𝛼'

%,%,#} {𝛼'
%,%,$}

Fig. 2: Illustration of the search space. Two groups of feature maps are selected
from the student and the teacher. For each pair of feature maps Fs

j and F t
i ,

we insert N candidate transform blocks Mi,j,1,Mi,j,2, · · · ,Mi,j,N and get N loss

terms. For each loss term, a distill process Ai,j,k = {αi,j,k
t }Tt=1 is assigned.

learning framework. It provides SoTA results in several commonly comparison
benchmarks. The latter learns a fixed weights for a few intermediate pathways
for few-shot knowledge transfer. As shown in Fig. 1, DistPro finds a distillation
process. Therefore, we extend the search space. In addition, for dense prediction
tasks, one related work is IFVD [44], which proposes an intra-class feature vari-
ation comparison (IFVD). DistPro is free to extend to dense prediction tasks,
and it also obtain extra benefits after combined with IFVD.

Meta-learning for KD/hyperparameters. To automate the learning of a
KD scheme, we investigated a wide range of efficient meta-learning methods in
other fields that we might adopt. For examples, L2L [1] proposes to learn a hyper-
parameter scheduling scheme through a RNN-based meta-network. Franceschi
et.al [11] propose an gradient-based approach without external meta-networks.
Later, these meta-learning ideas have also been utilized in tasks of few-shot
learning (eg learning to reweight [35]), learning cross-task knowledge transfer(eg
learning to transfer [19]), and neural architecture search (NAS)(eg DARTS [26]).
Through these methods share similar framework, while it is critical to have
essential embedded domain knowledge and task-aware adjustment to make it
work. In our case, inspired by these methods, we majorly utilize the gradient-
based strategy due to its efficiency for KD scheme learning, and also first to
propose using the learnt process additional to the learnt importance factor.

Finally, knowledge distillation for NAS has also drawn significant attention
recently. For example, Liu et.al [28] try to find student models that are best for
distilling a given teacher, while Yao et.al [47] propose to search architectures
of both the student and the teacher models based on a certain distillation loss.
Though different from our scenario, i.e. fixed student-teacher architectures, it
raises another important question of how to find the Pareto optimal inside the
union space of architectures and KD schemes under certain resource constraint,
which we hope could inspire future researches.

Abbreviated paper title 5

3 Approach

In this section, we elaborate DistPro by first setting up the KD pathways with
intermediate features which constructs our search space, establishing the nota-
tions and definition of our KD scheme. Then, we derive the gradient, which is
used to generate our process for the KD scheme. At last, the overall algorithm
is presented.

3.1 KD with intermediate features

Numerous prior works [20,5] have demonstrated that intermediate feature maps
from neural network can benefit distilling to student neural network. Motivated
by this, we design our approach using feature maps. Let the student neural
network be S and the teacher neural network be T . Given an input example X,
the output of the student network is as follows

S(X) := SLs ◦ · · · ◦ S2 ◦ S1(X), (1)

where Si is the i-th layer of the neural network and Ls is the number of layers.
The k-th intermediate feature map Fs

k of the student is defined as follows,

Fs
k(X) := Sk ◦ · · · ◦ S2 ◦ S1(X), 1 ≤ k ≤ Ls.

Similarly, the feature map of the teacher is denoted by F t
k, 1 ≤ k ≤ Lte.

Knowledge can be distilled from a pathway between i-th feature map of the
teacher and j-th feature map of the student by penalizing the difference between
these two feature maps, ie, F t

i and Fs
j . Since the feature maps may come from

any stage of the network, they may not be in the same shape and thus not
directly comparable. Therefore, additional computation are required to align
these two feature maps to the same shape. To this end, a transform block is
added after Fs

j , which could be in any forms of differentiable computation. In
our experiments, the transform block consists of multiple convolution layers and
an interpolation layer to align the spatial and channel resolution of the feature
map. Denoting the transform block by M, then the loss term measuring the
difference between these two feature maps is as follows,

ℓ(Fs
j ,F t

i) := δ(M(Fs
j),F t

i),

where δ is the optional distance function, which could be L1 distance or L2
distance as used in [20], etc.

3.2 The Distillation Process

Now we will be able to build pathways to connect any feature layer of the teacher
to any layer of the student with appropriate transforms. However, as discussed
in Sec. 1, not all of these pathways are beneficial. This motivates us to design an
approach to find out the importance of each possible pathway by assigning an
importance factor for it. Different from the existing work [19,5], the importance

6 F. Author et al.

𝐿!"#$%

𝐿&#'

𝛼(𝐿!"#$%𝛼!!

Search Retrain

Labels

Labels

Labels

Gradient w.r.t. 𝑤 Gradient w.r.t. 𝛼

Student:

Teacher:

Collect 𝛼! for
𝑡 ≤ T"#$%&'

... Derive 𝛼(!
from𝒜

𝓐

Legend: Student feature map Teacher feature map

0 T!"#$%&

Fig. 3: Two phases of the proposed algorithm. In the search phase, student θ and
αt are computed. In the retrain phase, the learned process of A = {αt, 0 ≤ t ≤
Tsearch} is interpolated to be used for KD, and only θ is updated.

factor here is a process. Formally, a stochastic weight process Ai = {αi
t}Tt=1 is

associated with the pathway i, where T is the total learning steps. Here, αi
t

describes the importance factor at different learning step t.

Let Dtrain := {(Xi, yi)}|Dtrain|
i=1 and Dval := {(Xi, yi)}|Dval|

i=1 be the training
set and the validation set respectively, where yi is the label of sample Xi. We
assume that for each pair of feature maps, F t

i and Fs
j , we have N candidate pre-

defined transforms,Mi,j,1,Mi,j,2, · · · ,Mi,j,N . The connections together with the
transforms construct our search space as shown in Fig. 2.

We now define the search objective which consists of the optimizations of the
student network and A. The student network is trained on the training set with
a loss encoding the supervision from both the ground truth label and the neural
network. Specifically, denoting the parameters of the student and the transforms
by θ, the loss on the training set at learning step t is defined as follows,

Ltrain(θt, αt) =
1

|Dtrain|
∑

(X,y)∈Dtrain

(
δlabel(S(X), y)

+

Lte∑
i=1

Ls∑
j=1

N∑
k=1

αi,j,k
t δ

(
Mi,j,k

(
Fs

j (X)
)
,F t

i (X)
))

,

αi,j,k
t =

exp(α̃i,j,k
t)∑

i,j,k exp(α̃
i,j,k
t) + exp(g)

(2)

where αi,j,k
t ∈ RLte×Ls×N

≥0 are the importance factors at training step t and
δlabel is a distance function measuring difference between predictions and labels.
Here, αt = [α0,0,0

t , · · ·] controls the importance of all knowledge distill pathway
at training step t. For numerical stability and avoiding noisy gradients, we apply
a biased softmax normalization with parameter g = 1 to compute αt which is
validated from various normalization strategies in our experiments. This is a
commonly adopted trick in meta-learning for various tasks such as NAS [46,26]

Abbreviated paper title 7

Algorithm 1 DistPro

Input: Full train data set D; Pre-trained teacher; Initialization of α0, θ0; Number of
iterations Tsearch and T .
Output: Trained student.

1: Split D into Dtrain and Dval.
2: Let t = 0.
3: while t < Tsearch do
4: Compute αt with descending the gradient approximation in Eq. 5 and do nor-

malization.
5: Update θt by descending ∇θLtrain(θt;αt) in Eq. 2.
6: Push the current αt to A.
7: end while
8: Interpolate A with length of T .
9: Set Dtrain = D or use a new Dtrain in another task.
10: Reset t = 0.
11: while t < T do
12: Load the αt corresponding to the current t.
13: Update θ by descending ∇θLtrain(θ, αt).
14: end while

or few-shot learning [35,19]. More details about the discussion of normalization
methods can be found in the experimental section (Sec. 4.4).

Next, our goal is to find an optimal sampled process A∗ yielding best KD
results, where the validation set is often used to evaluate the performance of the
student trained on unseen inputs. To this end, following [26], the validation loss
is adopted to evaluate the quality of A, which is defined as follows,

Lval(θ) :=
1

|Dval|
∑

(X,y)∈Dval

δlabel(S(X), y).

Finally, we formulate the bi-level optimization problem over A and network
parameter θ as:

min
A

Lval (θ
∗(A))

s.t. θ∗(A) = arg fθ Ltrain(Θ,A).
(3)

where θ∗(A) is the parameters of the student neural network trained with the
loss process defined with A, i.e. Ltrain(Θ,A) = {Ltrain(θt, αt)}Tt=1. The ultimate
goal of the optimization is to find an A such that the loss on the validation set is
minimized.Note here, similar problem has been proposed in NAS [46,26] asking
for a fixed architecture, but our problem is different and harder, and can be
a reduced to theirs if we enforce all the value in A to be the same. However,
similarly, we are able to apply gradient-based method following the chain-rule
to solve this problem.

3.3 Learning the Process A
From the formulation in Eq. 3, directly solving the issue is intractable. Therefore,
we propose two assumptions to simplify the problem. First, smooth assumption

8 F. Author et al.

which means the next step of the process should be closed to previous one. This is
commonly adopted in DNN training with stochastic gradient decent (SGD) with
a learning rate scheduler [22]. Second, similar learning procedure assumption,
which means among different distillation training given a teacher/student pair,
at same step t, the student will have similar parameter θt. This assumption
allows us to search for A with a single training procedure, which also holds from
our experiments when batch size is relatively large (e.g. 512 for ImageNet).

Based on these assumptions, we let αt+1 = αt + γ∆(αt|θt), where γ controls
its changing ratio to be small. Then, we are able to adopt a greedy strategy
to break the original problem of Eq. 3 down to a sequence of single steps of
optimization, which can be defined as,

αt+1 = αt − γ∇αLval (θt+1(αt))

s.t θt+1(αt) = θt − ξ∇θLtrain(θt, αt)

where ξ is the learning rate of inner optimization for training student network. In
practice, the inner optimization can be solved with more sophisticated gradient-
based method, eg, gradient descent with momentum. In those cases, Eq. 4 has
to be modified accordingly, but all the following analysis still applies.

Next, we apply the chain rule to Eq. 4 and get

∇αLval (θt − ξ∇θLtrain(θt, αt)) = −ξ∇2
α,θLtrain(θt, αt)∇θLval(θt+1), (4)

However, the above expression contains second-order derivatives, which is still
computational expensive. Next, we approximate this second-order derivative
with finite difference as introduced in [26]. Let ϵ be a small positive scalar and
define the notation θ± = θ ± ϵ∇θLval(θt+1). Then, we have

∇2
α,θLtrain(θt, αt)∇θLval(θt+1) =

∇αLtrain(θ
+, αt)−∇αLtrain(θ

−, αt)

2ϵ
. (5)

Finally, we set an initial value α0 = 1 and launch the greedy learning procedure.
Once learned, we push all computed αt with T steps to a sequence, which is
served as a sample of learned stochastic distillation process A, and it can be
used for retraining the student network with KD in the same or similar tasks.

3.4 Acceleration and adopting A for KD.

Now let us take a closer look at the approximation. To evaluate the expression in
Eq. 5, the following items have to be computed. First, computing θt+1 requires
a forward and backward pass of the student, and a forward pass of the teacher.
Then, computing θ± requires another forward and backward pass of the student.
Finally, computing ∇αLtrain(θ

±, αt) requires two forward passes of the student.
In conclusion, evaluating the approximated gradient in Eq. 5 entails one forward
pass of the teacher, and four forward passes and two backward passes of the
student in total. This is a time consuming process, especially when the required
KD learning epoch is large, e.g. ≥ 100.

In meta-learning NAS literature, to avoid 2nd order approximation, researchers
commonly adopt 1st order training [46,26] solely based on training loss. How-
ever, this is not practical in our case since the hyperparameters are defined over

Abbreviated paper title 9

Co
nv

ol
ut

io
n

Ba
tc

h
N

or
m

al
iza

tio
n

Se
lf

At
te

nt
io

n

In
te

rp
ol

at
e

Co
nv

ol
ut

io
n

Ba
tc

h
N

or
m

al
iza

tio
n

…

× 𝑁𝑁

Co
nv

ol
ut

io
n

Ba
tc

h
N

or
m

al
iza

tio
n

(a) The architecture of the transform
block. The self-attention block is illus-
trated in Fig. 4b.

Se
lf

At
te

nt
io

n

⊗Convolution

Input feature map Attention map Output feature map

Multiplication

(b) The architecture of the self-attention
block. A convolution layer is applied to
the input feature map to generate a 1-
channel attention map. Then the input fea-
ture map is multiplied with the attention
map.

Fig. 4: Transform blocks

training loss. 1st order gradient over αt will simply drive all value to 0. There-
fore, in our case, we choose to reduce the learning epochs of A to Tsearch, which
is much smaller than T , and then expand it to a sequence with length T using
linear interpolation. The choices of Tsearch can be dynamically adjusted based
on the dataset size, which will be elaborated in Sec. 4.

Additionally, since we have more pathways than other KD strategy [5], there-
fore, the loss computation cost can not be ignored. To reduce the cost, at step t,
we use a clip function to all α̃t in Eq. 2 with a threshold τ = 0.5, and drop corre-
sponding computation when α̃t ≤ τ . This can save us 60% of loss computational
cost in average, resulting in comparable KD time with our baselines.

In summary, the overall DistPro process is presented in Alg. 1, where two
phases of the algorithm are explained in order. The first phase of the algorithm
is for searching the scheme A. To this end, αt and θt are computed alternately.
The αt obtained in each step is stored for future usage. The Second phase of
the algorithm is for retraining the neural network with all the available training
data and the searched A.

4 Experiments

In this section, we evaluate the proposed approach on several benchmark tasks
including image classification, semantic segmentation, and depth estimation. For
image classification, we consider the popularly used dataset CIFAR100 and
ImageNet1K. For semantic segmentation and depth estimation, we consider
CityScapes [7] and NYUv2 [33] respectively. To make fair comparison, we use
exactly the same training setting and hyper-parameters for all the methods, in-
cluding data pre-processing, learning rate scheduler, number of training epochs,
batch size, etc. We first demonstrate the effectiveness of DistPro for classifica-
tion on CIFAR100. Then, we provide more analysis with a larger-scale dataset,
ImageNet1K. At last, we show the results of dense prection tasks and ablation
study. All experiments are performed with Tesla-V100 GPUs.

10 F. Author et al.

Teacher WRN-40-2 WRN-40-2 ResNet32x4 ResNet32x4 ResNet56 ResNet110
Student WRN-16-2 ShuffleNet-v1 ShuffleNet-v1 ShuffleNet-v2 ResNet20 ResNet32

Teacher Acc. 76.51 76.51 79.45 79.45 73.28 74.13
Student Acc. 73.26 (0.050) 70.50 (0.360) 70.50 (0.360) 71.82 (0.062) 69.06 (0.052) 71.14 (0.061)

L2T-ww+ [19] - - 76.35 77.39 - -
ReviewKD+ [5] 76.20 (0.030) 77.14 (0.015) 76.41 (0.063) 77.37 (0.069) 71.89 (0.056) 73.16 (0.029)
Equally weighted 75.50 (0.010) 74.28 (0.085) 73.54 (0.120) 74.39 (0.119) 70.89 (0.065) 73.19 (0.052)
Use αT 76.25 (0.034) 77.19 (0.074) 77.15 (0.043) 76.64 (1.335) 71.24 (0.014) 73.58 (0.012)
DistPro 76.36 (0.005) 77.24 (0.063) 77.18 (0.047) 77.54 (0.059) 72.03 (0.022) 73.74 (0.011)

Table 1: Results on CIFAR100. Results are averaged over 5 runs. Variances are in
the parentheses. “+” represents our reproduced results. In “Equally weighted”,
we do not use the searched α in the retrain phase. Instead, each element of α
is uniformly set to 1/L, where L is the length of α. In “Use αT ”, the finally
converged α is used at each iteration of the retrain phase.

4.1 Classification on CIFAR100

Implementation details We follow the same data pre-processing approach as
in [5]. Similarly, we select a group of representative network architectures includ-
ing ResNet [13], WideResNet [50], MobileNet [17,37], and ShuffleNet [52,31]. We
follow the same training setting in [5] for distillation. We train the models for
240 epochs and decay the learning rate by 0.1 for every 30 epochs after the first
150 epochs. Batch size is 128 for all the models. We train the models with the
same setting five times and report the mean and variance of the accuracy on the
testing set, to demonstrate the improvements are significant. As mentioned, be-
fore distillation training, we need to obtain the distillation process by searching
described as below.

To search the process A, we randomly split the original training set into two
subdatasets, 80% of the images for training and 20% for validating. We run the
search for 40 epochs and decay the learning rate for θ (parameters of the student)
by 0.1 at epoch 10, 20, and 30. The learning rate for α is set to 0.05. Following
the settings in [5], we did not use all feature maps for knowledge distillation
but only the ones after each downsampling stage. Transform blocks are used to
transform the student feature map. Fig. 4a shows the block architecture. The
size of the pathways is 27, as we use 3 transform blocks and 9 connections. To
make fair comparison, we follow the same HCL distillation loss in [5]. Once the
the process is obtained, in order to align the searched distillation process, linear
interpolation is used to expand the process of A from 40 epoch (search stage)
to 240 epochs (retrain stage) during KD.
Results The quantitative results are summarized in Table 1. First two rows
show the architecture of teacher and student network and their accuracy with-
out distillation correspondingly. In the line of “ReviewKD+”, we list the results
reproduced using the code released by the author 4, notice it could be a bit differ-
ent with reported due to randomness in data loading. To demonstrate learning
the α is essential, we first assign equally weighted α to all the pathways. As
shown in line “Equally weighted”, the results are worse than ReviewKD, indi-
cating the selected pathways from ReviewKD are useful. For ablation, we first

4 https://github.com/dvlab-research/ReviewKD

https://github.com/dvlab-research/ReviewKD

Abbreviated paper title 11

Fig. 5: Comparison study on fast
distillation on ImageNet1K.

Network ReviewKD[5] DistPro(Ours)

Top-1
MobileNet

72.56 72.54
#Epochs 100 50

Top-1
ResNet18

71.61 71.59
#Epochs 100 65

Top-1
DeiT

73.44 73.41
#Epochs 150 100

Table 2: Comparison study on numbers of
distillation epochs to achieve same top-1 ac-
curacy on ImageNet1K (lower the better).

adopt the learned αT at the end of the process. As shown in “Use αT ”, it outper-
forms ReviewKD in multiple settings. The last row shows the results adopting
the learned process A, which outperforms ReviewKD significantly based on our
derived variations.

4.2 Classification on ImageNet1K

Implementation Details We follow the search strategy used in CIFAR100 and
training configurations in [5] with a batch size of 512 (4GPUs are used). The se-
lected student/teacher networks are MobileNet/ResNet50, ResNet18/ResNet34
and DeiT-tiny [40]/ViT-B [10]. We adopt a different architecture of transform
block for DeiT. At searching stage, we search A with Tiny-ImageNet [24] for
20 epochs. We adopt cosine lr scheduler for learning the student network. For
search space, 1 transform block is used, while we consider 5 feature maps in the
networks, and build 15 pathways by removing some pathways following [5] due
to limited GPU memory. At KD stage, we train the network for various epochs
with initial learning rate of 0.1, and cosine scheduler. It takes 4 GPU hours for
searching and 80 GPU hours for distill with 100 epochs. More details (ViT
transform block, selected pathways etc) can be found in supplementary due to
limited space.
Fast Distillation. From prior works [39], KD is used to accelerate the network
learning especially with large dataset. This is due to the fact that its accuracy
can be increased using only Ground Truth labels if the network is trained with a
large number of epochs[16]. Previous works [5] only check the results stopping at
100 epochs. Here, we argue that it is also important to evaluate the results with
less training cost, which is another important index for evaluating KD methods.
This will be practically useful for the applications requiring fast learning of the
network.

Here, we show DistPro reaches much better trade-off between training cost
and accuracy. In Fig. 5, DistPro with different network architectures (red curves)
outperforms ReviewKD with the same setting (dashed blue curves) at all pro-
posed training epochs. The performance gain is larger when less training cost
is required, e.g. it is 3.22% on MobileNet with 10 epochs (65.25% vs 62.03%),

12 F. Author et al.

Setting Search dataset Retrain dataset Teacher Student Top-1 (%)

(a)
Tiny-ImageNet ImageNet1K ResNet50 MobileNet 73.26

CIFAR100 ImageNet1K ResNet50 MobileNet 73.20

Setting Search teacher Search student Retrain teacher Retran student Top-1 (%)

(b)
ResNet34 ResNet18 ResNet34 ResNet18 71.89
ResNet50 MobileNet ResNet34 ResNet18 71.87

Table 3: Results of transferring searched A cross search-retrain datasets and
search-retrain networks performed on ImageNet1K with 100 epochs. Top-1 ac-
curacy on validation set is reported.

while decreased to 0.14% with 100 epochs, which is still a decent improvement.
Similar results are observed with ResNet18. Note here for all results with var-
ious epochs, we adopt the same learning process A, where the time cost can
be ignored comparing to that of KD. In Tab. 2, we show the number of epochs
saved by DistPro when achieving the same accuracy using ReviewKD [5]. For
instance, in training MobileNet, DistPro only use 50 epochs to achieve 72.54%,
which is comparable to ReviewKD trained with 100 epochs (72.56%), yielding
2x acceleration. Similar acceleration is also observed with ResNet18 and DeiT.

Transfer A Here, we study whether learned A can be transferred across
datasets and similar architectures. Tab. 3 shows the results. In setting (a), we
resize the image in CIFAR100 to 224 × 224, and do the process search on CI-
FAR100, where the search cost is only 2 GPU hours. As shown at last column,
it only downgrades accuracy by 0.06%, which is comparable with full results
searched with ImageNet, demonstrating the process could be transferred across
datasets. In setting (b), we adopt the searched process with student/teacher
networks of MobileNet/ResNet50 to networks of ResNet18/ResNet34 since they
have same feature pathways at similar corresponding layers. As shown, the re-
sults are closed, demonstrating the process could be transferred when similar
pathways exist.

Best Results. Finally, Tab.4 shows the quantitative results comparing with
various SoTA baselines. As mentioned, we adopt cosine scheduler while Re-
viewKD [5] adopts step scheduler. To make it fair, we retrain ReviewKD with
cosine scheduler, and list the results in the column of ReviewKD*. As shown in
the table, for three distillation settings, DistPro outperform the existing meth-

Setting Acc (%) Teacher Student OFD[14] LONDON[38] SCKD[53] ReviewKD[5] ReviewKD* DistPro

(a)
Top1 76.16 68.87 71.25 72.36 72.4 72.56 73.12 73.26
Top5 93.86 88.76 90.34 91.03 - 91.00 91.22 91.27

(b)
Top1 73.31 69.75 70.81 - 71.3 71.61 71.76 71.89
Top5 91.42 89.07 89.98 - - 90.51 90.67 90.76

(c) Top-1 85.1 73.41 - - - - 73.44 73.51

Table 4: Comparison study on ImageNet1K. Settings are (a) teacher: ResNet-
50, student: MobileNet; (b) teacher: ResNet-34, student: ResNet-18; (c) teacher:
ViT-B, student: DeiT-tiny. ReviewKD* denotes our reproduced experimental
results with cosine learning rate scheduler.

Abbreviated paper title 13

Teacher ResNet101
Student MobileNet-v2

Baseline 66.92 (0.00721)
IFVD [44] 68.31 (0.00264)
SCKD [53] 68.25 (0.00307)
+ReviewKD [5] 69.03 (0.00373)
+Equally Weighted α 68.49 (0.00793)

+DistPro 69.12 (0.00462)

Table 5: mIoU (%) on
CityScapes (higher the
better). Results are
averaged over 5 runs.
Standard deviation in the
parentheses.

Teacher ResNet50
Student ResNet18

Baseline 0.2032
KD 0.2045
ReviewKD [5] 0.1983
Equally Weighted α 0.2030

DistPro 0.1972

Table 6: Estimation error
on NYUv2 (lower the bet-
ter).

Normalization Acc.

softmax(concat(α̃, 1)) 79.78
softmax(α̃) 79.41

α̃
∥α̃∥1+1

79.47
α̃

∥α̃∥1
79.20

sigmoid(α̃) 78.80

Table 7: Performance of
different normalization
methods on CIFRA-
100. concat(α̃, 1) con-
catenate α̃ with a scalar
1. Results are averaged
over 5 runs.

ods achieving top-1 accuracy of 73.26% for MobileNet, 71.89% for ResNet18 and
73.51% for DeiT respectively, yielding new SoTA results for all these networks.

4.3 Dense prediction tasks
CityScapes is a popular semantic segmentation dataset with pixel class la-
bels [7]. We compare to a SoTA segmentation KD method called IFVD [44] and
adopt their released code 5. IFVD is a response-based KD method, therefore
can be combined with feature-based distillation method including ReviewKD
and DistPro, which are shown as “+ReviewKD” and “+DistPro” respectively
in Table 5. We adopt student of MobileNet-v2 to compare against another SoTA
results from SCKD [53]. Please note here for simplicity and numerical stability,
we disable adversarial loss of the original IFVD. From the table, “+DistPro”
outperforms all competing methods.
NYUv2 is a dataset widely used for depth estimation [33]. The experiments
are based on the code 6 released in S2D [30]. We compare DistPro with the
plain KD, where we treat teacher output as ground truth, and ReviewKD with
intermediate feature maps. Root mean squared errors (RMSE) are summarized
in Table 6, and it shows that DistPro is also beneficial. In the future, we will
explore more to verify its generalization ability.

4.4 Ablation study
Is it always beneficial to transfer knowledge only from lower-level
feature maps to higher-level feature maps? In Table 6 of [5], the authors
conducted a group of experiments on CIFAR100, which show that only pathways
from lower-level feature maps in teacher to higher-level feature maps in student
are beneficial. However, we conducted similar experiments on CityScapes, the
results did not support this claim. Specifically, using pathways from the last
feature map to the first three feature maps results in mIoU 73.9% on ResNet18,
while using pathways from all lower-level feature maps to higher level ones as
in [5] results in 73.5%. This suggests that the optimal teaching scheme need to
be searched w.r.t larger space. Also, the results in Table 5 also show that our
searched process is better than the hand-crafted one.

5 https://github.com/YukangWang/IFVD
6 https://github.com/fangchangma/sparse-to-dense

14 F. Author et al.

1, 1, 1

1, 1, 2

1, 1, 3

1, 2, 1

1, 2, 2

1, 2, 3

1, 3, 1

1, 3, 2

0 200 400 600 800
iterations

1, 3, 3

2, 1, 1

2, 1, 2

2, 1, 3

2, 2, 1

2, 2, 2

2, 2, 3

2, 3, 1

2, 3, 2

0 200 400 600 800
iterations

2, 3, 3

3, 1, 1

3, 1, 2

3, 1, 3

3, 2, 1

3, 2, 2

3, 2, 3

3, 3, 1

3, 3, 2

0 200 400 600 800
iterations

3, 3, 3

Fig. 6: Searched distillation process performed on CIFAR100 with WRN-40-2 as
teacher and WRN-16-2 as student. x-axis is the number of iterations. The left
image contains α[1, :, :], i.e., all the elements corresponding to the lowest-level
feature map of the teacher. The middle one corresponds to α[2, :, :], and the right
one corresponds to α[3, :, :].

Intuition of process A In Figure 6, we show how the learned sample of A
changes with time in search stage of distilling WRN-40-2 to WRN-16-2. Sim-
ilar observations are found in other settings. The figure indicates that at the
early stage of the training, the optimized teaching scheme focuses on transfer-
ring knowledge from low-level feature maps of the teacher to the student. As
training goes, the optimized teaching scheme gradually moves on to the higher-
level feature maps of the teacher. Intuitively, high-level feature maps encode
highly abstracted information of the input image and thus are harder to learn
from compared to the low-level feature maps. DistPro is able to automatically
find a teaching scheme to make use of this intuition.
Normalization of αt As mentioned before, we apply normalization to αt ((2))
for numerical stability after 2nd gradient approximation. In this study, we evalu-
ate several normalization strategies. Let the unnormalized parameters be α̃t and
the normalized ones be αt. In the following, we view αt as a vector of length L.
The experiments are conducted on CIFAR100 with WRN-28-4 as teacher and
WRN-16-4 as student. The results are shown in Table 7, and the proposed bi-
ased softmax normalization outperforms others. Intuitively, due to the appended
scalar 1, the value of α̃t can be compared against 1, and a constant value yields
a label smoothing [32] effect for the distribution.

5 Conclusion

In this paper, we take a step towards the problem of finding the optimal KD
scheme given a pair of wanted student network and learned teacher network
under a vision task. Specifically, we setup a searching space by building path-
ways between the two networks and assigning a stochastic distillation process
along each path pathway. We propose a meta-learning framework, DistPro, to
learn these processes efficiently, and find effective ones to perform KD with in-
termediate features. We demonstrate its benefits over image classification, and
dense predictions such as image segmentation and depth estimation. We hope
our method could inspire the field of KD to further expand the scope, and its
cooperation with other techniques such as NAS and hyper-parameter tuning.

Abbreviated paper title 15

References

1. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Advances in neural information processing systems. pp. 3981–3989
(2016)

2. Buciluă, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 535–541 (2006)

3. Chen, D., Mei, J.P., Wang, C., Feng, Y., Chen, C.: Online knowledge distillation
with diverse peers. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. vol. 34, pp. 3430–3437 (2020)

4. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object
detection models with knowledge distillation. Advances in neural information pro-
cessing systems 30 (2017)

5. Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 5008–5017 (2021)

6. Chen, Z., Liu, B.: Lifelong machine learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning 12(3), 1–207 (2018)

7. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR09 (2009)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

10. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

11. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming
for hyperparameter optimization and meta-learning. In: International Conference
on Machine Learning. pp. 1568–1577. PMLR (2018)

12. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. Inter-
national Journal of Computer Vision 129(6), 1789–1819 (2021)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

14. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul
of feature distillation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 1921–1930 (2019)

15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network
(2015)

16. Hoffer, E., Hubara, I., Soudry, D.: Train longer, generalize better: closing the gen-
eralization gap in large batch training of neural networks. Advances in neural
information processing systems 30 (2017)

16 F. Author et al.

17. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

18. Huang, Z., Wang, N.: Like what you like: Knowledge distill via neuron selectivity
transfer. arXiv preprint arXiv:1707.01219 (2017)

19. Jang, Y., Lee, H., Hwang, S.J., Shin, J.: Learning what and where to transfer. In:
International Conference on Machine Learning. pp. 3030–3039. PMLR (2019)

20. Ji, M., Heo, B., Park, S.: Show, attend and distill: Knowledge distillation via
attention-based feature matching. In: Proceedings of the AAAI Conference on Ar-
tificial Intelligence. vol. 35, pp. 7945–7952 (2021)

21. Kimura, A., Ghahramani, Z., Takeuchi, K., Iwata, T., Ueda, N.: Few-shot learning
of neural networks from scratch by pseudo example optimization. arXiv preprint
arXiv:1802.03039 (2018)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

23. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

24. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3
(2015)

25. Lee, S., Song, B.C.: Graph-based knowledge distillation by multi-head attention
network. arXiv preprint arXiv:1907.02226 (2019)

26. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. In: In-
ternational Conference on Learning Representations (2019)

27. Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge dis-
tillation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 2604–2613 (2019)

28. Liu, Y., Jia, X., Tan, M., Vemulapalli, R., Zhu, Y., Green, B., Wang, X.: Search to
distill: Pearls are everywhere but not the eyes. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7539–7548 (2020)

29. Lyu, L., Chen, C.H.: Differentially private knowledge distillation for mobile analyt-
ics. In: Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval. pp. 1809–1812 (2020)

30. Ma, F., Karaman, S.: Sparse-to-dense: Depth prediction from sparse depth sam-
ples and a single image. In: 2018 IEEE international conference on robotics and
automation (ICRA). pp. 4796–4803. IEEE (2018)

31. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European conference on
computer vision (ECCV). pp. 116–131 (2018)

32. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? Advances
in neural information processing systems 32 (2019)

33. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and sup-
port inference from rgbd images. In: ECCV (2012)

34. Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K.,
Driessche, G., Lockhart, E., Cobo, L., Stimberg, F., et al.: Parallel wavenet: Fast
high-fidelity speech synthesis. In: International conference on machine learning. pp.
3918–3926. PMLR (2018)

35. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust
deep learning. In: International Conference on Machine Learning. pp. 4334–4343.
PMLR (2018)

36. Romero, A., Ballas, N., Kahou, S., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. CoRR abs/1412.6550 (2015)

Abbreviated paper title 17

37. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018)

38. Shang, Y., Duan, B., Zong, Z., Nie, L., Yan, Y.: Lipschitz continuity guided knowl-
edge distillation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 10675–10684 (2021)

39. Shen, Z., Xing, E.: A fast knowledge distillation framework for visual recognition.
arXiv preprint arXiv:2112.01528 (2021)

40. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021)

41. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 1365–1374
(2019)

42. Urner, R., Shalev-Shwartz, S., Ben-David, S.: Access to unlabeled data can speed
up prediction time. In: ICML (2011)

43. Wang, X., Zhang, R., Sun, Y., Qi, J.: Kdgan: Knowledge distillation with generative
adversarial networks. In: NeurIPS. pp. 783–794 (2018)

44. Wang, Y., Zhou, W., Jiang, T., Bai, X., Xu, Y.: Intra-class feature variation distil-
lation for semantic segmentation. In: European Conference on Computer Vision.
pp. 346–362. Springer (2020)

45. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: Self-paced knowledge
distillation for long-tailed classification. In: European Conference on Computer
Vision. pp. 247–263. Springer (2020)

46. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture
search. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=rylqooRqK7

47. Yao, L., Pi, R., Xu, H., Zhang, W., Li, Z., Zhang, T.: Joint-detnas: Upgrade
your detector with nas, pruning and dynamic distillation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10175–
10184 (2021)

48. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4133–4141 (2017)

49. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928 (2016)

50. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

51. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher:
Improve the performance of convolutional neural networks via self distillation. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
3713–3722 (2019)

52. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 6848–6856 (2018)

53. Zhu, Y., Wang, Y.: Student customized knowledge distillation: Bridging the gap
between student and teacher. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 5057–5066 (2021)

https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7

	DistPro: Searching A Fast Knowledge Distillation Process via Meta Optimization

