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Abstract. Most modern approaches in temporal action localization
divide this problem into two parts: (i) short-term feature extraction and
(ii) long-range temporal boundary localization. Due to the high GPU
memory cost caused by processing long untrimmed videos, many methods
sacrifice the representational power of the short-term feature extractor by
either freezing the backbone or using a small spatial video resolution. This
issue becomes even worse with the recent video transformer models, many
of which have quadratic memory complexity. To address these issues,
we propose TallFormer, a memory-efficient and end-to-end trainable
Temporal Action Localization transformer with Long-term memory.
Our long-term memory mechanism eliminates the need for processing
hundreds of redundant video frames during each training iteration, thus,
significantly reducing the GPU memory consumption and training time.
These efficiency savings allow us (i) to use a powerful video transformer
feature extractor without freezing the backbone or reducing the spatial
video resolution, while (ii) also maintaining long-range temporal boundary
localization capability. With only RGB frames as input and no external
action recognition classifier, TallFormer outperforms previous state-
of-the-arts by a large margin, achieving an average mAP of 59.1% on
THUMOS14 and 35.6% on ActivityNet-1.3. The code is public available1

1 Introduction

With the rapid growth of video media, video understanding has become an
important area of computer vision. As a fundamental task in video understanding,
Temporal Action Localization (TAL) aims to localize temporal boundaries and
classify the actions for each action instance in a long untrimmed video.

Because many actions span long temporal extent (e.g., 50-100s), most prior
approaches in TAL [27,25,53,6,2,62,33,23,45], divide this problem into two parts:
(i) short-term feature extraction and (ii) long-range temporal boundary local-
ization. As shown in Fig. 1, the first part involves sampling many consecutive
short clips (e.g., each spanning 1-2 seconds) from a long untrimmed video and
extracting short-term features from them. In the second part, the model uses the
extracted features of all short-term clips (i.e., spanning the entire duration of an

1 https://github.com/klauscc/TALLFormer.

ar
X

iv
:2

20
4.

01
68

0v
2 

 [
cs

.C
V

] 
 2

6 
Ju

l 2
02

2

https://github.com/klauscc/TALLFormer


2 F. Cheng, G. Bertasius

Temporal Boundary Localization Module

Eating: 90% Mixing: 95%

Making cake: 99%

0s 2s 100s

time
short-term feature extractor

4s 6s 98s

Fig. 1: A general framework for temporal action localization (TAL). The short-term
feature extractor extracts the features for each short-term clip. Then, the long-term
temporal boundary localization module uses the features of all short-term clips in the
video to predict the action boundaries and categories. Due to excessive training time
and GPU memory cost, many prior TAL methods restrict the representational power of
the short-term feature extractor by either freezing the backbone or operating on small
spatial video resolution. While effective at reducing the computational burden, these
techniques also significantly degrade TAL performance.

untrimmed video) for predicting action boundaries and categories. Thus, based
on these observations, it is natural to conclude that an ideal TAL model should
consist of (i) a powerful short-term feature extractor and (ii) a precise temporal
boundary localization module.

However, due to the high GPU memory cost needed to process long untrimmed
videos, the majority of existing methods sacrifice the representational power of
short-term feature extractor, by either freezing the backbone [27,25,53] or using
a very small spatial video resolution (e.g., 96× 96) [23,45]. While both of these
techniques are highly effective at reducing GPU memory consumption, they also
degrade the quality of extracted short-term features, which leads to a significantly
lower TAL accuracy. For example, as shown in Table 1, in order to save memory,
reducing spatial resolution from 168× 168 to 112× 112 leads to 2.3% mAP drop;
using a smaller backbone also reduces the mAP by 2.1%; freezing the backbone
leads to a severe drop in mAP (∼8-9%).

In parallel, we note that the recent introduction of powerful video transformer
models [3,32] have achieved impressive results on various video understanding
problems such as action recognition. However, these models have made the above-
described GPU memory issues even worse. Due to the quadratic complexity of
self-attention, video transformers require even more GPU memory than traditional
CNNs. As a result, it is challenging to adapt these models to the TAL task, which
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Table 1: We study several important factors for short-term feature extraction on
THUMOS14: (i) spatial video resolution, (ii) transformer backbone complexity, and
(iii) the number of frozen backbone stages. For these experiments, we use Swin [32],
which consists of 4 stages where i frozen stages means that the first i stages in the
backbone are frozen. We use DaoTAD [45] codebase to conduct these experiments.
Additionally, we note that in all of these experiments, we incorporate Checkpointing [7]
to reduce GPU memory usage. GPU Memory (Mem) is measured in Gigabytes. Based
on these results, we note that (a) increasing the spatial resolution leads to large
mAP improvement(∼2.3%) but also quadratic memory consumption, (b) using larger
backbones also improves the mAP, and lastly, (c) freezing the backbone leads to a
severe drop in performance (∼8-9%).

(a) Spatial video res-
olution (SVR) analy-
sis. The backbone is
Swin-T with the first
2 stages frozen.

SVR mAP(%) Mem

112× 112 52.8 15
168× 168 55.1 34
224× 224 - OOM

(b) Studying the back-
bone complexity. Spatial
resolution is 112 × 112.
The first 2 stages of back-
bone are frozen.

Backbone mAP(%) Mem

Swin-T 52.8 15
Swin-S 53.3 17
Swin-B 54.7 20

(c) The number of
frozen backbone stages
(FBS). Spatial resolu-
tion is 112× 112. The
backbone is Swin-T.

FBS mAP(%) Mem

4 44.3 3
2 52.8 14
0 53.8 26

generally requires a lot of GPU memory even when using CNN-based models.
The commonly used GPU memory saving techniques such as Checkpointing [7],
Mixed Precision [34], can alleviate these computational issues. However, as shown
in Table 1, even when using these techniques, the GPU memory cost of applying
video transformers (e.g., VideoSwin [32]) to TAL is very large.

Thus, with these computational issues in mind, we propose TallFormer, a
memory-efficient and end-to-end trainable Temporal Action Localization Trans-
former with a Long-memory mechanism. Our key observation is that most videos
are highly redundant, i.e., their content changes little in most neighboring frames.
This raises the question of whether every single frame from a long untrimmed
video needs to be processed during each training iteration. Motivated by this
observation, we design TallFormer to process only a fraction of randomly
selected frames at each training iteration, which significantly reduces the training
time and GPU memory requirements. For the remaining (i.e., not selected) video
frames, the video features are sampled from long-term memory, which stores the
features of all previously processed frames for that particular video. Note that
the features from long-term memory do not have to be re-computed online, and
they also do not require backpropagating the gradients, which makes long video
processing much more efficient.

As the short-term feature extractor evolves throughout training, the video
features in long-term memory are also evolving, i.e., the newly computed features
for a given video are used to replace the old features in long-term memory.
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Compared to previous TAL approaches, TallFormer has several main advantages.
First, our model can be trained end-to-end on long, high spatial resolution videos
beyond the constraints of finite GPU memory. Second, our framework is flexible as
we can incorporate any state-of-the-art short-term video transformer model into
TallFormer, thus, benefiting from future improvements in the video transformer
design. Lastly, unlike many previous TAL methods [27,25,53,2,62,33] that rely
on external action recognition classifiers, TallFormer is a unified framework
that predicts action boundaries and categories with a single model. Despite being
simpler, and only operating on RGB inputs, TallFormer achieves an average
mAP of 59.1% on THUMOS14 and 35.6% on ActivityNet-1.3, thus, outperforming
the current state-of-the-arts by 7.1% and 1.2% respectively.

2 Related Work

Action Recognition. Action recognition is a fundamental short-term modeling
task in video understanding. With the success of deep learning, a vast array of
methods [42,47,43,46,5,11,12,21,24,22,48,55] utilize 2D and 3D CNNs to achieve
impressive performance on standard action recognition benchmarks [5]. Recently,
Vision Transformer-based methods [3,32,10,56] have been shown to outperform
previous CNN-based methods by a large margin. Due to the large scale pretraining
on action recognition datasets, the pretrained models from this domain are widely
used in temporal action localization as a short-term feature extractor. One
limitation of modern video transformer models is that due to the quadratic
memory complexity of self-attention [44], these models are slow to train and
they require a lot of GPU memory. As a result, it is difficult to apply them to
long-term modeling tasks such as temporal action localization.

Temporal Action Localization (TAL). Due to finite GPU memory constraints,
most existing methods [27,25,53,6,2,62,33,41,60,1] use pre-extracted action recog-
nition features as inputs to the TAL model. However, since those features are
extracted using models [17,5] that are pretrained on different datasets, using these
features for TAL often leads to suboptimal performance. To address these issues,
recent methods AFSD [23] and DaoTAD [45] proposed end-to-end trainable
frameworks. However, to fit into finite GPU memory, these models operate on
very low spatial video resolutions (e.g., 96×96 and 112×112 respectively), which
leads to a significant drop in TAL accuracy. To the best of our knowledge, none
of the existing methods are capable of end-to-end training with both high spatial
resolution and long temporal extent. We aim to address this issue by proposing
a simple, end-to-end trainable, transformer-based TAL method that can operate
on long high-resolution video inputs.

Besides end-to-end training ability, we also note that most TAL methods
can be categorized into two groups: (i) single-stage detectors, and (ii) two-stage
detectors that require external action recognition classifiers. One-stage detectors
[26,29,59,50] perform action localization and classification at the same time. In
comparison, the two-stage methods [27,25,53,23,14,57,30,13,2,40,36,38,63] only
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predict action boundaries and then use the predictions of an external action
recognition classifier to assign an action class to a given video segment. Despite
the elegance and simplicity of one-stage methods, the two-stage methods typically
have a much higher detection accuracy. In this work, we will show that even
without relying on the external action recognition classifier, our TallFormer still
achieves state-of-the-art results on several major TAL benchmarks.

Memory-saving Techniques. Applying transformer-based methods to TAL poses
many GPU memory challenges due to the quadratic memory complexity of self-
attention. There are several general memory-saving techniques, including Gradient
Checkpointing [7] and Mixed Precision [34], which reduce the GPU memory usage
by about 50%. We note that our proposed approach is complementary to these
techniques. In fact, we use Gradient Checkpointing [7] in many of our experiments,
thus, demonstrating that our proposed method works well in conjunction with
these prior memory-saving techniques.

Furthermore, we note that several methods from Natural Language Processing
(NLP) such as LinFormer [49] and Performer [9] propose to reduce the memory
complexity of standard self-attention by approximating the attention using low-
rank matrix decomposition. While being effective in NLP, those approximation
methods work poorly when applied to video recognition [35].

3 TallFormer

Given an untrimmed video V = {xt}Tt=1 ∈ RC×T×H×W with T RGB frames, our
TallFormer model aims to predict a set of action instances ΦV = {ϕm}Mm=1

where M is the number of action instances in V . Each action instance ϕm =
(sm, em, cm, pm) is a four-element tuple that represents the start timestamp of
action, end timestamp of action, action class and probability of this instance
respectively.

As shown in Fig. 2, TallFormer consists of four components: (i) a short-term
Transformer encoder, (ii) a long memory module, (iii) a temporal consistency
module and (iv) a temporal boundary localization module. First, we randomly
sample a subset of short video clips, and process them using the short-term
Transformer encoder. The remaining features are directly sampled from long-
term memory, which stores previously computed features of all frames for that
particular video input. Afterward, all of these features (i.e., from the short-term
Transformer encoder and long-term memory) are fed into a temporal consistency
module that effectively fuses them in order to map them to a similar feature
space, i.e., to alleviate potential issues caused by differing feature distributions
from the feature extractor and long-term memory. Lastly, the temporal boundary
localization module processes these features and produces temporal boundaries
and action categories for each detected action instance. We now describe each of
these components in more detail.
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Fig. 2: An illustration of our proposed TallFormer model. Our method consists of
four high-level components: (i) a short-term Transformer encoder, (ii) a long memory
module, (iii) a temporal consistency module and (iv) a temporal boundary localization
module. The short-term Transformer encoder only extracts features from a few randomly
sampled video clips. The rest of the features are sampled from long-term memory. All
features are then fed into a temporal consistency module to ensure smooth feature
fusion. Lastly, the temporal boundary localization module outputs temporal boundaries
and action categories for each action instance. Afterward, the features extracted by the
short-term encoder are used to update the corresponding features in long-term memory.

3.1 Short-term Transformer Encoder

Our Shor-term Transformer Encoder considers many consecutive short clips (i.e.,
spanning 1-2 seconds) from a long untrimmed video. In order to avoid computing
dense features for every single clip, we randomly sample a fixed number of such
clips and feed them into our encoder.

Formally, for each input video V we divide it into Nc non-overlapping clips
c = {cm}Nc

m=1 where cm ∈ RLc×H×W×3. The input video is shifted at most Lc

frames to ensure the clip-division changes at each epoch. A uniform sampler first
samples the indices I ∈ RNs of clips that will be processed by the encoder. The
indices of the remaining (i.e., not sampled) clips are denoted as I ′ ∈ RNc−Ns . The
encoder then processes each sampled clip ci to extract low-dimensional features
fci ∈ RLf×Cf to produce features f

(s)
I = {fcI1 , fcI2 , ..., fcINs

} ∈ RNs×Lf×Cf .
Note that during each training iteration, the Transformer encoder only pro-

cesses a small fraction of clips from the whole input video. The remaining clips
are sampled from the long memory module (described in Sec. 3.2). This enables
TallFormer to be trained end-to-end on long high spatial resolution videos
without (i) reducing the spatial video resolution, (ii) freezing the backbone, or
(iii) resorting to a weak short-term feature extraction backbone. We use the
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recent VideoSwin [32] as our short-term Transformer encoder, which achieved
impressive results on several popular action recognition benchmarks [5,15].

3.2 Long Memory Module

Our proposed Long Memory Module (LMM) enables TallFormer to be trained
on long and high-resolution videos. Inspired by [8,58], we propose LMM to cache
the features computed by our short-term Transformer encoder for all short-term
video clips. For the remaining clips (denoted by the indices I ′) that are not
processed by the short-term Transformer encoder, LMM samples the features
f
(l)
I′ ∈ R(Nc−Ns)×Lf×Cf from long-term memory. Following this step, we then

update long-term memory with the features f
(s)
I extracted by the short-term

Transformer encoder. Note that before training, we initialize the LMM with the
features extracted by our short-term Transformer encoder.

Such a scheme works well in the TAL setting because the short-term Trans-
former encoder is already pretrained on a large-scale external action recognition
dataset (e.g., Kinetics) and thus, it evolves more slowly than the other modules
in the network (i.e., it uses a smaller learning rate than the other parts of the
network). Thus, “approximating" short-term features with the features from
LMM provides large efficiency gains (both in terms of training time and GPU
memory), while still achieving excellent TAL accuracy, which we demonstrate
in our experimental section. Compared to prior methods [51,16,54,58] that use
memory bank as auxiliary information, our LMM serves as an approximation to
the short-term encoder. Both the features from LMM and short-term encoder
are directly used to produce the final predictions of our method.

Overall, compared to standard end-to-end training, TallFormer only needs
to process a fraction of input clips, which saves the memory and computational
cost by a rate of r = Ns

Nc
. This then allows us to (i) use a powerful transformer-

based feature extractor without freezing its backbone or reducing the spatial
video resolution and (ii) still maintain the ability to precisely localize long-range
temporal boundaries of actions. Note that during inference, we extract all features
using a short-term Transformer encoder (i.e., without using LMM).

3.3 Temporal Consistency Module

Due to different feature distributions between (i) the online extracted Transformer
features f (s)

I and (ii) LMM-cached offline features f (l)
I′ , we need to reduce temporal

inconsistency among clip-level features across the whole input video. To be
more precise, the features that are processed online (i.e., using our short-term
Transformer encoder) are extracted using the latest short-term encoder. In
contrast, most clip-level features stored in the LMM are extracted using the
same short-term Transformer encoder but from the previous iterations. Thus, the
short-term features associated with different clips might have different feature
distributions, which can potentially degrade TAL performance. To address this
issue, we propose a simple, yet effective Temporal Consistency Module (TCM).
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The idea is to make the features from both sources more consistent by
allowing them to interact with each other. Due to the effectiveness of standard
self-attention to capture global long-range dependencies, we design TCM as an
L attention layer subnetwork. Formally, given the video features g = [f

(l)
I ; f

(s)
I′ ],

the TCM refines the features using three Transformer layers:

h(i) = TransformerLayer(h(i−1)) (1)

where i ∈ [1, L] is the layer index, h(0) = g and h(L) is the refined features of
TCM. The TransformerLayer uses relative positional encoding as in Swin [31],
GELU [18] activation, and Droppath [19].

Conceptually, our self-attention-based TCM subnetwork allows our model to
refine potentially inconsistent features by incorporating temporal information
from the entire untrimmed input video into feature vectors associated with indi-
vidual video clips. In our experimental section, we demonstrate the effectiveness
of such long-range TCM module.

3.4 Temporal Boundary Localization Module

The Temporal Boundary Localization Module (TBLM) utilizes the features of
all clips produced by the TCM to predict the action boundaries and categories.
The TBLMs in most existing methods [27,25,53,2,62,33,23,41,60] especially for
difficult datasets (e.g., ActivityNet [4]) are two-stage detectors that require
external action classification classifiers, which is costly and cumbersome. Our
analysis into this problem reveals that the reason that many prior methods rely
on external classifiers is because of a weak short-term encoder. Specifically, as
discussed above, many prior methods have to either freeze the backbone or use
small spatial video resolution in order to save GPU memory. This then leads to
poor action classification performance, which requires these methods to adapt an
external action recognition classifier. In contrast, we note that TallFormer utilizes
a strong short-term encoder while achieving strong performance on both action
classification and localization using a one-stage TBLM.

We build upon the existing methods [23,45] by simply adding a shared linear
action recognition classifier to each action proposal. For datasets where each
video only contains one action category such as ActivityNet [4], we add the
linear classifier on the temporally averaged features of the TCM with a 50%
dropout. Due to the strong representational power of TallFormer, this simple
modification achieves a high action classification accuracy and thus, eliminates
the necessity for an external action recognition classifier. We use the same loss
functions as the previous methods [23,45] and Focal Loss [28] for the added linear
action recognition layer. See more details in Appendix. A.2.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We conduct our evaluations on the two commonly-used benchmark
datasets THUMOS14 [20], and ActivityNet-1.3 [4]. THUMOS14 contains 200
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untrimmed validation videos and 213 untrimmed testing videos with temporal
annotations from 20 categories. ActivityNet-1.3 contains 15, 000 videos for training
and 5, 000 videos for validation. Additionally, we also evaluate on the large-scale
HACS-Segment [61] dataset, which contains 38K untrimmed videos for training
and 6K for validation. Following previous works [25,23,45], on THUMOS14, we
train on the validation set and evaluate on the test set. On ActivityNet-1.3 and
HACS-Segment we train on the training set and evaluate on the validation set.

Evaluation Metrics. As is standard, we use mean Average Precision (mAP)
to report our results. The Intersection over Union (IoU) thresholds are set to
[0.3 : 0.1 : 0.7] for THUMOS14 and [0.5 : 0.05 : 0.95] for ActivityNet-1.3 and
HACS-Segment.

4.2 Implementation Details

The flexibility of our framework allows us to consider any transformer-based
model as our short-term feature extractor. Due to its superior accuracy, we
adopt Video Swin Transformer [32] pretrained on Kinetics-400 [5]. The number
of layers L in TCM is set to 3 and Droppath rate is 0.1. Our temporal boundary
localization module (TBLM) is designed using the techniques from DaoTAD
[45] and AFSD [23] for THUMOS14 and ActivityNet-1.3 respectively. Unlike
previous methods that operate on (i) RGB and (ii) optical flow frames inputs,
our TallFormer only uses RGB frames. The frames are resized to 256× 256 and
cropped to 224× 224 unless stated otherwise.

During training, we apply common data augmentations on both datasets,
including random crop, random horizontal flipping, random rotate and other
photometric distortions such as random brightness and contrast. For the other
training and inference details, we follow DaoTAD for THUMOS14 and AFSD
for ActivityNet-1.3 with minor modifications as below. The inference and all the
other settings are kept the same. Gradient Checkpointing [7] is applied to all our
models. Our models are trained on 4× RTX A6000 GPUs.

THUMOS14. We extract RGB frames with 15fps. Because 99.5% of action
instances in the validation set span less than 32 seconds, we consider 480 frames
as inputs. The batch size is set to 4 on each GPU. Since in DaoTAD, clip
features are temporally downsampled by 8, but in Swin Transformer the temporal
downsampling rate is only 2, we add two Convolutional layers with stride 2 before
the TCM to keep the same temporal downsampling rate as in DaoTAD.

ActivityNet-1.3. As is done in prior work [23], we resize all videos to 768
RGB frames. The batch size is set to 1 on each GPU. For simplicity, we remove
the boundary consistency learning module in AFSD. Our model is trained for 10
epochs instead of 16 as used in the original AFSD.

4.3 Comparison with Short-term and Long-term Baselines

We next conduct a thorough empirical study investigating the importance of
short-term vs. long-term modeling for the TAL task. We focus our comparisons
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Table 2: Comparing TallFormer with several of our own short-term and long-term
baselines on THUMOS14. We use a powerful video Swin-B as the Feature Extractor
(FE) for all models. All models operate on videos with a Spatial Resolution (SR) of
224× 224. LT-Frozen is a long-term baseline that uses a frozen feature extractor but
long Temporal Support (TS). ST-E2E is a short-term end-to-end trainable baseline
with an unfrozen backbone but short temporal support. TallFormer provides the best
trade-off between short-term and long-term modeling among these baselines.

Mem Cap Model Type Short-term Long-term mAP(%)

(GB/GPU) FE E2E SR TS(s) Fps 0.3 0.5 0.7 Avg.

12

LT-Frozen Swin-B ✗ 224 32 15 70.2 55.4 29.4 52.7

ST-E2E
Swin-B ✓ 224 8 8 63.1 46.6 16.0 42.9
Swin-B ✓ 224 32 2 55.4 32.2 8.4 31.9
Swin-B ✓ 224 4 15 50.5 33.9 13.4 32.8

TallFormer Swin-B ✓ 224 32 15 76.1 63.1 34.2 59.0

32

LT-Frozen Swin-B ✗ 224 32 15 70.2 55.4 29.4 52.7

ST-E2E Swin-B ✓ 224 32 8 72.7 59.8 33.3 56.3
Swin-B ✓ 224 12 15 72.8 58.6 30.0 55.1

TallFormer Swin-B ✓ 224 32 15 76.0 63.2 34.5 59.2

on three of our baselines, which are compared under the same finite GPU memory
constraints, i.e., either 12GB (RTX 3080) or 32GB (Tesla V100).

LT-Frozen: For this Long-Term modeling baseline, we use a powerful yet
frozen Video Swin-B as the feature extractor. A similar strategy of freezing the
feature extractor is commonly used in many prior methods [27,25,53] as the GPU
memory savings from freezing the backbone enable long-range temporal modeling
needed by TAL. All models are trained under a finite GPU memory constraint.

ST-E2E: Unlike LT-Frozen baseline, the Short-Term End-to-End trainable
baseline uses a Swin-B feature extractor (not frozen) that operates on 224× 224
video frame inputs. While benefiting from end-to-end trainability, due to the
GPU memory limitation, this baseline can only span either (i) short temporal
extent with dense video frame sampling or (ii) long temporal extent with sparse
video frame sampling. We study both of these ST-E2E variants.

TallFormer: Compared to the previous two baselines, we believe that our
approach achieves the best trade-off between short-term and long-term modeling.
In other words, the short-term feature extractor in our framework can be trained
end-to-end on high spatial resolution videos. Furthermore, our long-term memory
module enables the model to maintain strong long-term modeling capability for
precise temporal boundary localization.

Analysis. From Table 2, we observe that long-term modeling is important,
i.e., reducing the temporal support in ST-E2E leads to sub-optimal performance.
With a 32GB GPU memory limit, ST-E2E with a maximum temporal support of
12 seconds achieves 4.1% lower average mAP than TallFormer with 32 second
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temporal support. We also point out that the ST-E2E variant that spans 32
seconds using sparsely sampled frames (i.e., 8 vs. 15 fps) also produces 2.9% worse
performance than TallFormer. We observe similar trends for the models trained
under the 12GB GPU memory constraint. Additionally, our results indicate that
the the end-to-end training of a short-term feature extractor is also important as
LT-Frozen baseline achieves 6.5% lower accuracy than TallFormer. We observe
this trend in both 12GB and 32GB GPU memory settings.

Overall, we can conclude that TallFormer achieves the best accuracy-memory
trade-offs under both 12GB and 32GB GPU memory constraints. Specifically,
TallFormer outperforms the LT-Frozen and ST-E2E baselines by a large margin
especially with tighter GPU memory constraints (i.e. 12GB).

4.4 Comparison to the State-of-the-Art

Next, we compare TallFormer to the state-of-the-art methods as shown in Tab. 3.
The upper part of Tab. 3 includes methods that operate on pre-extracted action
recognition features. The middle section of Tab. 3 includes recently proposed
end-to-end trainable methods, AFSD and DaoTAD, that operate on small spatial
video resolutions (i.e., 96×96 and 112×112 respectively) to fit into GPU memory.
Lastly, in the bottom part of the table, we include our TallFormer, which can
be trained end-to-end on long 224× 224 videos.

We experiment with three variants of our method. First, we introduce a
variant, named TallFormer-12, which is cheap enough to fit in a 12GB memory
GPU, with two backbones I3D and Swin-B for fair comparison with prior methods.
Additionally, for the first variant (using I3D backbone), we use the clip sampling
rate r = 0.4 on THUMOS14 and r = 1/3 on AcitivityNet-1.3, whereas for the
latter variant (using Swin-B backbone) the clip sampling rate is set to r = 0.15 for
THUMOS14 and r = 1/8 for ActivityNet-1.3. Lastly, our best performing variant
is TallFormer-32 with Swin-B as its backbone, which uses a clip sampling-rate
of r = 0.4 for THUMOS and r = 0.375 for ActivityNet. We set these sampling
rates so that our model would fit in the available GPU memory.

THUMOS14. The results in Tab. 3 (the left part of the table), indicate
several interesting trends. First, we notice that despite using a small spatial reso-
lution, the end-to-end trainable methods such as AFSD and DaoTAD, outperform
methods that operate on pre-extracted action recognition features by a large
margin. Second, our results indicate that the memory-constrained TallFormer-12
with an I3D backbone outperforms a strong AFSD baseline by a substantial
margin according to all evaluation metrics. Moreover, when increasing the GPU
memory constraints, TallFormer-12 achieves 7.2% higher accuracy on average
than AFSD. We note that the GPU consumption for TallFormer is 29GB, which
is still within the capacity of the mainstream Tesla V100 GPUs. We also point
out that even when using the same amount of GPU memory as prior methods,
our method still largely outperforms previous SOTAs, i.e., TallFormer-12 with
I3D backbone and VSwin-B backbone outperforms AFSD by 1.9% and 7.0%.

ActivityNet. First, we point out that all the previous methods achieve
strong TAL results on ActivityNet while relying on an external action recognition



12 F. Cheng, G. Bertasius

Table 3: Comparison to the state-of-the-art on THUMOS14 and ActivityNet-v1.3. FE
and E2E denote the feature extractor backbone and whether a method is end-to-end
trainable respectively. The feature extractor backbones include TS [39], I3D [5], P3D [37]
and Swin-B [32] (denoted as SW). Flow and Ext. Cls. denote whether each method
uses optical flow as input and whether an external action recognition classifier is needed
respectively. Note that AFSD relies on an external classifier on ActivityNet-1.3.

Method FE E2E Flow Ext.
Cls.

mAP Mem

THUMOS14 ActivityNet-1.3 (GB)

0.3 0.5 0.7 Avg. 0.5 0.75 0.95 Avg.

BSN[27] TS ✗ ✓ ✓ 53.5 36.9 20.0 36.8 46.5 30.0 8.0 30.0 -
BMN[25] TS ✗ ✓ ✓ 56.0 38.8 20.5 38.5 50.1 34.8 8.3 33.9 -

BC-GNN[2] TS ✗ ✓ ✓ 57.1 40.4 23.1 40.2 50.6 34.8 9.4 34.3 -
BU-TAL[62] I3D ✗ ✓ ✓ 53.9 45.4 28.5 43.3 43.5 33.9 9.2 30.1 -
GTAN[33] P3D ✗ ✓ ✓ 57.8 38.8 - - 52.6 34.1 8.9 34.3 -
G-TAD[53] TS ✗ ✓ ✓ 54.5 40.2 23.4 39.3 50.4 34.6 9.0 34.1 -

TAL [6] I3D ✗ ✓ ✗ 53.2 42.8 20.8 39.8 38.2 18.3 1.3 20.2 -
RTD-Action [41] TS ✗ ✓ ✓ 68.3 51.9 23.7 49.0 47.2 30.7 8.6 30.8 -

VSGN [60] TS ✗ ✓ ✓ 66.7 52.4 30.4 50.2 52.4 36.0 8.4 35.1 -

AFSD[23] I3D ✓ ✓ - 67.3 55.5 31.1 52.0 52.4 35.3 6.5 34.4 12
DaoTAD[45] I3D ✓ ✗ ✗ 62.8 53.8 30.1 50.0 - - - - 11
DaoTAD[45] SW ✓ ✗ ✗ 72.7 59.8 33.3 56.3 - - - - 30

TallFormer-12 I3D ✓ ✗ ✗ 68.4 57.6 30.8 53.9 41.3 27.3 6.3 27.2 12
TallFormer-12 SW ✓ ✗ ✗ 76.1 63.1 34.2 59.0 51.4 34.0 7.6 33.7 12
TallFormer-32 SW ✓ ✗ ✗ 76.0 63.2 34.5 59.2 54.1 36.2 7.9 35.6 29

classifier [52], which ensembles the predictions from ResNet-200 and Inception-V2
models operating on RGB and optical flow inputs. Instead, we simplify this
pipeline by predicting action boundaries and categories using a single model.
Not only is our proposed framework simpler and more efficient, but it also
outperforms all previous approaches by 1.2% using RGB inputs alone. One
interesting observation is that TallFormer with I3D backbone is 6.5% lower
than TallFormer with a Swin-B backbone. Our analysis of this result reveals
that TallFormer-12 variant with an I3D backbone achieves a low video-level
action recognition accuracy (78.2%) while the accuracy of TallFormer-12 with
Swin-B backbone is 90.1%. We also note that the accuracy of an external action
recognition classifier [52] used by AFSD is 88.9%. This empirical finding also
explains why all previous methods require an external action recognition classifier.

HACS. We train TallFormer with Swin-B as backbone using the same
network structure and hyperparameters as in AcitivityNet-1.3. We report these
results in Tab. 4. These results suggest that similar to our previously considered
datasets, TallFormer also achieves state-of-the-art results on the HACS-Segment
dataset. Specifically, it outperforms the GTAD [53] and BMN [25,36] baselines
by 9.1% and 0.7% average mAP respectively without an external classifier.

Inference Speed Discussion. Compared with previous methods, we use a
larger backbone and higher spatial resolution. On the other hand, our proposed
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Table 4: Our results (in mAP) on the HACS-Segment dataset.
Backbone mAP(%)

0.5 0.75 0.95 Avg.

GTAD [53] - - - 27.5
BMN [25,36] 52.5 36.4 10.4 35.8
TallFormer 55.0 36.1 11.8 36.5

Table 5: Ablation studies on THUMOS14: (a) TallFormer works well even for a small
sampling rate r; (b) The temporal consistency module leads to 1.5% boost in the
average mAP; (c) TallFormer performs better with longer temporal support. For (a)
the backbone is Swin-B with spatial resolution 224×224. For (b) and (c), the backbone
is Swin-T with spatial resolution 112× 112.

(a) Analysis of the
clip sampling rate r.

r mAP(%) Mem

0.15 59.0 12
0.3 59.4 22
0.4 59.2 29
0.6 60.0 45
1.0 - OOM

(b) Importance
of Temporal Con-
sistency Module
(TCM).

TCM mAP(%)

✗ 51.1
✓ 52.6

(c) Temporal Sup-
port (TS) analysis.

TS (sec) mAP(%)

8 41.5
16 49.7
24 51.5
32 52.8
40 53.3

framework is much simpler than the frameworks of many prior TAL methods.
In particular, we use a single model with only RGB frames as input while most
previous methods adopt a two-stream approach that requires an external action
classifier. This is costly, because (i) optical flow extraction is slow and because
(ii) training and inference of an external action classifier is also time-consuming.

Due to the complexity of the existing systems, and the lack of publicly available
implementations, it is difficult to quantitatively measure the inference speed of
many prior methods. However, we note that in general, TallFormer provides
a much simpler, elegant and more efficient framework to the TAL problem.
For example, consider performing inference on AcitivyNet-1.3 using a RTX
A6000 GPU. The overall inference speed of a recent state-of-the-art AFSD [23]
is 11.74s/video, which includes (i) optical flow extraction, (ii) processing two
modalities and (iii) performing video-level action classification using [52]. On the
other hand, TallFormer only costs 1.58s/video while outperforming AFSD by
1.2% mAP.

4.5 Ablation Study

Lastly, we study various design choices of our TallFormer model. Specifically,
we investigate (i) TAL performance as a function of our clip sampling rate r,
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(ii) the importance of the temporal consistency module (TCM) and (iii) TAL
performance as a function of temporal support. We present these results below.

Accuracy vs. Clip Sampling Rate. During training, our model samples
a fraction of r total short-term clips from an untrimmed video input. We study
the performance as a function of clip sampling rate r. From Tab. 1(a), we can
observe that i) GPU memory usage is proportional to the sampling rate r; ii)
standard end-to-end training (r = 1) causes out-of-memory (OOM) error; iii)
TallFormer performs quite well even with a very small sampling rate 0.15, i.e.,
the TAL accuracy in mAP drops by only 1.0% while reducing the GPU memory
usage to only 12 GB (compared to > 45GB using r = 1.0)

Importance of Temporal Consistency Module (TCM). As shown in
Tab. 5(b), our proposed TCM increases the average mAP by 1.5%, which indicates
its importance to our overall framework. More conceptually, these results suggest
that encouraging long-range interactions between the memory features, and the
online-processed features can alleviate the feature distribution inconsistency
issue, which is also suggested by the visualized features before and after TCM in
Appendix. B.1.

Analysis of Temporal Support. We evaluate TallFormer when using
different temporal support (measured in seconds). Based on the results in Tab 5(c),
we observe that longer temporal supports leads to consistently higher mAP.

5 Discussion

We present TallFormer, a long-memory Transformer for temporal action lo-
calization. Our method is simple, flexible, and it can be efficiently trained
on long high-resolution videos for TAL. Furthermore, we demonstrate that
TallFormer significantly outperforms previous TAL approaches on the THU-
MOS14 and ActivityNet-1.3 benchmarks.

Some readers might wonder whether optimizing the GPU memory usage
for long-video processing is a valuable contribution since modern GPUs can
accommodate larger and larger GPU memory requirements. Furthermore, there
exist many prior memory saving techniques such as Gradient Checkpoint [7]
and Mixed Precision [34]. Despite the advances in GPU hardware, and new
developments in memory saving techniques, we believe that TallFormer is still
a valuable contribution to the research community. With the new developments
in GPU hardware, the demands for higher resolution video analysis and larger
models also grow. Thus, such demands pose new GPU memory-related challenges,
especially for long-term video understanding tasks such as temporal action
localization. We also note that TallFormer can be easily combined with the
existing memory-saving techniques, which we demonstrated in our experiments.
Our future work involves extending our framework to various multimodal settings
that involve processing both visual inputs and language.



TallFormer: TAL with a Long-memory Transformer 15

References

1. Bagchi, A., Mahmood, J., Fernandes, D., Sarvadevabhatla, R.K.: Hear me out: Fu-
sional approaches for audio augmented temporal action localization. arXiv preprint
arXiv:2106.14118 (2021)

2. Bai, Y., Wang, Y., Tong, Y., Yang, Y., Liu, Q., Liu, J.: Boundary content graph
neural network for temporal action proposal generation. In: European Conference
on Computer Vision. pp. 121–137. Springer (2020)

3. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for
video understanding. arXiv preprint arXiv:2102.05095 2(3), 4 (2021)

4. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: A
large-scale video benchmark for human activity understanding. In: Proceedings of
the ieee conference on computer vision and pattern recognition. pp. 961–970 (2015)

5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 6299–6308 (2017)

6. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar,
R.: Rethinking the faster r-cnn architecture for temporal action localization. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1130–1139 (2018)

7. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear
memory cost. arXiv:1604.06174 (2016)

8. Cheng, F., Xu, M., Xiong, Y., Chen, H., Li, X., Li, W., Xia, W.: Stochastic back-
propagation: A memory efficient strategy for training video models. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
8301–8310 (2022)

9. Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T.,
Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., et al.: Rethinking attention with
performers. arXiv preprint arXiv:2009.14794 (2020)

10. Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.:
Multiscale vision transformers. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 6824–6835 (2021)

11. Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 203–213 (2020)

12. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition.
In: Proceedings of the IEEE/CVF international conference on computer vision. pp.
6202–6211 (2019)

13. Gao, J., Shi, Z., Wang, G., Li, J., Yuan, Y., Ge, S., Zhou, X.: Accurate temporal
action proposal generation with relation-aware pyramid network. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 10810–10817 (2020)

14. Gao, J., Chen, K., Nevatia, R.: Ctap: Complementary temporal action proposal
generation. In: Proceedings of the European conference on computer vision (ECCV).
pp. 68–83 (2018)

15. Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., Westphal, S., Kim,
H., Haenel, V., Fruend, I., Yianilos, P., Mueller-Freitag, M., et al.: The" something
something" video database for learning and evaluating visual common sense. In:
Proceedings of the IEEE international conference on computer vision. pp. 5842–5850
(2017)



16 F. Cheng, G. Bertasius

16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 9729–9738 (2020)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

18. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

19. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with
stochastic depth. In: European conference on computer vision. pp. 646–661. Springer
(2016)

20. Idrees, H., Zamir, A.R., Jiang, Y.G., Gorban, A., Laptev, I., Sukthankar, R., Shah,
M.: The thumos challenge on action recognition for videos “in the wild”. Computer
Vision and Image Understanding 155, 1–23 (2017)

21. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: Stm: Spatiotemporal and motion
encoding for action recognition. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 2000–2009 (2019)

22. Kwon, H., Kim, M., Kwak, S., Cho, M.: Motionsqueeze: Neural motion feature
learning for video understanding. In: European Conference on Computer Vision.
pp. 345–362. Springer (2020)

23. Lin, C., Xu, C., Luo, D., Wang, Y., Tai, Y., Wang, C., Li, J., Huang, F., Fu,
Y.: Learning salient boundary feature for anchor-free temporal action localization.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 3320–3329 (2021)

24. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video under-
standing. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 7083–7093 (2019)

25. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: Bmn: Boundary-matching network for tem-
poral action proposal generation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 3889–3898 (2019)

26. Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: Proceedings
of the 25th ACM international conference on Multimedia. pp. 988–996 (2017)

27. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: Bsn: Boundary sensitive network for
temporal action proposal generation. In: Proceedings of the European conference
on computer vision (ECCV ). pp. 3–19 (2018)

28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017)

29. Liu, Q., Wang, Z.: Progressive boundary refinement network for temporal action
detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34,
pp. 11612–11619 (2020)

30. Liu, Y., Ma, L., Zhang, Y., Liu, W., Chang, S.F.: Multi-granularity generator
for temporal action proposal. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 3604–3613 (2019)

31. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022
(2021)

32. Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin transformer.
arXiv preprint arXiv:2106.13230 (2021)



TallFormer: TAL with a Long-memory Transformer 17

33. Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Gaussian temporal awareness
networks for action localization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 344–353 (2019)

34. Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg,
B., Houston, M., Kuchaiev, O., Venkatesh, G., et al.: Mixed precision training.
arXiv preprint arXiv:1710.03740 (2017)

35. Patrick, M., Campbell, D., Asano, Y., Misra, I., Metze, F., Feichtenhofer, C.,
Vedaldi, A., Henriques, J.F.: Keeping your eye on the ball: Trajectory attention in
video transformers. Advances in Neural Information Processing Systems 34 (2021)

36. Qing, Z., Su, H., Gan, W., Wang, D., Wu, W., Wang, X., Qiao, Y., Yan, J., Gao,
C., Sang, N.: Temporal context aggregation network for temporal action proposal
refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 485–494 (2021)

37. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-
3d residual networks. In: proceedings of the IEEE International Conference on
Computer Vision. pp. 5533–5541 (2017)

38. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: Cdc: Convolutional-
de-convolutional networks for precise temporal action localization in untrimmed
videos. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 5734–5743 (2017)

39. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. Advances in neural information processing systems 27 (2014)

40. Su, H., Gan, W., Wu, W., Qiao, Y., Yan, J.: Bsn++: Complementary bound-
ary regressor with scale-balanced relation modeling for temporal action proposal
generation. arXiv preprint arXiv:2009.07641 (2020)

41. Tan, J., Tang, J., Wang, L., Wu, G.: Relaxed transformer decoders for direct action
proposal generation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 13526–13535 (2021)

42. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal
features with 3d convolutional networks. In: Proceedings of the IEEE international
conference on computer vision. pp. 4489–4497 (2015)

43. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition. pp. 6450–6459 (2018)

44. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information
processing systems 30 (2017)

45. Wang, C., Cai, H., Zou, Y., Xiong, Y.: Rgb stream is enough for temporal action
detection. arXiv preprint arXiv:2107.04362 (2021)

46. Wang, L., Li, W., Li, W., Van Gool, L.: Appearance-and-relation networks for
video classification. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 1430–1439 (2018)

47. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Gool, L.V.: Temporal
segment networks: Towards good practices for deep action recognition. In: European
conference on computer vision. pp. 20–36. Springer (2016)

48. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks for action recognition in videos. IEEE transactions on pattern
analysis and machine intelligence 41(11), 2740–2755 (2018)

49. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768 (2020)



18 F. Cheng, G. Bertasius

50. Wang, X., Gao, C., Zhang, S., Sang, N.: Multi-level temporal pyramid network for
action detection. In: Chinese Conference on Pattern Recognition and Computer
Vision (PRCV). pp. 41–54. Springer (2020)

51. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.: Long-
term feature banks for detailed video understanding. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 284–293
(2019)

52. Xiong, Y., Wang, L., Wang, Z., Zhang, B., Song, H., Li, W., Lin, D., Qiao, Y.,
Van Gool, L., Tang, X.: Cuhk & ethz & siat submission to activitynet challenge
2016. arXiv preprint arXiv:1608.00797 (2016)

53. Xu, M., Zhao, C., Rojas, D.S., Thabet, A., Ghanem, B.: G-tad: Sub-graph localiza-
tion for temporal action detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10156–10165 (2020)

54. Xu, M., Xiong, Y., Chen, H., Li, X., Xia, W., Tu, Z., Soatto, S.: Long short-term
transformer for online action detection. Advances in Neural Information Processing
Systems 34, 1086–1099 (2021)

55. You, C., Han, L., Feng, A., Zhao, R., Tang, H., Fan, W.: Megan: Memory enhanced
graph attention network for space-time video super-resolution. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp.
1401–1411 (2022)

56. You, C., Zhao, R., Liu, F., Chinchali, S., Topcu, U., Staib, L., Duncan, J.S.: Class-
aware generative adversarial transformers for medical image segmentation. arXiv
preprint arXiv:2201.10737 (2022)

57. Zeng, R., Huang, W., Tan, M., Rong, Y., Zhao, P., Huang, J., Gan, C.: Graph
convolutional networks for temporal action localization. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7094–7103 (2019)

58. Zhang, C., Gupta, A., Zisserman, A.: Temporal query networks for fine-grained
video understanding. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4486–4496 (2021)

59. Zhang, D., Dai, X., Wang, X., Wang, Y.F.: S3d: single shot multi-span detector via
fully 3d convolutional networks. arXiv preprint arXiv:1807.08069 (2018)

60. Zhao, C., Thabet, A.K., Ghanem, B.: Video self-stitching graph network for temporal
action localization. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 13658–13667 (2021)

61. Zhao, H., Torralba, A., Torresani, L., Yan, Z.: Hacs: Human action clips and
segments dataset for recognition and temporal localization. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 8668–8678 (2019)

62. Zhao, P., Xie, L., Ju, C., Zhang, Y., Wang, Y., Tian, Q.: Bottom-up temporal action
localization with mutual regularization. In: European Conference on Computer
Vision. pp. 539–555. Springer (2020)

63. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection
with structured segment networks. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 2914–2923 (2017)

A Implementation Details

Here, we provide more details related to the (i) long memory module and (ii)
temporal boundary localization module of our TallFormer model.
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Algorithm 1 Pseudocode of short-term feature extraction and feature sampling
from long-term memory.

# encoder: short-term Transformer encoder.
# clips: video clips (N_c x L_c x H x W x 3).
# long_memory: the pre-extracted features for this video (N_c x L_f x

C_f).
# r: sampling rate (float).

# sample clips processed by encoder
sampled_idx = uniform_sample(N_c, r)
remaining_idx = [idx for idx in range(N_c) if idx not in sampled_idx]
sampled_clips = clips[sampled_idx]

# Short-term Transformer Encoder
sampled_features = encoder.forward(sampled_clips) # shape: [N_s, L_f,

C_f]

# Long-term Memory Module
mem_features = long_memory[remaining_idx]. # shape: [N_c-N_s, L_f,

C_f]
long_memory[sampled_idx] = sampled_features.detach()

# Temporal Consistent Module
## gather features
features = zeros(N_c,*sampled_features.shape[1:])
features[sampled_idx] = sampled_features
features[remaining_idx] = mem_features
features = features.reshape(N_c*L_f, C_f) #shape: [N_c*L_f, C_f]
## refine features
for i in range(L):

features = TransformerLayer(features) #shape: [N_c*L_f, C_f]

A.1 Long Memory Module

The implementation details of the proposed Long Memory Module (LMM) and
Temporal Consistency Module (TCM) are as shown in Alg. 1. The inputs are first
participate into Nc clips. Among these clips, we sample Ns clips to be processed
by the Short-term Transformer Encoder and the remaining Nc − Ns clips by
LMM. The clip features extracted by the encoder is also used to update the
LMM. All the clips features are fed to the TCM to generate more consistent
features. The output features of TCM are the input to the temporal boundary
localization module.
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Fig. 3: Network structure for THUMOS14.

A.2 Temporal Boundary-Localization Module

Given the refined features fr ∈ RCc×L, the Temporal Boundary-Localization
Module (TBLM) aims to produce the action boundaries and categories for each
action instance. We use different TBLMs for THUMOS14 [20] and ActivityNet [4].

THUMOS14. The detailed architecture is shown in Fig. 3. The TBLM is
composed of a Feature-Pyramid Network (FPN) and a Detection Head. The Detec-
tion Head is taken from DaoTAD [45]. In the FPN, the features are downsampled
(bottom to up) using 1D kernel-3, stride-2 convolutions and are upsampled (up
to bottom) by linear interpolation along the temporal dimension. We use Focal
loss [28] for the sigmoid-activated classification branch and DIoU loss [?] for the
regression branch. The weights are 1 for both losses. We refer readers to [45] for
more details.

ActivityNet-1.3. The detailed architecture is shown in Fig. 4. We use the
same Long Memory Module, Temporal Consistency Module, Feature Pyramid
Network as in THUMOS14. We adopt the Detection Head design from AFSD
[23]. Additionally, after the Temporal Consistency Module, we also add a video-
level classifier composed of a global average pooling layer, dropout layer with
drop-rate 0.5 and a linear layer with a dimensionality equal to the number of
action classes. AFSD Detection Head is a two-stage detector. First, it uses a
Basic Prediction Module to predict the coarse action boundaries and action-
agnostic classes (background or not). Then a Saliency-based Refinement Module
is used to refine the predicted boundaries and action-agnostic classes. Finally, we
assign each predicted action proposal with the action category predicted by the
video-level classifier. We use Cross-entropy loss for video-level classifier, Focal
loss [28] for classification branches in the detection head, tIoU loss [23] for the
regression of Basic Prediction Module and L1 loss for the boundary refinement
in the Saliency-based Prediction Module. The weights are 1 for all the losses. We
refer the readers to [23] for more specific details related to the Detection Head.
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Fig. 4: Network structure for ActivityNet-1.3. The same Long Memory Module,
Temporal Consistency Module and Feature Pyramid Network are used as in
THUMOS14.

B Additional Results

B.1 Importance of Temporal Consistency Module

In addition to the quantitative results in the main paper, we visualize the features
before and after Temporal Consistency Module (TCM) as in Fig. we extracted
four sets of features: features from short-term feature extractor (1) before, and
(2) after the TCM, and features from the Long Memory Module (3) before, and
(4) after the TCM. We then applied PCA and plotted the first two principal
components as shown Fig. 5. We observe that the features from the short-term
feature extractor and long-term memory are more similar after the TCM than
they were before the TCM. This suggests that TCM effectively reduces the
inconsistency between features from the short-term feature extractor and long
memory module.

Table 6: Ablating different short-term transformer encoders within our
TallFormer framework on THUMOS14 [20].

Transformer Encoder mAP(%)

0.3 0.4 0.5 0.6 0.7 Avg.

Swin-T [32] 72.7 69.0 60.8 48.3 34.3 57.0
Swin-S [32] 74.9 70.3 62.1 48.9 34.3 58.1
Swin-B [32] 76.0 71.5 63.2 50.9 34.5 59.2

B.2 Ablating Different Short-term Transformer Encoders

The flexibility of our TallFormer model allows us to use any short-term trans-
former encoder as our clip-level backbone. To demonstrate TallFormer’s gen-
eralization with different backbones, we experiment with different variations of
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Fig. 5: Network structure for THUMOS14.

Swin Transformers [32], i.e. Swin-tiny, Swin-small and Swin-base. As shown in
Tab. 6, TallFormer achieves pretty high average mAPs on all the backbones.

B.3 Ablating Temporal Support

Due to long actions (e.g., 30 seconds in length), our model needs to span long
temporal extent. Thus, here, we evaluate TallFormerwhen using different tem-
poral support (measured in seconds). Based on the results in Tab 7, we observe
that longer temporal supports leads to consistently higher average mAP.

Table 7: Temporal Support (TS) ablation on THUMOS14 [20]. The model is
TallFormer [45] with Swin-T as backbone and spatial resolution 112× 112. We
observe that longer temporal supports leads to higher average mAP.

TS (sec) mAP(%)

0.3 0.4 0.5 0.6 0.7 Avg.

8 59.8 54.1 45.4 31.3 17.0 41.5
16 65.0 60.3 52.5 42.6 28.3 49.7
24 65.7 62.0 53.8 45.0 31.0 51.5
32 66.9 63.2 56.7 46.0 31.1 52.8
40 68.0 63.7 56.2 46.0 32.6 53.3
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