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Abstract. Optical flow is an easily conceived and precious cue for ad-
vancing unsupervised video object segmentation (UVOS). Most of the
previous methods directly extract and fuse the motion and appearance
features for segmenting target objects in the UVOS setting. However,
optical flow is intrinsically an instantaneous velocity of all pixels among
consecutive frames, thus making the motion features not aligned well
with the primary objects among the corresponding frames. To solve the
above challenge, we propose a concise, practical, and efficient architec-
ture for appearance and motion feature alignment, dubbed hierarchical
feature alignment network (HFAN). Specifically, the key merits in HFAN
are the sequential Feature AlignMent (FAM) module and the Feature
AdaptaTion (FAT) module, which are leveraged for processing the ap-
pearance and motion features hierarchically. FAM is capable of aligning
both appearance and motion features with the primary object semantic
representations, respectively. Further, FAT is explicitly designed for the
adaptive fusion of appearance and motion features to achieve a desirable
trade-off between cross-modal features. Extensive experiments demon-
strate the effectiveness of the proposed HFAN, which reaches a new
state-of-the-art performance on DAVIS-16, achieving 88.7 J&F Mean,
i.e., a relative improvement of 3.5% over the best published result.

Keywords: Video object segmentation · Feature alignment

1 Introduction

Video object segmentation (VOS) aims to segment objects for each frame in a
video sequence. Compared to semi-supervised VOS (SVOS), in which annota-
tions are provided for the first frame at test time, unsupervised VOS (UVOS)
is particularly challenging as it involves no prior knowledge and human inter-
posing. This work focuses on the UVOS task, which has motivated numerous
downstream segmentation topics [5,78,26,3,71].

UVOS approaches can be grouped into three main subcategories: motion-
based, appearance-based, and motion-appearance-based, depending on the uti-
lizations of different feature types. By merely using motion information [45,59],
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Fig. 1. Performance J&F Mean versus inference speed FPS (frames per second) on
DAVIS-16 [47]. Existing and proposed methods are marked with • and •, respectively.

the UVOS is transformed into a moving object segmentation (MOS) task. The
main drawback of MOS is the risk of losing targets when the object is moving
slowly or is stationary. Further, appearance-based methods [63,38,34,77] usu-
ally describe the target in detail using mature image segmentation techniques.
However, the lack of prior knowledge on the primary objects in the unsuper-
vised solution, almost always, can lead to mis-segmentation cases. By contrast,
motion-appearance schemes [1,69,75,50,79] can mitigate the deficiencies of the
above two types of methods. Appearance features compensate for the shortage
of motion descriptions on semantic representations, and motion cues enable the
high-quality candidate regions to be selected for appearance features.

As the leading motion-appearance scenario, optical flow guided UVOS meth-
ods have significantly advanced the performances of segmentation. Abandoning
appearance modeling by converting VOS into a foreground motion prediction
based purely on optical flow information does not handle static foreground ob-
jects well. However, two intrinsic drawbacks exist in these approaches. First,
optical flow describes the velocity vector of per-pixel motion in a video, captur-
ing the motion information between consecutive frames. As such, the positions
of the primary objects in a frame and/or its corresponding optical flow are usu-
ally not well preserved. Most of the existing methods solely fuse the features of
a frame and its corresponding optical flow without considering the respective
alignments between the primary objects and the appearance/motion features.
This inevitably leads to the loss of boundary information of the primary ob-
jects. Second, when facing occlusions, motion blur, fast-moving objects, and
even stationary objects in UVOS, the inferior optical flow estimation directly
affects the segmentation results of the final models. Especially, if optical flow
estimation fails, the motion features of the primary objects in the video are
invalidated accordingly. In this case, the unselective fusion of appearance and
motion features is probably harmful to segmentation accuracy.

To tackle the above challenges, inspired by the current trend of optical flow
guided UVOS [59,1,22,69,75,50,79], we propose a hierarchical feature alignment
network (HFAN). It aligns the object positions with the motion/appearance fea-
tures and adapts the aligned features for mitigating the cross-modal mismatch.
Specifically, we construct a Feature AlignMent (FAM) module to implement
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object-level alignment with appearance/motion features in the multi-level fea-
ture encoding stage. Considering that the spatial locations of appearance and
ground-truth target regions are seamlessly matched, we generate the coarse seg-
mentation probability mask by appearance features. Next, FAM leverages the
same object regions (i.e., coarse masks) to represent object-level alignment fea-
tures for appearance and motion. Moreover, we build the Feature AdaptaTion
(FAT) module to combine appearance and motion features after the alignment
step. FAT aims to ensure the robustness of fused features by constructing an
adaptive weight between appearance and motion features. Notably, the adaptive
fusion of appearance and motion features could effectively relieve the harms of
optical flow estimation failure and motion blur on segmentation results.

We assess the effectiveness and reliability of the proposed model on three
widely-used datasets. On DAVIS-16 [47], our HFAN-small and HFAN-medium
achieve 86.7 and 87.5 J&F Mean, respectively, at 20.8 and 14.4 FPS. These are
new state-of-the-art (SOTA) results in terms of accuracy and speed, as shown
in Fig. 1. On YouTube-Objects [49], the proposed HFAN-small represents a
relative improvement of 2.0% over the reported best result. Furthermore, the
proposed method achieves an equivalent performance to SVOS models on Long-
Videos [32]. Meanwhile, HFAN also reaches the best reported result on DAVIS-
16 for the video salient object detection (VSOD), which aims to detect salient
regions in videos. In summary, HFAN provides an efficient solution and a new
perspective on optical flow guided UVOS.

2 Related Work

2.1 Video Object Segmentation

Current video object segmentation is broadly classified as unsupervised VOS
[63,65,70,58] and semi-supervised VOS [39,44,52,8] tasks. The main difference
is whether they provide accurate pixel-level annotations for the first frame of
the segmented video at inference. As research on VOS has progressed, interac-
tive VOS methods [43,15,5] that utilize user interaction (e.g., scribbles or clicks)
as input to iteratively optimize segmentation results have yielded good perfor-
mance. Referring VOS setting [18,51,24] arises from considering a different type
of interaction, language-guided video expressions, i.e., target objects referred
by a given language descriptions. However, the expensive nature of high-quality
annotated video data motivates the need for an elegant and unrestricted VOS
setting. This paper focuses on UVOS, which does not use any human intervention
during testing. Depending on whether the current methods use deep features or
not, we further divide UVOS into two subcategories: traditional and deep.

The computer vision community has extensively studied the task of auto-
matic binary video segmentation over nearly three decades. Early traditional
models were typically based on specific heuristics related to the foreground (i.e.,
target proposals [48], motion boundaries [45], salient objects [64]). They required
hand-crafted low-level features (e.g., SIFT, edges). Later, several methods (e.g.,
point trajectories [42], background subtraction [12] and over-segmentation [10])
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were proposed to segment and track all targets with different motions and ap-
pearances in the video. More recently, with the renaissance of artificial neural
networks, deep models (e.g., CNN [77,70], RNN [55,65,1], GNN [63,36]) have
enabled UVOS to evolve rapidly. A quintessential example of an attempt to
apply deep learning techniques in this field is LSMO [59], which learns a mul-
tilayer perceptron to detect moving objects. The computational burden is re-
duced by many subsequent approaches based on fully convolutional networks,
such as two-stream structures [58,21,28,54], CNN-based encoder-decoder archi-
tectures [79,6,78], and Siamese network [37,34]. As the field of optical flow esti-
mation [19,57,56] has flourished, more and more optical flow based UVOS meth-
ods [22,69,75,50] have gained tremendous performance improvements. The major
difference from the optical flow-based approaches described above is that we re-
consider the mismatch between frames and optical flow. Our HFAN performs
hierarchical feature alignment and adaptation of motion-appearance features to
achieve accurate feature representation of the primary objects in a video.

2.2 Feature Alignment

Feature alignment is widely used in various fields, e.g., object detection [4,13,33],
image segmentation [16,31,74,17], and person re-identification [73,40,62,72]. For
object detection, feature alignment mainly involves the misalignment between
anchor boxes and convolutional features, in addition to multiple anchors for the
same point in the feature map. Existing image segmentation models generally
adopt the feature pyramid networks (FPN) [33] to obtain different resolution
feature maps to improve performance. However, this increases the loss of bound-
ary information during downsampling and unaligned feature maps with different
resolutions for upsampling. An effective way [16,31] is to align the features from
the coarsest resolution to the finest resolution to match positions between fea-
ture maps. Aligning and adapting motion and appearance features of multi-level
representations from the same encoder is implemented by our HFAN. Thus, it
is guaranteed that hierarchical feature maps between the two modalities align
their respective features based on the same primary objects.

3 The Proposed Method

Our HFAN consists of two modules: feature alignment (FAM, §3.2) and feature
adaptation (FAT, §3.3). FAM aligns the hierarchical features of appearance and
motion feature maps with the primary objects. FAT fuses these two aligned
feature maps at the pixel-level with a learnable adaptive weight.

3.1 Task Definitions

Given an input video I with N frames, we can select each frame I ∈ RH×W×3,
and calculate the relative optical flow O ∈ RH×W×3 (visualized as an RGB
image) by [57]. In the i-th stage of the multi-level feature representation (i ∈
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Fig. 2. The pipeline of HFAN. Frame I and optical flow O are used as inputs to
extract hierarchical appearance and motion features, respectively, through an encoder
with HFAN. And the excellent segmentation mask Y is obtained by the decoder.

{1, 2, 3, 4}), the appearance and motion features are denoted as Ii ∈ RHi×Wi×Ci

and Oi ∈ RHi×Wi×Ci , respectively. Hi × Wi indicates the feature resolution,
where the value is set to H

2i+1 × W
2i+1 . The proposed HFAN aims to generate

object-level aligned, high-quality adapted features,

Ui = FHFAN(Ii,Oi) ∈ RHi×Wi×Ci . (1)

Here, FHFAN(·, ·) contains two main modules, which are:

Îi, Ôi = FFAM(Ii,Oi),Ui = FFAT(̂Ii, Ôi), (2)

where FFAM conducts feature alignment for Ii and Oi, and FFAT fuses aligned
feature maps from FFAM by performing a multi-modal adaptive feature fusion.
The overall architecture of the proposed method is shown in Fig. 2.

We adopt a lightweight MiT [66] backbone (ResNet [14] is also studied, see
§4.2 for details.) and employ a decoder to yield the primary object binary mask
Y ∈ {0, 1}H×W of the frame I. Next, we illustrate in detail the two main modules
of our proposed HFAN model, along with the training and inference phases.

3.2 Feature Alignment Module

Optical flow methods produce a dense motion vector field by generating a vector
for each pixel, which is important auxiliary information for studying video anal-
ysis and representation. Former works [79,69,75,50] using optical flow guidance
have defaulted one video frame and its optical flow to aligned images. However,
this hypothesis then holds approximately only if the motion between two con-
secutive frames is small. In addition, this solidification tends to result in poor
accuracy along moving object boundaries. An intuitive concept is that although
appearance features and motion features are unaligned, the bond between them
is that they share the primary objects. Motivated by this, we design a feature
alignment module specifically for the frame and optical flow to alleviate these
issues. Firstly, FAM predicts the coarse segmentation probability of Ii to obtain

Pi = FCS(Ii) ∈ RHi×Wi×Ncls , (3)
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where FCS(·) represents the coarse segmentation probability mask implemented
by a convolution block Conv1×1(Ci, Ncls) → BN → ReLU on the appearance
feature map Ii, and Ncls denotes the number of categories. Here, BN indicates
the batch normalization [20] and ReLU is the rectified linear unit [41]. This paper
focuses on single foreground and background, so Ncls is set to 2.

The regions contained in the coarse probability mask Pi obtained by the
original frame Ii are consistent with the primary object’s areas to be segmented.
Therefore, we design the feature alignment module, which only aligns the ap-
pearance and motion features separately for the mask regions. This way has
the merit of reducing the computational cost while weakening the negative im-
pact of the optical flow background noise on the segmentation. Subsequently, Pi

obtained by Eq. (3) is a contextual representation of primary object regions co-
built with the original appearance feature map. We design the category-specific
semantic (CSS) module to represent the category semantic, formulated as

I
′

i = permute(view(Ii)),P
′

i = softmax(view(Pi)),

Mi = FCSS(Ii,Pi) = matmul(I
′

i,P
′

i) ∈ RCi×Ncls×1,
(4)

where view, permute and matmul indicate the reshaping, permuting tensor di-
mension and tensor product. softmax is also known as normalized exponential
function. The prominent role of Mi is summarized in two points: 1) the spatial
compression of appearance features within a specific region Pi; 2) the construc-
tion of category-specific information shared by appearance and motion features.
The interchange on feature and semantic levels performed by FCSS makes it
possible to seek common contexts for appearance-motion features.

Immediately afterward, the primary object context (POC) module is devised
to perform object-level contextual alignment of appearance and motion features
with the same Mi. Inspired by self-attention [60], FSA is achieved by

FSA = softmax(αQKT)V,Q ∈ {Ii,Oi}
Q,K,V = FQuery(Q),FKey(Mi),FValue(Mi),

(5)

where Q, K and V denote the query, key and value obtained by three transfor-
mation operations of FQuery, FKey and FValue, respectively. They are formed by
Conv1×1(Ci, Ci/r) → BN → ReLU. α = 1√

Ci
is a scaling factor. r is set to Ci/16

for channel reduction ratio and concat indicates the concatenation operation.
Our proposed POC module helps refine the target boundaries and alleviate

the primary object shifts between the frame and optical flow. The POC module
can be represented as follows:

Îi = FPOC(Ii,Mi) ∈ RHi×Wi×Ci ,

Ôi = FPOC(Oi,Mi) ∈ RHi×Wi×Ci ,
(6)

where Îi and Ôi are appearance-aligned and motion-aligned feature maps, re-
spectively.
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Fig. 3. Illustration of the proposed FAM and FAT modules. Feature Alignment and
Feature Adaptation are applied on each hierarchical feature map to resolve the position
and modal mismatches between optical flow and video frames. Ui denotes the alignment
and adaptation features of stage i ∈ {1, 2, 3, 4}.

Compared to previous methods, FAM does not interact directly with ap-
pearance and motion features but employs CSS and POC modules to achieve
contextual alignment of different modal features. As shown in Fig. 3-FAM, when
Ii and Oi go through FAM, their respective features represent the shared pri-
mary object region Pi, guided by Mi. It ensures the feature independence of
appearance Îi and motion Ôi before the feature adaptation fusion phase.

3.3 Feature Adaptation Module

After the appearance and motion features are expressed based on the same
object-contextual region, the aligned feature maps Îi and Ôi have more boundary
information and less background noise. However, when the optical flow estima-
tion fails due to slow motion or stationary target objects, retaining all the optical
flow features would cause a tremendous loss in segmentation performance. To
this end, we require adaptive operations between cross-modal features for them.
In this work, we propose the feature adaptation (FAT) module.

Specifically, we aggregate appearance-aligned and motion-aligned features
and accordingly get the fused feature map Fi, which embraces all the informa-
tion of Îi and Ôi. The formula is directly expressed as Fi = Îi + Ôi. Here,
Fi ∈ RHi×Wi×Ci is treated as a semantic feature map after the superposition
of appearance and motion contexts, equivalent to performing a skip connection
operation [14,33] on different modal features of the same resolutions. Inspired
by [30], channel-level and pixel-level semantic representations are obtained by

FCA
i = FCA(Fi) ∈ RHi×Wi×Ci ,

FPA
i = FPA(Fi) ∈ R1×1×Ci ,

(7)

where FCA(·) and FPA(·) indicate channel-wise and pixel-wise attention opera-
tions are performed on Fi.

Instead of using Fi directly as the fused appearance and motion features as
in existing approaches [50,79,21], we propose to adapt these features. Specifi-
cally, we transform Fi into basis weight with feature adaptation to ensure stable
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feature representation capability even under low-quality motion information con-
ditions (e.g., occlusion and slow motion). The formula is expressed as

F̂i = sigmoid(FCA
i + FPA

i ) ∈ RHi×Wi×Ci ,

Ui = Îi ⊙ F̂i + Ôi ⊙ (1− F̂i) ∈ RHi×Wi×Ci ,
(8)

where ⊙ denotes the element-wise multiplication. At this point, details of FAT
are introduced, and the workflow is illustrated in Fig. 3-FAT. Further observation
of Eq. (8) shows that when (1 − F̂i) approaches 0, all information of Ui is
provided by appearance features, while when F̂i reaches 0, all information of
Ui is supplied by motion features. Meanwhile, F̂i is learnable, so it realizes the
feature self-adaptation of the frame and optical flow.

3.4 Training and Inference

The multi-level features Ui (i ∈ {1, 2, 3, 4}) obtained through HFAN are fed to
the decoder FDEC, and the predicted segmentation mask Q is acquired

Q = FDEC(Ui|i=1,2,3,4) ∈ RH×W×Ncls , (9)

where FDEC(·) utilizes a lightweight All-MLP decoder provided by [66] to ensure
consistency with the encoder network MiT.

Our model is trained to minimize the loss function L as follows

L =
1

H ×W

∑
p,q

LCE(Q[·,p,q],G[p,q]), (10)

where LCE is the Cross Entropy Loss. G stands for the ground-truth mask.∑
p,q denotes the sum over all positions on the frame I. In the inference stage,

Q from the decoder is passed directly through the argmax function to infer the
final binary mask Y. Prediction segmentation of video I without applying any
post-processing techniques can be phrased as

Y = argmax(Q) ∈ {0, 1}H×W . (11)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate HFAN on three publicly available datasets with UVOS:
DAVIS-16 [47], YouTube-Objects [49] and Long-Videos [32]. DAVIS-16 [47] con-
tains a total of 50 videos, including 30 videos for training and 20 videos for
validation. YouTube-Objects [49] includes 126 web videos divided into 10 cate-
gories with a total of more than 20,000 frames. Long-Videos [32] consists of three
videos, each of which contains about 2500 frames per video sequence.
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Implementation Details.We utilize PyTorch [46] and MMSegmentation code-
base [7] to implement our model and train on two NVIDIA V100 with a mini-
batch size of 8 per GPU. To achieve a better trade-off between accuracy and
speed, we choose lightweight MiT-b1 and middleweight MiT-b2 as the backbones
rather than the better but larger MiT-b3 to MiT-b5 [66]. Following [79,61,38], we
pre-train our network on YouTube-VOS [67] and fine-tune on the training set of
DAVIS-16 [47]. During training, we augment data online by random horizontal
flipping, random resize with ratio 0.5 ∼ 2.0, and random cropping to 512× 512.
We use AdamW optimizer to pre-train for 160K iterations and fine-tune for 4K
iterations. The learning rates of pre-training and fine-tuning are set to 6e − 5
with a poly schedule and 1e− 5 with a fixed schedule, respectively. For obtain-
ing an elegant end-to-end model, we do not employ training tricks like auxiliary
head loss and online hard example mining [53]. Moreover, no post-processing
techniques (e.g., the widely used CRF [25]) are used in the inference phase. All
inference processes for the experiments are performed using a single V100. We
report UVOS performance using two standard evaluation metrics recommended
by [47], i.e., region similarity J and boundary accuracy F .

4.2 Ablation Studies

To quantify the effect of each fundamental component in HFAN, we perform an
exhaustive ablation study on the DAVIS-16 val-set [47]. For the fairness of the
ablation results, we do not perform any post-processing techniques.
Impact of Data Input. To analyze the effect of appearance and motion features
on performance, we first conduct an ablation study on the data input in Table 1.
We adopt the video frame and corresponding optical flow as data inputs. A
simple additive feature fusion approach is employed as the baseline. Compared
to using a single input type, the baseline improves performance by providing
richer appearance and motion cues. The ablation results illustrate that optical
flow, which is deemed as the temporal consistency between video frames, requires
the coaction of appearance features to achieve the desired effect.
Efficacy of Crucial Modules. When comparing our baseline with FAM, FAT,
and HFAN, the results in Table 2 reveal that HFAN is a superior aggregate
of FAM and FAT. Specifically, FAM improves 2.2% and 2.3% in terms of J
Mean and F Mean, respectively. FAT increases by 2.0% on J Mean and 2.8%
F Mean. The best performance gains achieved by HFAN, which is implemented
by combining FAM and FAT modules, further demonstrates the effectiveness of

Table 1. Ablation study for data in-
put. All ablated versions utilize hier-
archical architecture MiT-b1 as the
backbone.

Input J Mean ↑ ∆J F Mean ↑ ∆F
Image frame only 79.1 -3.9 79.8 -3.5
Optical flow only 77.9 -5.1 76.5 -6.8

Baseline 83.0 - 83.3 -

Table 2. Ablation study for module. HFAN in-
dicates a full model with integrated FAM and
FAT modules.

Variant J Mean ↑ ∆J F Mean ↑ ∆F FPS ↑
Baseline 83.0 - 83.3 - 22.0

Baseline + FAM 85.2 +2.2 85.6 +2.3 21.0
Baseline + FAT 85.0 +2.0 86.1 +2.8 21.4

Baseline + HFAN 86.2 +3.2 87.1 +3.8 20.8
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Table 3. Ablation study on different back-
bones. Transformer-like and CNN-like ver-
sions are considered in the experimental
ablation. For the test setup, SS / MS de-
notes single / multi-scale test.

Backbone Test Setup J Mean ↑ F Mean ↑ FPS ↑

MiT-b0
SS 81.5 80.8 24.0
MS 83.4 82.3 3.4

MiT-b1
SS 86.2 87.1 20.8
MS 87.1 87.7 2.5

MiT-b2
SS 86.8 88.2 14.4
MS 88.0 89.3 1.4

MiT-b3
SS 86.8 88.8 10.6
MS 88.2 90.0 1.0

Swin-Tiny
SS 86.0 87.3 12.8
MS 87.2 87.9 1.1

ResNet-101
SS 86.6 87.3 12.4
MS 87.3 87.9 1.3

Table 4. Ablation study on different input
sizes and optical flow with MS test.

Size
Method RAFT PWCNet

J Mean ↑ F Mean ↑ J Mean ↑ F Mean ↑
384 × 384 86.2 86.6 84.5 84.7
448 × 448 86.9 87.5 85.3 85.7
480 × 480 86.9 87.6 85.5 85.9
512 × 512 87.1 87.7 85.7 86.0

Table 5. Ablation study on Transformer-
like and CNN-like network architectures.
Ablated results are obtained in same se-
tups (RAFT, 512 × 512, and MS test).

Backbone
Method MATNet + CRF Ours

J Mean ↑ F Mean ↑ J Mean ↑ F Mean ↑
MiT-b1 83.8 82.6 87.1 87.7
MiT-b2 84.7 83.8 88.0 89.3

ResNet-101 84.0 82.9 87.3 87.9

proposed approach. For aligning features of co-foreground objects in different
modal images, HFAN achieves a simple way to correct shift differences between
video frames and their corresponding optical flow features. In addition, HFAN
achieves adaptive selection in the feature fusion phase by learning feature adap-
tation weights. Fig. 4 visualizes the ablated versions for Table 2. It can be found
that FAM aligns the image and optical flow features to yield smoother and more
refined object boundaries. Meanwhile, FAT enhances the image and optical flow
features by adaptive transformation. Our HFAN inherits advantages of FAM and
FAT, obtaining more finesse in the target region and removing a larger amount
of noise in the non-target region.

Efficacy of Backbone. We investigate the effect of different backbone networks
on accuracy and speed. The results of MiT-b0 to MiT-b3 [66] are shown in
Table 3 (Note that we do not run experiments using MiT-b4 and MiT-b5 due
to GPU memory limitations.). We find that the performance increases when
enlarging the size of backbone networks. However, a larger network leads to a
lower model efficiency and real-time speed. In addition, other types of backbone
networks (e.g., Swin Transformer [35] and ResNet [14]) also achieve competitive
results. This adequately demonstrates the generality of the proposed method.
Given the trade-off between the model size and performance, we choose MiT-b1
and MiT-b2 as the small and medium backbone networks for HFAN, respectively.

(a) Baseline (b) + FAM (c) + FAT (d) + HFAN

Fig. 4. Illustration of the first stage feature maps U1 from four ablated models.
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Effect of Image Size and Optical Flow. Low-resolution image inputs gen-
erally degrade the performance of the segmentation model, while the use of
different optical flow estimation methods also affects the final segmentation re-
sults. To study the effects of image size and optical flow estimation methods
on the proposed method, we explore four different image size inputs and two
well-known optical flow estimation methods. The ablation results are shown in
Table 4, and we can find that 1) the proposed method still has good performance
under the low-resolution condition; 2) RAFT [57] has better results than PWC-
Net [56] at the same resolution. The comprehensive analysis suggests that our
method is not sensitive to the image resolution, while the optical flow estimation
of different quality has a more obvious impact on the segmentation results.
Impact of Network Architecture. We further explore the impact of different
network architectures on video segmentation methods. Table 5 shows the abla-
tion results of Transformer-like (MiT [66]) and CNN-like (ResNet [14]) networks,
and the analysis reveals that 1) the performance ranking order of both methods
(MATNet [79] and ours) is MiT-b2 > ResNet-101 > MiT-b1, and 2) the pro-
posed method outperforms MATNet (Note that results of MATNet are obtained
by the CRF post-processing technique, while our results are not.) above 4.1%
in terms of J&F Mean for the same network architecture. The above ablation
results show that the large Transformer-like MiT-b2 [66] benefits from better
visual perception and achieves better segmentation performance compared to
CNN-like ResNet-101 [14].

4.3 Quantitative Results for UVOS

DAVIS-16.We compare the proposed model HFAN with SOTA methods on the
public benchmark DAVIS-16 [47]. Table 6 shows the quantitative results. Our
method outperforms all existing SOTAmodels by a significant margin on DAVIS-
16. Specifically, our HFAN-small scores 86.7% J&F Mean and reaches 20.8 FPS
in real-time speed. In contrast to RTNet [50], which employs both forward and
backward optical flow and uses post-processing, HFAN-medium achieves 88.7%
J&F Mean using only forward optical flow without any post-processing tech-
niques. Compared with previous methods [79,22,69,75,50] using optical flow, our
method exhibits significant superiority in terms of inference speed and segmen-
tation accuracy. The main reason is that the FAM and FAT modules in HFAN
perform feature alignment and adaptation for unaligned cross-modal features,
allowing the decoder to utilize a more accurate feature representation. Quanti-
tative results of different metrics demonstrate that our method achieves a nice
trade-off between accuracy and speed in the UVOS task.
YouTube-Objects. To explore the universality of our proposed method to other
video datasets, we perform validation experiments on the YouTube-Objects [49]
test set without further fine-tuning its training set. The quantitative results of
10 categories in this dataset are shown in Table 7. Our method HFAN-small
dose not reach SOTA across all categories but has better stability than other
comparative methods. The proposed method is 2.0% higher than the second-best
GraphMem [36] in terms of average J Mean. For 10 different object categories,
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Table 6. Evaluation on DAVIS-16 [47]. ‘small’ and ‘medium’ indicate that the back-
bone networks of HFAN are MiT-b1 and MiT-b2, respectively. ‘†’ means that the
optical flow is used. ‘PP’ denotes post-processing. The three best scores are marked in
red, blue and green for each metric, respectively. The inference speed (FPS) of each
model contains all the necessary aspects for its generation of final results.

Method Publication PP
J F J&F

FPS ↑
Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓ Mean ↑

PDB [55] ECCV 2018 ✓ 77.2 90.1 0.9 74.5 84.4 -0.2 75.9 20.0

UOVOS† [80] TIP 2019 ✓ 73.9 88.5 0.6 68.0 80.6 0.7 71.0 -

LSMO† [59] IJCV 2019 ✓ 78.2 89.1 4.1 75.9 84.7 3.5 77.1 -

MotAdapt† [54] ICRA 2019 ✓ 77.2 87.8 5.0 77.4 84.4 3.3 77.3 -
AGS [65] CVPR 2019 ✓ 79.7 91.1 1.9 77.4 85.8 1.6 78.6 1.7

AGNN [63] ICCV 2019 ✓ 80.7 94.0 0.0 79.1 90.5 0.0 79.9 1.9
COSNet [37] CVPR 2019 ✓ 80.5 93.1 4.4 79.5 89.5 5.0 80.0 2.2

AnDiff [70] ICCV 2019 81.7 90.9 2.2 80.5 85.1 0.6 81.1 2.8
PCSA [11] AAAI 2020 78.1 90.0 4.4 78.5 88.1 4.1 78.3 110

EPO+† [1] WACV 2020 ✓ 80.6 95.2 2.2 75.5 87.9 2.4 78.1 -

MATNet† [79] AAAI 2020 ✓ 82.4 94.5 3.8 80.7 90.2 4.5 81.5 1.3
GraphMem [36] ECCV 2020 ✓ 82.5 94.3 4.2 81.2 90.3 5.6 81.9 5.0

DFNet [77] ECCV 2020 ✓ 83.4 94.4 4.2 81.8 89.0 3.7 82.6 3.6
3DCSeg [38] BMVC 2020 84.2 95.8 7.4 84.3 92.4 5.5 84.2 4.5

F2Net [34] AAAI 2021 83.1 95.7 0.0 84.4 92.3 0.8 83.7 10.0

FSNet† [22] ICCV 2021 ✓ 83.4 94.5 3.2 83.1 90.2 2.6 83.3 12.5

AMC-Net† [69] ICCV 2021 ✓ 84.5 96.4 2.8 84.6 93.8 2.5 84.6 -

TransportNet† [75] ICCV 2021 84.5 - - 85.0 - - 84.8 3.6

RTNet† [50] CVPR 2021 ✓ 85.6 96.1 - 84.7 93.8 - 85.2 -

Ours-small†(SS/MS)
-

86.2/87.1 96.7/96.8 4.6/4.8 87.1/87.7 95.5/95.3 2.3/2.5 86.7/87.4 20.8/2.5

Ours-medium†(SS/MS) 86.8/88.0 96.1/96.2 4.3/4.5 88.2/89.3 95.3/95.4 1.1/2.0 87.5/88.7 14.4/1.4

Table 7. Evaluation on YouTube-Objects [49]. The three best scores are marked in
red, blue, and green for each object category over J Mean ↑.

Method
MOTAdapt LSMO LVO FSEG PDB SFL AGS COSNet AGNN MATNet AMCNet GraphMem RTNet

Ours-small
[54] [59] [58] [21] [55] [6] [65] [37] [63] [79] [69] [50] [36]

Airplane 77.2 60.5 86.2 81.7 78.0 65.6 87.7 81.1 81.1 72.9 78.9 86.1 84.1 84.7
Bird 42.2 59.3 81.0 63.8 80.0 65.4 76.7 75.7 75.9 77.5 80.9 75.7 80.2 80.0
Boat 49.3 62.1 68.5 72.3 58.9 59.9 72.2 71.3 70.7 66.9 67.4 68.6 70.1 72.0
Car 68.6 72.3 69.3 74.9 76.5 64.0 78.6 77.6 78.1 79.0 82.0 82.4 79.5 76.1
Cat 46.3 66.3 58.8 68.4 63.0 58.9 69.2 66.5 67.9 73.7 69.0 65.9 71.8 76.0
Cow 64.2 67.9 68.5 68.0 64.1 51.2 64.6 69.8 69.7 67.4 69.6 70.5 70.1 71.2
Dog 66.1 70.0 61.7 69.4 70.1 54.1 73.3 76.8 77.4 75.9 75.8 77.1 71.3 76.9

Horse 64.8 65.4 53.9 60.4 67.6 64.8 64.4 67.4 67.3 63.2 63.0 72.2 65.1 71.0
Motorbike 44.6 55.5 60.8 62.7 58.4 52.6 62.1 67.7 68.3 62.6 63.4 63.8 64.6 64.3

Train 42.3 38.0 66.3 62.2 35.3 34.0 48.2 46.8 47.8 51.0 57.8 47.8 53.3 61.4

Average 58.1 64.3 67.5 68.4 65.5 57.1 69.7 70.5 70.8 69.0 71.1 71.4 71.0 73.4

the proposed method achieves its balanced performance over various challeng-
ing (e.g., motion blur, occlusion, scale variation) video sequences. This is made
possible by the sensible interaction of the proposed modules (FAM and FAT) for
appearance and motion information.
Long-Videos. DAVIS [47] (60+ frames per video sequence in average) only con-
tains short-term video clips, while real-world videos tend to have more frames. To
verify the performance of our HFAN in long-term video object segmentation, we
evaluate it on the Long-Videos [32] val-set (approximate 2500 frames per video
sequence). Table 8 shows the results under two types of supervision, SVOS and
UVOS. By further observation, we can find that the proposed HFAN-medium
has obtained the best result, achieving 81.7% over J&F Mean under the UVOS
setting. Compared with the second-best method AGNN [63], our small model
obtains an improvement of 7.0% on J&F Mean. Meanwhile, HFAN-medium
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Table 8. Evaluation on Long-Videos [32]. The best results of SVOS and UVOS methods
are marked in underline and bold, respectively.

Method Supervision
J F J&F Mean ↑

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓
RVOS [61]

SVOS

10.2 6.7 13.0 14.3 11.7 10.1 12.2
A-GAME [23] 50.0 58.3 39.6 50.7 58.3 45.2 50.3

STM [44] 79.1 88.3 11.6 79.5 90.0 15.4 79.3
AFB-URR [32] 82.7 91.7 11.5 83.8 91.7 13.9 83.3

3DCSeg [38]

UVOS

34.2 38.6 11.6 33.1 28.1 15.6 33.7
MATNet [79] 66.4 73.7 10.9 69.3 77.2 10.6 67.9

AGNN [63] 68.3 77.2 13.0 68.6 77.2 16.6 68.5
Ours-small 74.9 82.5 14.8 76.1 86.0 16.0 75.5

Ours-medium 80.2 91.2 9.4 83.2 96.5 7.1 81.7

Table 9. Evaluation on DAVIS [47] for VSOD. The best scores are marked in bold.

Method
FGRN LTSI RCR MBN SSAV PCSA DCFNet FSNet

Ours-small Ours-medium
[27] [2] [68] [29] [9] [11] [76] [22]

Sα ↑ 0.838 0.876 0.886 0.887 0.893 0.902 0.914 0.920 0.934 0.938
Emax

ξ ↑ 0.917 0.957 0.947 0.966 0.948 0.961 - 0.970 0.983 0.983
Fmax
β ↑ 0.783 0.850 0.848 0.862 0.861 0.880 0.900 0.907 0.929 0.935

MAE ↓ 0.043 0.034 0.027 0.031 0.028 0.022 0.016 0.020 0.009 0.008

achieves appealing results compared to SVOS methods. The results show that
the temporal consistency provided by optical flow is also effective for long-term
video object segmentation.

4.4 Quantitative Results for VSOD

The additional task VSOD, like UVOS, does not require first-frame annotation.
To verify the performance of the proposed method on the VSOD setting, we
perform a quantitative comparison with eight SOTA models on DAVIS [47].

Metrics. We employ four widely-used evaluation metrics including structure-
measure Sα (α = 0.5), max enhanced-alignment measure Emax

ξ , max F-measure

Fmax
β (β2 = 0.3), and mean absolute error (MAE).

Results. As shown in Table 9, our HFAN outperforms all SOTA models. In
particular, compared with DCFNet [76], Sα and Fmax

β are improved by ∼2%
and ∼3%, respectively. Compared to FSNet [22], HFAN achieves >1.3% perfor-
mance gains on Sα, E

max
ξ and Fmax

β , and reduces MAE by a factor of two. This
significantly proves the adaptability of our method to similar tasks.

4.5 Qualitative Results

Fig. 5 shows qualitative results of our HFAN model. We select five videos from
DAVIS-16 [47], YouTube-Objects [49] and Long-Videos [32] test sets. These
videos consist of several challenging frame sequences (e.g., fast motion, scale
variation, interacting objects and occlusion). As shown in the top two rows,
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Fig. 5. Qualitative results on three challenging video clips over time. From top to
bottom: bmx-trees, libby and soapbox from DAVIS-16 [47], dog-0028 from YouTube-
Objects [49], and rat from Long-Videos [32].

our method yields desirable results for dynamic, similar, and complex back-
grounds. Moreover, our proposed model has an accurate prediction for the oc-
clusion boundary. In the third and fourth rows, satisfactory segmentation results
are acquired in the presence of large-scale variation and object interaction cases.

5 Conclusion

We present a hierarchical feature alignment network, termed as HFAN, for ad-
dressing the contextual mismatch between appearance and motion features in
the UVOS task. Firstly, to address the mismatch of primary object positions
between video frames and their corresponding optical flows, our proposed FAM
module relies on sharing primary objects in images across modalities to align
appearance and motion features. Subsequently, for tackling the modal mismatch
problem between aligned feature maps, the FAT module is designed to construct
a feature adaptation weight to automatically enhance cross-modal features. With
the alignment and adaptation of appearance and motion features achieved by
FAM and FAT, HFAN could achieve a more accurate object segmentation. Ex-
perimental results show that the proposed method achieves SOTA performance
in the unsupervised video object segmentation task.
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