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Abstract. Open compound domain adaptation (OCDA) considers the
target domain as the compound of multiple unknown homogeneous sub-
domains. The goal of OCDA is to minimize the domain gap between
the labeled source domain and the unlabeled compound target domain,
which benefits the model generalization to the unseen domains. Current
OCDA for semantic segmentation methods adopt manual domain separa-
tion and employ a single model to simultaneously adapt to all the target
subdomains. However, adapting to a target subdomain might hinder the
model from adapting to other dissimilar target subdomains, which leads
to limited performance. In this work, we introduce a multi-teacher frame-
work with bidirectional photometric mixing to separately adapt to every
target subdomain. First, we present an automatic domain separation to
find the optimal number of subdomains. On this basis, we propose a
multi-teacher framework in which each teacher model uses bidirectional
photometric mixing to adapt to one target subdomain. Furthermore,
we conduct an adaptive distillation to learn a student model and apply
consistency regularization to improve the student generalization. Exper-
imental results on benchmark datasets show the efficacy of the proposed
approach for both the compound domain and the open domains against
existing state-of-the-art approaches.

Keywords: Domain Adaptation, Open Compound Domain Adapta-
tion, Semantic Segmentation, Multi-teacher Distillation

1 Introduction

Semantic segmentation is a fundamental task in finding applications to many
problems, including robotics [34], autonomous driving [35], and medical diagno-
sis [16]. Recently, deep learning-based semantic segmentation approaches [12,36,35]
have achieved remarkable progress. However, their effectiveness and generaliza-
tion ability require a large amount of pixel-wised annotated data which are ex-
pensive to collect. To reduce the cost of data collection and annotation, numerous
synthetic datasets have been proposed [21,22]. However, the models trained on
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synthetic data tend to poorly generalize to real images. To cope with this is-
sue, unsupervised domain adaptation (UDA) methods [26,28,37,17,25,33] have
proposed to align the domain gap between the source and the target domain.
Despite the efficacy of UDA techniques, most of these works rely on the strong
assumption that the target data is composed of a single homogeneous domain.
This assumption is often violated in real-world scenarios. As an illustration in
autonomous driving, the target data will likely be composed of various subdo-
mains such as night, snow, rain, etc. Therefore, directly applying the current
UDA approaches to these target data might deliver limited performance. This
paper focuses on the challenging problem of open compound domain adaptation
(OCDA) in semantic segmentation where the target domain is unlabeled and
contains multiple homogeneous subdomains. The goal of OCDA is to adapt a
model to a compound target domain and to further enhance the model general-
ization to the unseen domains.

To perform OCDA, Liu et al. [13] propose an easy-to-hard curriculum learn-
ing strategy, where samples closer to the source domain will be chosen first for
adaptation. However, it does not fully take advantage of the subdomain bound-
aries information in the compound target domain. To explicitly consider this in-
formation, current OCDA works [8,19] propose to separate the target compound
domain into multiple subdomains based on image style information. Existing
works use a manual domain separation method; they also employ a single model
to simultaneously adapt to all the target subdomain. However, adapting to a tar-
get subdomain might hinder the model from adapting to other dissimilar target
subdomains, which leads to limited performance. We propose a multi-teacher
framework with bidirectional photometric mixing for open compound domain
adaptation in semantic segmentation to tackle this issue. First, we propose au-
tomatic domain separation to find the optimal number of subdomains and split
the target compound domain. Then, we present a multi-teacher framework in
which each teacher model uses bidirectional photometric mixing to adapt to
one target subdomain. On this basis, we conduct adaptive distillation to learn
a student model and apply a fast and short online updating using consistency
regularization to improve the student’s generalization to the open domains. We
evaluate our approach on the benchmark datasets. The proposed approach out-
performs all the existing state-of-the-art OCDA techniques and the latest UDA
techniques for domain adaptation and domain generalization task.
The Contribution of This Work. (1) we propose automatic domain separa-
tion to find the optimal number of target subdomains; (2) we present a multi-
teacher framework with bidirectional photometric mixing to reduce the domain
gaps between the source domain and every target subdomain separately; (3)
we further conduct an adaptive distillation to learn a student model and ap-
ply consistency regularization to improve the student generalization to the open
domains.
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2 Related Work

Unsupervised Domain Adaptation. Unsupervised domain adaptation (UDA)
techniques are used to reduce the expensive cost of pixel-wise labeling tasks
like semantic segmentation. In UDA, adversarial learning is used actively to
align input-level style using image translation, feature distribution, or struc-
tured output [27,10,28,17,29]. Alternatively, self-training approaches [2,33,25,37]
have also recently demonstrated compelling performance in this context. While
these works have shown significant improvement, adopting those works directly
for practical usage shows limitations due to its restricted setting dealing with
only single source and single target. Despite the improvement provided by UDA
techniques, their applicability to real scenarios remains restricted by the implicit
assumption that the target data contains images from a single distribution.
Domain Generalization. The purpose of domain generalization (DG) is to
train a model – solely using source domain data – such that it can perform re-
liable predictions on unseen domain. While DG is an essential problem, a few
works have attempted to address this problem in the task of semantic segmen-
tation. DG for semantic segmentation shows two main streams: augmentation-
based and network-based approaches. The augmentation-based approaches [30,11]
propose to significantly augment the training data via an additional style dataset
to learn domain-invariant representation. The network-based approaches [18,4]
attempt to modify the structure of the network to minimize domain-specific in-
formation (such as colors or styles) such that the resulting model mainly focuses
on the content-specific information. Even though DG for semantic segmentation
has achieve obvious progress, their performance is inevitably lower than sev-
eral UDA methods due to the absence of the target images, which is capable of
providing abundant domain-specific information.
Open Compound Domain Adaptation. Liu et al. [13] firstly suggests Open
Compound Domain Adaptation (OCDA) that handles unlabeled compound het-
erogeneous target domain and unseen open domain. While Liu et al. [13] pro-
pose a curriculum learning strategy, it fails to consider the specific information
of each target subdomain. Current OCDA works [8,19] propose to separate the
compound target domain into multiple subdomains to handle the intra-domain
gaps. Gong et al. [8] adopt domain-specific batch normalization for adaptation.
Park et al. [19] utilize GAN-based image translation and adversarial training to
exploit domain invariant features from multiple subdomains.

3 Generating Optimal Subdomains

3.1 Automatic Domain Separation

Our work assumes that the domain-specific property of images comes from their
styles. Existing works adopt a predefined parameter to decide the number of
subdomains, which might lead to a nonoptimal domain adaptation performance;
furthermore, they rely on a pre-trained CNN-based encoder to extract the style
information for the subdomain discovery. However, we propose an automatic



4 F. Pan et al.

Fig. 1: The part of generating optimal subdomains consists of automatic domain
separation (ADS) and subdomain style purification (SSP). In ADS, we adopt
Silhouette Coefficient [23] to find the optimal number of subdomains k∗. In SSP,

we calculate mean of histogram H̃c
m for the mth target subdomain Tm according

to Equation 4, and the purified subdomain is denoted as T̃m.

domain separation (ADS) to effectively separate the target domain using the
distribution of pixel values of the target images. The proposed ADS is capable
of predicting the optimal number of subdomains without relying on any prede-
fined parameters and extracting the image style information without relying on
any pre-trained CNN models. We denote the source domain as S, and the unla-
beled compound target domain as T . We also assume compound target domain
contains k latent subdomains: {T1, . . . , Tk}, which lack of clear prior knowledge
to distinguish themselves. The goal of ADS is to find the optimal number of
subdomains k∗ and separate T into several subdomains accordingly.

Current work [14] suggests a simple yet effective style translation method
by matching the distribution of pixel values on LAB color space. Thus, we
adopt LAB space into ADS to extract the style information of the target image.
Given a target RGB image xt ∈ T as input, we convert it into LAB color space
rgb2lab(xt). The three channels in LAB color space are represented as l, a, and b.
Then, we compute the histograms of the pixel values for all three channels in LAB
color space: H l(xt), H

a(xt), and Hb(xt). The histograms are concatenated and
represented as the style information of xt. Let s(xt) = H l(xt)

⌢
Ha(xt)

⌢
Hb(xt)

denote the concatenated histograms of xt, and we take s(xt) as input to ADS
for domain separation. However, most existing clustering algorithms require a
hyperparameter to determine the number of clusters. Directly applying a naive
clustering might lead to a nonoptimal adaptation performance. Thus, we pro-
pose to find the optimal number k∗ of the subdomains using Silhouette Coeffi-
cient (SC) [23]. Suppose the target domain T is separated into k subdomains,
{T1, . . . , Tk}. For each target image xt, we denote γ(xt) as the average distance
between xt and all other target images in the target subdomain to which xt
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belongs. Additionally, we use δ(xt) to represent the minimum average distance
from xt to all other target subdomains to which xt does not belong. Let us
assume xt belongs to the mth target subdomain Tm, then γ(xt) and δ(xt) are
written as

γ(xt) =

∑
xt

′∈Tm,xt
′ ̸=xt

L(s(xt
′), s(xt))

|Tm| − 1
,

δ(xt) = min
Tn:1≤n≤k,n ̸=m

{∑
xt

′∈Tn
L(s(xt

′), s(xt))

|Tn|

}
,

(1)

where L(s(xt
′), s(xt)) represents the euclidean distance of s(xt

′) and s(xt), and
|Tm| is the number of the target images in Tm. The SC score for k number of
the target subdomains is given by

SC(k) =
∑
xt∈T

δ(xt)− γ(xt)

max(γ(xt), δ(xt))
. (2)

Hence, the goal of the proposed ADS is to find k∗ for

k∗ = argmax
k

SC(k). (3)

3.2 Subdomain Style Purification

With the help fo automatic domain separation, the number of abnormal samples
with different styles is small inside each target subdomain. Though these abnor-
mal samples might be useful for the model’s generalization, they could also lead
to a negative transfer, which further hinders the model from learning domain
invariant features in a specific subdomain. To cope with it, we propose to purify
the style distribution of the target images inside each subdomain. We design a
subdomain style purification (SSP) module to effectively make similar styles for
the images within the same subdomain. Given the mth target subdomain Tm, we
adopt the histograms of LAB color space {(H l(xt), H

a(xt), H
b(xt));∀xt ∈ Tm}

(mentioned in 3.1), and then we compute the mean of the histograms for all the

three channels, represented by H̃ l
m, H̃a

m, and H̃b
m, and this process is achieved

by

H̃c
m =

∑
xt∈Tm

Hc(xt)

|Tm|
;∀c ∈ {l, a, b}, (4)

where |Tm| represents the number of the target images in Tm. We take {H̃ l
m, H̃a

m, H̃b
m}

as the standard style for Tm. For each target RGB image xt ∈ Tm, we change the
style of xt to generate the RGB new image x̃t by the histogram matching [20]

on H̃ l
m, H̃a

m, and H̃b
m on the LAB color space. The process of SSP is done for all

the subdomains {T1, . . . , Tk∗}. We denote the purified subdomains after SSP as

{T̃1, . . . , T̃k∗}.



6 F. Pan et al.

Fig. 2: (a) The architecture of the proposed bidirectional photometric mixing.
(b) The diagram of the multi-teacher learning framework.

4 Multi-teacher Framework

4.1 Bidirectional Photometric Mixing

Through automatic domain separation and subdomain style purification (men-
tioned in 3.1 and 3.2), the compound domain T is automatically separated into

multiple subdomains {T̃1, . . . , T̃k∗}, where k∗ represents the optimal number of
the subdomains. Our next plan is to minimize the domain gap between the source
domain and each target subdomain. A recent UDA work DACS [25] presents a
mixing-based UDA technique for semantic segmentation. Inspired by DACS, we
propose bidirectional photometric mixing (BPM) to minimize the domain gap
between the source domain and each target subdomain separately. Compared
with DACS, the proposed BPM adopts a photometric transform to decrease the
style inconsistency of the mixed images to reduce the pixel-level domain gap.
On this basis, BPM applies a bidirectional mixing scheme to provide a more
robust regularization for training. The architecture of BPM is shown in Fig-
ure 2(a). The proposed BPM contains a domain adaptive segmentation network
Gm and a momentum network Mm that improves the stability of pseudo labels.
Let (xs, ys) ∈ S denote the source RGB image and its pixel-wise annotation

map, xs ∈ RH×W×3, ys ∈ RH×W . And (x̃t) ∈ T̃m represent a purified target

RGB image from the mth purified subdomain T̃m, x̃t ∈ RH×W×3. Note that H
and W represent the size of height and width. Our BPM applies the mixing in
two directions: S → T̃m and T̃m → S.

On the direction of mixing from S → T̃m, we choose ClassMix [15] because
the source image xs has the pixel-wise annotation map ys. We first randomly
select some classes from ys. Then, we define Ψ ∈ {0, 1}H×W as a binary mask in
which Ψ(h,w) = 1 when the pixel position (h,w) of xs belongs to the selected
classes, and Ψ(h,w) = 0 otherwise. While ClassMix suggests directly copying
the corresponding pixels of selected classes of xs onto x̃t, the mixed image gen-
erated by ClassMix contains inconsistent style distribution which might hinder
the adaptation performance. To cope with the limitation, the proposed BPM
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applies photometric transform Γ on the selected source pixels to the style of
target image before directly copying them onto it. Let Ψ ⊙ xs represent the se-
lected source pixels by the mask Ψ , and ⊙ is element-wise multiplication. We
first calculate the histograms of selected source pixels in LAB color space, and
match them with {H̃ l

m, H̃a
m, H̃b

m}. The translated source pixels is represented
as Γ (Ψ ⊙ xs). Then, we copy the translated source pixels onto x̃t. We present
some qualitative results in Figure 4. Note that no ground-truth annotation is
available for x̃t. Thus, we send the purified target image x̃t to the momentum
network Mm to generate a stable prediction map ỹ′t as the pseudo label. The

mixing process on the direction of S → T̃m by BPM is shown as

xψ = Γ (Ψ ⊙ xs) + (1− Ψ)⊙ x̃t,

yψ = Ψ ⊙ ys + (1− Ψ)⊙ ỹ′t,
(5)

where xψ is the generated mixed image, yψ is the corresponding mixed pseudo
label, and Γ (·) is the photometric transform of the source selected pixels by
histogram matching on LAB color space.

On the direction of mixing from T̃m → S, however, it is impossible to
choose ClassMix since no ground-truth annotation is available for x̃t. Inspired
by CutMix [31], we generate another binary mask Φ ∈ {0, 1}H×W by sampling
rectangular bounding box (dx, dy, dw, dh) according to the uniform distribution;
dx ∼ U(0,W ), dy ∼ U(0, H), dw = W

√
1− η, dh = H

√
1− η, where η ∼ U(0, 1),

(H,W ) are the height and width of the image. The binary mask Φ is formed
by filling with 1 the pixel positions inside the bounding box, and filling with 0
other positions. With the help of Φ, we select the target pixels Φ⊙ x̃t and trans-
form them into the source style. The transformed target pixel is represented by
∆(Φ⊙ x̃t). Then we paste them onto the source image xs. We present the mixing

of T̃m → S at
xϕ = ∆(Φ⊙ x̃t) + (1− Φ)⊙ xs,

yϕ = Φ⊙ ỹ′t + (1− Φ)⊙ ys,
(6)

where xϕ is the other generated mixed image, yϕ is the corresponding mixed
pseudo label, and ∆(·) is the photometric transform of the target selected pixels
by histogram matching on LAB color space.

we (xψ, yψ) (xϕ, yϕ) and (xs, ys) to train the segmentation network Gm and
the momentum network Mm. We first optimize the parameters of Gm through

LBGM (θm) =
∑

∀xs∈S

∑
∀x̃t∈T̃m

[
LCE

(
Gm(xs), ys

)
+ αLCE

(
Gm(xψ), yψ

)
+ βLCE

(
Gm(xϕ), yϕ

)], (7)

where θm represent the parameters of Gm, LCE is the cross-entropy loss for the
predicted segmentation maps and the ground-truth or pseudo labels, α and β are
the hyper-parameters to control the effect of the mixing of both the directions
for the loss function. To help the momentum network Mm provide stable pseudo
labels, we update the parameters ofMm, represented by θ′m, using an exponential
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moving average (EMA) with a momentum λ ∈ [0, 1]. After finishing the training
iteration t, θ′m is updated by

θ′m
t+1

= λθ′m
t
+ (1− λ)θm. (8)

4.2 Multi-teacher Adaptive Knowledge Distillation

We propose a multi-teacher framework followed by an adaptive knowledge dis-
tillation to align the domain gaps between the source domain and all the target
subdomains. Given a purified subdomain T̃m, we adopt a BPM as a specific
teacher model to minimize the domain gap between S and T̃m. And we train the
proposed multi-teacher framework by minimizing the loss function LMT on all
the teacher models, i.e.,

LMT =

k∗∑
m=1

LBGM (θm), (9)

where LBGM (θm) (defined in Equation 7) is the loss function of the segmentation
network Gm in the mth teacher model, and k∗ is the optimal number of the
subdomains. Moreover, We learn a segmentation network Gsd as the student
network via an adaptive knowledge distillation from all the teacher networks
{Gm : 1 ≤ m ≤ k∗}. Given a random target data from xt ∈ T , we send xt to
all the teachers model, and the student is to learn from a weighted average of
the all teacher’s predictions Ow(xt), based on the teacher’s confidence score. We
adopt the entropy of Gm’s prediction map Gm(xt) ∈ RH×W×C as the confidence
of the mth teacher model, where C is the total number of classes we consider.
Thus, the weight wm for the mth teacher and the average prediction Gout(xt)
are formulated as

wm =

∑
h,w,cGm(xt) log

[
Gm(xt)

]∑
m′

∑
h,w,cGm′(xt) log

[
Gm′(xt)

] ,
Gout(xt) =

k∗∑
m=1

wmGm(xt).

(10)

On this basis, we optimize the student segmentation network Gsd with a distil-
lation loss LD defined by

LD =
∑
xt∈T

LKL
[
Gsd(xt)||Gout(xt)

]
, (11)

where LKL is KL divergence loss function between the output of Gsd and Gout.
The goal of the multi-teacher adaptive knowledge distillation is to achieve the
optimal parameters θsd

∗ of the student segmentation network Gsd by

θsd
∗ = min

θsd
LMT + LD. (12)
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Online Updating with Consistency Regularization. To evaluate the gen-
eralization of our approach, we directly evaluate our student network on the
open domains as shown in Table 2a and Table 2b. Additionally, after finishing
the compound domain adaptation training, we also provide a fast and short
online updating for the student network using consistency regularization. This
would further boost the generalization of the student network. Given an RGB
image xo from an open domain, we first match the style of xo to other standard
styles from the existing target subdomains. The standard styles are defined as
the mean histograms {H̃ l

m, H̃a
m, H̃b

m} (defined in 3.2). The newly transformed
images are {xmo ; 1 ≤ m ≤ k∗}, where xmo is generated by matching xo to the

style of the mth subdomain T̃m. Thus, we conduct an online updating for the
student network Gsd by

min
θsd

k∗∑
m=1

L1

(
Gsd(x

m
o ), Gsd(xo)

)
, (13)

where L1 is the mean absolute loss. After the online updating, we test the student
network with newly learnt parameters again on the open domains.

5 Experiments

5.1 Experimental Setup

Dataset. In this work, we adopt the synthetic datasets, including GTA5 [21] and
SYNTHIA [22] as the source domains. GTA5 contains 24, 966 annotated images
of 1, 914×1, 052 resolution. SYNTHIA consists of 9, 400 images with 1, 280×760
resolution. Furthermore, we adopt C-Driving [13] as the compound target do-
mains which contains real images of 1, 280 × 720 resolution collected from dif-
ferent weather conditions. Following the settings of previous works [13,19,8], we
use the 14, 697 rainy, snowy, cloudy images as the compound target domain and
adopt 627 overcast images as the open domain. We also use ACDC [24] as another
compound target domain and the evaluation results are shown in supplementary
material. We further adopt Cityscapes [5], KITTI [1], and WildDash [32] as the
open domains to evaluate the generalization ability of the proposed approach.

Implementation Details. We adopt DeepLab-V2 [3] with ResNet101 back-
bone [9] pre-trained on ImageNet [6]. All the images from target domain are
rescaled into 1, 280× 720 and then randomly cropped into 640× 360. The batch
size is set up with 2 and the total number of training iterations is 2.5 × 105.
We adopt stochastic gradient descent to optimize all the segmentation networks,
with a weight decay of 5× 10−4 and momentum of 0.9. The learning rate is set
up with an initial value of 2.5 × 10−4 and decreased by polynomial decay with
an exponent of 0.9. The momentum network has the same network architecture
as the segmentation network. Existing mixing techniques contain CutMix [31],
CowMix [7] and ClassMix [15]. We adopt ClassMix on the mixing direction of
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Table 1: The performance comparison of mean IoU on the compound domain.
Our approach is compared with the state-of-the-art UDA and OCDA approaches
on (a) GTA5→C-Driving and (b) SYNTHIA→C-Driving benchmark dataset
with ResNet-101 as the backbone. Note that mIoU11 represents the mean IoU
of 11 classes, excluding the class with ∗.

(a) GTA5→C-Driving
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mIoU

Source - 73.4 12.5 62.8 6.0 15.8 19.4 10.9 21.1 54.6 13.9 76.7 34.5 12.4 68.1 31.0 12.8 0.0 10.1 1.9 28.3
CDAS [13] OCDA 79.1 9.4 67.2 12.3 15.0 20.1 14.8 23.8 65.0 22.9 82.6 40.4 7.2 73.0 27.1 18.3 0.0 16.1 1.5 31.4
CSFU [8] OCDA 80.1 12.2 70.8 9.4 24.5 22.8 19.1 30.3 68.5 28.9 82.7 47.0 16.4 79.9 36.6 18.8 0.0 13.5 1.4 34.9
SAC [2] UDA 81.5 23.8 72.0 10.3 27.8 23.0 18.2 34.1 70.3 27.9 87.8 45.0 16.9 77.6 38.5 19.8 0.0 14.0 2.7 36.4
DACS [25] UDA 81.9 24.0 72.2 11.9 28.6 24.2 18.3 35.4 71.8 28.0 87.7 44.9 15.6 78.4 39.1 24.9 0.1 6.9 1.9 36.6
DHA[19] OCDA 79.9 14.5 71.4 13.1 32.0 27.1 20.7 35.3 70.5 27.5 86.4 47.3 23.3 77.6 44.0 18.0 0.1 13.7 2.5 37.1

Ours OCDA 85.3 26.2 72.8 10.6 33.1 26.9 24.6 39.4 70.8 32.5 87.9 47.6 29.2 84.8 46.0 22.8 0.2 16.7 5.8 40.2

(b) SYNTHIA→C-Driving

Method Type ro
a
d

si
d
ew

a
lk

b
u
il
d
in
g

w
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fe
n
ce

p
o
le

li
g
h
t

si
g
n
∗

v
eg

sk
y

p
er
so
n

ri
d
er

∗

ca
r

b
u
s∗

m
b
ik
e∗

b
ik
e∗

mIoU16 mIoU11

Source - 33.9 11.9 42.5 1.5 0.0 14.7 0.0 1.3 56.8 76.5 13.3 7.4 57.8 12.5 2.1 1.6 20.9 28.1
CDAS [13] OCDA 54.5 13.0 53.9 0.8 0.0 18.2 13.0 13.2 60.0 78.9 17.6 3.1 64.2 12.2 2.1 1.5 25.3 34.0
CSFU [8] OCDA 69.6 12.2 50.9 1.3 0.0 16.7 12.1 13.6 56.2 75.8 20.0 4.8 68.2 14.1 0.9 1.2 26.1 34.8
SAC [2] UDA 69.8 13.4 56.2 1.7 0.0 20.0 9.6 13.7 52.5 78.1 29.1 15.5 68.9 10.9 3.2 1.2 27.7 36.3
DACS [25] UDA 62.1 15.2 48.8 0.3 0.0 19.7 10.3 9.6 57.8 84.4 35.2 18.9 67.8 16.0 2.2 1.7 28.1 36.5
DHA [19] OCDA 67.5 2.5 54.6 0.2 0.0 25.8 13.4 27.1 58.0 83.9 36.0 6.1 71.6 28.9 2.2 1.8 29.9 37.6
Ours OCDA 73.4 15.2 57.1 1.8 0.0 23.2 13.5 23.9 59.9 83.3 40.3 22.3 72.2 23.3 2.3 2.2 32.1 40.0

the source domain to the target domain, and we apply CutMix on the mixing
direction of the target domain to the source domain. Both α and β are set up
with 1 in the experiments. To increase the robustness of the segmentation model,
we adopt data augmentations, including flipping, color jittering, and Gaussian
blurring on the mixed images.

5.2 Results

To demonstrate the efficacy of our approach, we conduct experiments on the
benchmark datasets of GTA5→C-Driving and SYNTHIA→C-Driving. We first
compare our approach with the existing state-of-the-art OCDA approaches:
CDAS [13], DHA [19], and CSFU [8]. Furthermore, we compare the proposed ap-
proach with the current state-of-the-art UDA approaches SAC [2] and DACS [25].

Compound Domain Adaptation. We first compare the performance of our
approach with existing state-of-the-art OCDA and UDA approaches on GTA5
→C-Driving, shown in Table 1a. All the results are generated on the validation
set of C-Driving. Training only with the source data leads to 28.3% of mean
IoU over the 19 classes. As the first work in OCDA, CDAS achieves 31.4% on
the mean IoU of all the classes. CSFU generates 34.9% of mean IoU, and DHA
produces 37.1% of mean IoU. This is because both CSFU and DHA adopt the
subdomain separation step and GAN framework, and DHA uses a more effective
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Table 2: The comparison of mean IoU on the open domains. The domain gener-
alization (DG) model is trained only with the source domain. All the models are
tested on the validation set of C-Driving Open (O), cityscapes (C), KITTI (K),
and wildDash (W). We also present the scores of our approach without online
updating (w/o Updating) and with online updating (w/ Updating).

(a) GTA5 as the source domain.

GTA5

Method Type O C K W Avg

CSFU [8] OCDA 38.9 38.6 37.9 29.1 36.1
DACS [25] UDA 39.7 37.0 40.2 30.7 36.9

RobustNet [4] DG 38.1 38.3 40.5 30.8 37.0
DHC [19] OCDA 39.4 38.8 40.1 30.9 37.5

Ours (w/o Updating) OCDA 41.8 40.9 44.0 32.9 40.0
Ours (w/ Updating) OCDA 42.5 41.7 44.3 34.6 40.8

(b) SYNTHIA as the source domain.

SYNTHIA

Method Type O C K W Avg

CSFU [8] OCDA 36.2 34.9 32.4 27.6 32.8
DACS [25] UDA 36.8 37.0 37.4 28.8 35.0

RobustNet [4] DG 37.1 38.3 40.1 29.6 36.3
DHC [19] OCDA 38.9 38.0 40.6 30.0 36.9

Ours (w/o Updating) OCDA 41.5 40.3 42.7 30.1 38.7
Ours (w/ Updating) OCDA 42.6 41.1 43.4 30.9 39.5

multi-discriminator to minimize the domain gaps. In comparison, the latest UDA
approaches DACS and SAC show 36.6% and 36.4%, outperforming both CDAS
and CSFU. The reason behind is that both DACS and SAC adopt various self-
supervision techniques to minimize the domain gaps, which proves to be more
effective than GAN-based approaches. In comparison, the proposed approach
demonstrates effectiveness on this benchmark dataset with 40.2% of mean IoU
over all classes.

We present experimental results on SYNTHIA→C-Driving shown in Ta-
ble 1b. We consider the 11 classes for final evaluation. The proposed method
achieves 40.0% of mean IoU over the 11 classes. For other OCDA approaches,
DHA achieves 37.6%, CSFU produces 34.8%, and CDAS generates 34.0% of
mean IoU. Moreover, the UDA approaches DACS and SAC generate 36.5% and
36.3% of mean IoU. Our approach outperforms all the existing OCDA approaches
and the latest UDA approaches.

Generalization to the Open Domains. We also evaluate the domain gener-
alization of the proposed approach against existing UDA and OCDA approaches.
The results are presented in Table 2a and 2b. Our work is compared with the
latest domain generalization (DG) approach RobustNet [4]. For all the UDA and
OCDA approaches, we first train them with the labeled source and the unlabeled
target images, and we evaluate their performance with the validation of the open
domains. RobustNet generates 37.0% of mean IoU in Table 2a and 36.3% of mean
IoU in Table 2b. Note that RobustNet only requires labeled source data during
training. This shows that the DG approach is more effective in generalizing to the
open domains than the existing UDA and OCDA approaches DACS and CSFU.
Without any online updating, our approach achieves 40.0% of mean IoU in Ta-
ble 2a and 38.7% of mean IoU in Table 2b. Our approach outperforms all the
UDA approaches, OCDA approaches, and the DG approach listed in the table.
The reason might be that our approach is more powerful for learning the domain
invariant features which improve the generalization of the model toward novel
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Fig. 3: We conduct the ablation study on the proposed automatic domain sep-
aration using GTA5→C-Driving with ResNet101 backbone. (a) The scatterplot
shows the correlation between our approach’s mean IoU and the Silhouette Co-
efficient score. (b) The mean IoU of our approach with different number of
subdomains k. (c) The sample images from the subdomains of the C-Driving
dataset.

domains. The performance gain of our approach with updating further shows
the efficacy of the proposed online updating with consistency regularization.

5.3 Ablation Study

Generating Optimal Subdomains. We first conduct the ablation study on
the correlation between the mean IoU of the proposed approach with Silhouette
Coefficient (SC) score on the subdomain separation in Figure 3(a). It shows a
positive correlation, which means that the SC score is effectively finds the optimal
number of subdomains for the compound target domain. Moreover, we evaluate
the mean IoU score with the different number of subdomains k in Figure 3(b).
Finally, we set up k = 3 and present the sample images from the subdomains
of the C-Driving dataset in Figure 3(c). We also evaluate the efficacy of the
proposed subdomain style purification (SSP) in Table 3b. Without using SSP,
the performance drops 0.5% of mean IoU.

Multi-teacher and Single Model. The ablation study on the multi-teacher
learning of our proposed approach is presented in Table 3a and Table 3b. Apply-
ing a single model in our approach delivers 38.0% of mean IoU, leading to the
the most significant drop 2.2%, shown in Table 3b. We further combine DACS
with multi-teacher learning, and the mean IoU reaches from 36.6% to 39.1%. We
argue that utilizing a single model is less effective than the multi-teacher models.
Because adapting to one subdomain might hinder the single model from adapt-
ing to other dissimilar subdomains. Thus, we employ a multi-teacher framework
in which each teacher adapts to one subdomain separately. And the multiple
teachers together provide a comprehensive guide to the student model to adapt
to all the target subdomains. We further present the qualitative results about
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Table 3: The ablation study on the efficacy of the components of our model. (a)
We compare with one baseline model DACS [25] and evaluate the performance
gain of the bidirectional photometric mixing and the multi-teacher learning. (b)
We evaluate the performance drop of our model by removing each component
from it. Our model is trained GTA5→C-Driving with ResNet101 backbone and
tested on C-Driving validation set.

(a) The performance gain.

GTA5→C-Driving

Model mIoU

DACS [25] 36.6
DACS + Multi-teacher Learning 39.1
DACS + Bidirectional Mixing 37.3
DACS + Photometric Mixing (Γ,∆) 37.4
DACS + Bidirectional Photometric Mixing 37.8

Ours 40.2

(b) The performance drop.

GTA5→C-Driving

Configuration mIoU Gap

w/o Multi-teacher Learning 38.0 -2.2
w/o Mixing on One Direction (α = 0) 38.5 -1.7
w/o Mixing on One Direction (β = 0) 38.9 -1.3
w/o Subdomain Style Purification 39.7 -0.5
w/o Adaptive Distillation 39.6 -0.6

Full Framework 40.2 -

Fig. 4: We compare the mixed images from the source domain to the target
domain. (a) the source image; (b) the target image; (c) the mixed images without
using photometric transform, and the style inconsistency exists; (d) the mixed
images using photometric transform, and the style inconsistency is mitigated;
(e) the mask to crop the source image.

the target image prediction maps from each subdomain by the multi-teachers
and the single-teacher model in Figure 5.

Bidirectional Photometric Mixing. We further conduct the ablation study
for the bidirectional photometric mixing (BPM), shown in Table 3a and Ta-
ble 3b. Our model is trained on GTA5 → C-Driving with ResNet101 backbone
and tested on C-Driving validation set. By making α = 0 to remove the mixing
on one direction (ClassMix), the mean IoU drops 1.7%, while making β = 0 to
remove the other directional mixing (CutMix), it decreases by 1.3%. This sug-
gests that ClassMix contributes slightly more to the final performance. We also
use the baseline model DACS for an in-depth analysis. We add the bidirectional
photometric mixing with the DACS, the performance increase from 36.6% to
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Fig. 5: We present the predicted segmentation maps of the target images from
every target subdomain. The maps in the second row are generated using a single
model. The maps in the third row are generated using the multi-teacher models.

37.8% shown in Table 3a; we then combine DACS with only bidirectional mix-
ing, the mean IoU rise up to 37.3%; we further add DACS with only photometric
transform on mixing (use Γ and ∆), the mean IoU reaches to 37.4%. The rea-
son behind is that DACS utilizes a simple mixing method that contains only
one direction and generates the mixed image with the style inconsistency inside.
However, we propose a bidirectional mixing scheme and apply the photomet-
ric transform to mitigate the style inconsistency on the generated images. We
present the qualitative results to show this issue in Figure 4. The style incon-
sistency is mitigated in Figure 4(d) compared with Figure 4(c) on the mixing
direction from the source domain to the target domain.

6 Conclusion

Open compound domain adaptation (OCDA) considers the target domain as
the compound of multiple unknown subdomains. In this work, we first propose
automatic domain separation to find the optimal number of subdomains. Then
we design a multi-teacher framework with bidirectional photometric mixing to
align the domain gap between the source domain and the compound target
domain, and we further evaluate its generalization to novel domains. Our current
work is only focused on segmentation task and we leave the study on other visual
tasks for future research.
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1 Subdomain Style Purification and the t-SNE
Visualization

Fig. 1: (a) presents the noisy samples from Subdomain 2 of C-Driving dataset
before subdomain style purification (before SSP) and after subdomain style pu-
rification (after SSP). (b) shows the t-SNE visualization of the concatenated
histograms of the C-Driving dataset on LAB color space when k = 3.

As mentioned in Section 3.2, it is hard to guarantee that the images from
the same target subdomain have the same style. In other words, small domain
gaps might still results from the various image styles in each subdomain. We
propose subdomain style purification to unify the styles of the target data that
belongs to the same subdomain so that the domain gaps in these images could be



2 F. Pan et al.

further reduced. We provide the visualization of the sample images transformed
by subdomain style purification (SSP) from subdomain 2 in Figure 1 (a). Note
that the images from before SSP in Figure 1(a) has the styles different from the
standard style, and they are transformed into the standard style with the help
of histogram matching on the LAB color space. We further set up k = 3 and
present the t-SNE visualization of the concatenated histograms of the C-Driving
images from LAB color space.
The reason of subdomain style purification (SSP). With the help of auto-
matic domain separation, the number of abnormal samples with different styles
is small. Though these abnormal samples might be helpful for the model’s gen-
eralization, they could also lead to a negative transfer, which further hinders the
model from learning domain invariant features in a specific subdomain. With
GTA5→C-Driving, we get a 0.5% of mIoU drop on average over all the subdo-
mains without using SSP, as shown in Table 3(b).

2 ACDC Dataset

We also evaluate the proposed approach on another ACDC dataset[24]. ACDC
dataset contains real-world images from the road scenes in diverse weather con-
ditions, including fog, nighttime, rain and snow. We consider the 2, 800 images
of fog, nighttime and rain from the training split of ACDC as the compound
domain; the 400 snow images with pixel-wise annotations of ACDC training
split are taken as the open domain. The final performance is evaluated on the
validation set of ACDC, which contains 306 images with ground-truth maps.

We present the performance comparison of mean IoU in Table 1. For the
compound target domain of ACDC (fog, nighttime, rain), we achieve 32.1% of
mean IoU on GTA5→ACDC and 31.9% of mean IoU on SYNTHAI→ACDC,
outperforming all the UDA and OCDA approaches in the list. We also evaluate
the generalization of our approach compared with other works. After finishing
the compound domain adaptation training, all the models are directly tested
on the open domain of ACDC (snow). Note that the snow images have never
been used in training before. Under the benchmark datasets GTA5→ACDC and
SYNTHIA→ACDC, our approach shows 41.6% and 29.1% of mean IoU. This
demonstrates that our approach has better generalization ability toward novel
domains (snow).

3 The Practicability of Our Approach

Though we use the multi-teacher models for training, our approach still has
strong practicability for the two following reasons: these teacher models are
trained simultaneously; only a single student model from distillation is needed
for inference. The size of the student model is not affected by the number of the
subdomains. With the number of the subdomains k∗, the FLOPS and the number
of parameters of our multi-teacher’s model are 327.08× 109 and 43.8×k∗× 106.
After the adaptive knowledge distillation, the FLOPS and number of parameters
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Table 1: The performance comparison of mean IoU on the compound target
domain (fog, nighttime, and rain) and the open domain (fog) of ACDC. Our
approach is compared with the state-of-the-art UDA and OCDA approaches on
(a) GTA5→ACDC and (b) SYNTHIA→ACDC benchmark dataset with ResNet-
101 as the backbone.
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mIoU mIoU

Source - 43.6 2.5 46.2 5.2 0.1 30.3 15.3 16.3 56.9 0.0 71.5 16.3 13.7 51.4 0.0 15.1 0.0 1.4 4.2 20.5 27.1
CDAS[13] OCDA 53.2 5.9 56.1 10.1 2.6 22.0 37.1 11.4 53.9 23.5 71.3 27.6 14.6 47.5 16.8 19.5 0.0 3.2 3.8 25.3 29.1
CSFU[8] OCDA 47.0 4.1 53.0 13.9 1.0 23.2 41.2 18.8 55.8 23.2 72.1 31.5 10.8 69.1 26.4 27.8 0.2 1.7 2.6 27.6 30.5
SAC[2] UDA 42.6 4.2 57.6 11.9 3.8 23.0 49.7 23.8 63.6 31.9 76.0 30.3 10.5 65.3 23.6 23.1 0.1 0.7 3.2 28.7 33.6
DACS[24] UDA 48.9 9.7 54.5 16.8 5.7 22.7 42.0 22.9 61.3 29.7 73.7 32.2 11.6 63.3 23.2 26.5 0.0 1.2 5.2 29.0 34.8
DHA[19] OCDA 49.8 5.2 59.1 10.2 3.1 25.6 47.8 27.9 65.1 32.0 75.2 29.0 12.2 61.5 20.5 32.4 0.0 1.0 2.0 29.5 37.5

Ours OCDA 48.4 5.0 58.2 25.3 10.0 35.1 50.4 26.7 66.8 33.3 75.8 32.1 16.7 73.5 16.8 26.6 0.2 3.9 4.6 32.1 41.6

(b) SYNTHIA→ACDC
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mIoU16 mIoU16

Source - 45.2 0.2 36.7 1.7 0.6 25.7 4.0 5.6 46.6 64.3 16.9 11.3 39.6 16.5 0.6 1.9 19.8 20.5
CDAS[13] OCDA 61.3 0.7 60.1 11.7 1.8 28.4 18.8 23.5 48.6 28.9 16.5 15.9 69.2 18.4 5.4 5.6 25.9 23.3
CSFU[8] OCDA 62.6 0.3 60.3 8.6 1.8 21.3 20.7 29.1 44.5 22.1 34.5 19.0 71.1 23.2 4.4 4.3 26.7 24.8
SAC[2] UDA 69.8 0.4 56.2 1.7 0.0 20.0 12.6 13.7 52.5 78.1 29.1 15.5 68.9 20.9 3.2 1.2 27.7 25.4
DACS[24] UDA 55.6 1.1 55.7 0.1 0.7 25.8 31.7 18.3 65.5 53.7 31.1 16.6 69.2 22.5 2.9 3.1 28.3 27.0
DHA[19] OCDA 55.5 1.1 57.2 0.7 0.8 26.6 22.7 24.6 65.8 58.4 29.6 23.9 70.8 19.5 5.4 4.2 29.2 27.3
Ours OCDA 66.7 1.7 62.4 10.8 1.4 30.8 23.9 29.2 62.6 69.0 31.6 14.6 71.8 22.9 6.8 4.5 31.9 29.1

Table 2: The evaluation on GTA5→C-Driving.

(a) ImageNet pre-trained VGG-16 Backbone

Method
Compound (C) Open (O) Average

Rainy Snowy Cloudy Overcast C C+O

CDAS[13] 23.8 25.3 29.1 31.0 26.1 27.3
CSFU[8] 24.5 27.5 30.1 31.4 27.7 29.4
DACS [24] 26.8 29.2 35.1 35.9 30.4 31.8
DHA[19] 27.1 30.4 35.5 36.1 32.0 32.3

Ours 34.5 35.8 39.9 40.1 36.7 37.5

(b) Mixing Algorithm Comparison

Algorithm BPM (Ours) ClassMix [15] CutMix [31] CowMix [7]

mIoU 40.2 39.1 37.6 37.4

of our student model is 327.08× 109 and 43.8× 106.

The VGG-16 backbone and different mixup algorithms. We use VGG-
16 backbone network for evaluation. The experimental results on GTA5→C-
Driving in Table 2(a) demonstrates the effectiveness of our approach against
existing works with ImageNet pre-trained VGG-16 as the backbone. We provide
the comparison to existing domain mixup algorithms in the same setting, in-
cluding ClassMix[15], CutMix[31], and CowMix[7].
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The online updating on the open domains. Our online updating is con-
ducted on each sample from the open domain, thus it is still domain generaliza-
tion at the testing stage. Our student model Gsd is trained through the adaptive
distillation from all the subdomain’s segmentation models {Gm}k∗m=1 (Eq. (10,
11)). Each Gm is optimized by Eq. (7) with the help of the mean teacher Mm,
following the work of DACS[24]. We also used Mm instead of Gm for distillation
but do not see significant performance gain.

The reason of using bidirectional mixing. The performance of using
pseudo-labels of target data for ClassMix. Using the photometric trans-
form ∆ (Eq.(6)) on target-to-source (t2s) mixing, we enforce the consistency of
prediction between the target and the mixed image, which are taken as addi-
tional augmentation to improve the model’s performance (Table.3(a,b)). With
the experiment on GTA5→C-Driving, we get 40.1% of mIoU on using pseudo-
labels of target data for ClassMix on target-to-source mixing, similar to ours
40.2% (Table 1(a)). Table 2 (b) shows that our BPM outperforms existing mix-
ing algorithms ClassMix [15], CutMix [31], and CowMix [7].
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