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Abstract. Cost-effective depth and infrared sensors as alternatives to
usual RGB sensors are now a reality, and have some advantages over
RGB in domains like autonomous navigation and remote sensing. As
such, building computer vision and deep learning systems for depth and
infrared data are crucial. However, large labeled datasets for these modal-
ities are still lacking. In such cases, transferring knowledge from a neural
network trained on a well-labeled large dataset in the source modality
(RGB) to a neural network that works on a target modality (depth,
infrared, etc.) is of great value. For reasons like memory and privacy, it
may not be possible to access the source data, and knowledge transfer
needs to work with only the source models. We describe an effective solu-
tion, SOCKET: SOurce-free Cross-modal KnowledgE Transfer for this
challenging task of transferring knowledge from one source modality to a
different target modality without access to task-relevant source data. The
framework reduces the modality gap using paired task-irrelevant data,
as well as by matching the mean and variance of the target features
with the batch-norm statistics that are present in the source models.
We show through extensive experiments that our method significantly
outperforms existing source-free methods for classification tasks which
do not account for the modality gap.

1 Introduction

Depth sensors like Kinect and RealSense, LIDAR for measuring point clouds
directly, or high resolution infra-red sensors such as from FLIR, allow for
expanding the range of applications of computer vision compared to using only
visible wavelengths. Sensing depth directly can provide an approximate three-
dimensional picture of the scene and thus improve the performance of appli-
cations like autonomous navigation, while sensing in the infra-red wavelengths
can allow for easier pedestrian detection or better object detection in adverse
atmospheric conditions like rain, fog, and smoke. These are just a few examples.

Building computer vision applications using the now-straightforward super-
vised deep learning approach for modalities like depth and infrared needs large
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Fig. 1. SOCKET: We describe the problem of single/multi-source cross-modality
knowledge transfer using no data used to train the source models. To effectively perform
knowledge transfer, we minimize the modality gap by enforcing consistency of cross
modal features on task-irrelevant paired data in feature space, and by matching
the distributions of the unlabeled task-relevant features and the source features

amounts of diverse labeled data. However, such large and diverse datasets do
not exist for these modalities and the cost of building such datasets can be
prohibitively high. In such cases, researchers have developed methods like knowl-
edge distillation to transfer the knowledge from a model trained on a modality
like RGB, where large amounts of labeled data are available, to the modality of
interest like depth [1].

In contrast to prior work, we tackle a novel and challenging problem in the
context of cross-modal knowledge transfer. We assume that we have access only
to (a) the source models trained for the task of interest (TOI), and (b) unlabeled
data in the target modality where we need to construct a model for the same
TOI. The key aspect is that we assume we have no access to any data in the
source modality for TOI. Such a problem setup is important in cases where
memory and privacy considerations do not allow for sharing the training data
from the source modality; only the trained models can be shared [2–5].

We develop SOCKET: SOurce-free Cross-modal KnowledgE Transfer as
an effective solution to this problem for bridging the gap between the source
and target modalities. To this end, we show that employing an external dataset
of source-target modality pairs, which are not relevant to TOI – which we call
Task-Irrelevant (TI) data – can help in learning an effective target model by
bringing the features of the two modalities closer. In addition to using TI data,
we encourage matching the statistics of the features of the unlabeled target data
– which are Task-Relevant (TR) by definition – with the statistics of the source
data which are available to us from the normalization layers that are present in
the trained source model.

We provide important empirical evidence showing that the modality-shift
from a source modality like RGB to a target modality like depth can be much
more challenging than a domain shift from one RGB dataset to another. This
shows that the proposed framework is necessary to help minimize the modality
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gap, so as to make the knowledge transfer more effective. Based on the above
ideas, we show that we can improve on existing state-of-the-art methods which
were devised only for cross-domain setting in the same modality. We summarize
our main contributions below:

1. We formulate a novel problem for knowledge transfer from a model trained
for a source modality to a different target modality without any access to
task-relevant source data and when the target data is unlabeled.

2. In order to bridge the gap between modalities, we propose a novel framework,
SOCKET, for cross-modal knowledge transfer without access to source data
(a) using an external task-irrelevant paired dataset, and (b) by matching the
moments obtained from the normalization layers in the source models with
the moments computed on the unlabeled target data.

3. Extensive experiments on multiple datasets – both for knowledge transfer
from RGB to depth, and from RGB to IR, and both for single-source and
multi-source cases – show that SOCKET is useful in reducing the modality
gap in the feature space and produces significantly better performance
(improvement of as high as 12% for some cases) over the existing source-free
domain adaptation baselines which do not account for the modality difference
between the source and target modalities.

4. We also show empirically that, for the datasets of interest, the problem of
knowledge transfer between modalities like RGB and depth is harder than
domain shifts in the same modality such as sensor changes and viewpoint
shifts, considered previously in literature.

2 Related work

Cross-modal distillation methods. Cross-modal knowledge distillation
(CMKD) methods aim to learn representations for a modality which does not
have a large amount of labeled data from a large labeled dataset of another
modality [1]. These methods have been used for a variety of practical computer
vision and learning tasks [6–9]. Most of these works assume access to task-
relevant paired data across modalities [1, 8, 10, 11]. A recent line of work relaxed
this assumption in the context of domain generalization, where one does not have
access to the Task-Relevant paired data on the target domain but has access to
them for the source domain [12]. There also exist some works regarding domain
translation across modalities for better classification of indoor scenes [13–15].
However these methods consider UDA across domains, where the target domain
has unlabeled RGB-D pairs instead of a single modality. All of the above works
either utilize the Task-Relevant paired data for cross modal knowledge transfer
[1], or consider cross modal paired data as a domain [12, 13]. There are also
works in zero-shot domain adaptation that utilize external task-irrelevant paired
data [16] but need access to the source data. Our work takes steps to allow
for different source and target modalities, and can perform effective knowledge
transfer without access to the TR paired data between source and target.
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Table 1. We compare the proposed work SOCKET with existing problem settings in
literature for knowledge transfer across different domains and modalities. The compet-
itive settings described in this table are: (1) UDA (Unsupervised Domain Adaptation),
DT (Domain Translation) [13–15, 17–20] [C1], (2) MSDA (Multi-source domain adap-
tation) [21] [C2], (3) SFDA (Source free single source DA) [3, 22–26] [C3], (4) MSFDA
(Source free multi-source DA) [4] [C4], (5) CMKD (Cross modal knowledge distillation)
[1, 6–8] [C5], and (6) ZDDA (Zero shot DA) [16] [C6], respectively. We group citations
into [C1] to [C6] based on problem settings. Only SOCKET allows cross-modal knowl-
edge transfer from multiple sources without any access to relevant source training data
for an unlabeled target dataset of a different modality

Property
Problem setting

UDA+DT [C1] MSDA [C2] SFDA [C3] MSFDA [C4] CMKD [C5] ZDDA [C6] SOCKET

Multiple sources 7 3 7 7 7 7 3

No source data 7 7 3 3 7 7 3

Unlabeled target data 3 3 7 3 7 7 3

Different target modality 7 7 7 7 3 3 3

Usage of Task-Irrelevant Data 7 7 7 7 7 3 3

Unsupervised domain adaptation methods without source data. Most
UDA methods that have been used for a wide variety of tasks [17–20] need access
to the source data while adapting to a new target domain [21, 27]. To combat
the storage or privacy issue regarding the source data, a new line of work named
Hypothesis Transfer Learning (HTL) [2, 5] has emerged recently, where one has
access only to the trained source model instead of the source data [3, 4]. Here,
people have explored adapting target domain data, which has limited labels
[2] or no labels at all [3] in the presence of both single source [3, 22, 23] or
multiple source models [4]. [3, 26] adapts a single source model to an unlabeled
target domain via information maximization and an iterative self-supervised
pseudo-label based cross entropy loss. [22] ensured that the adapted source model
performs well, both on source and target domains, while [23] proposed a source
free domain adaptation (SFDA) method by encouraging label consistency among
local target features. [24] proposed to add an extra classifier for refinement of
the source decision boundary, while [25] proposed a more robust adaptation
method which works well in the presence of noisy pseudo-labels. The authors in
[4] proposed fusion of multiple source models with appropriate weights so as to
minimize the effect of negative transfer, which we refer to as multiple source free
domain adaptation (MSFDA) in Table 1. Both these methods do not work well
in a regime where the unlabeled target set is from a different modality than the
source. We solve this problem by modality gap reduction via feature matching
of the task-irrelevant external data, as well as data statistics matching between
the source and target modalities.

Table 1 summarizes the related work and compares them with SOCKET.
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Fig. 2. SOCKET description: Our framework can be split into two parts: (i) Before
Knowledge Transfer (left): We freeze the source models and pass the task-irrelevant
(TI) source data through the source feature encoders to extract the TI source features.
As task-relevant (TR) source feature maps are not available, we extract the stored
moments of its distribution from the BN layers. (ii) During Knowledge Transfer (right):
We freeze only the classification layers and feed the TI and unlabeled TR target data
through the models to get batch-wise TI target features and the TR target moments,
respectively, which we match with pre-extracted source features and moments to jointly
train all the feature encoders along with the mixing weights, ζk’s. The final target model
is the optimal linear combination of the updated source models

3 Problem setup and notation

We address the problem of source-data free cross-modality knowledge transfer
by devising specialized loss functions that help reduce the gap between source
and target modality features. We focus on the task of classification where both
the source and target data belong to the same N classes. Let us consider that we
have n source models of the same modality (e.g., RGB). We denote the trained
source classifiers as {FmS

Sk
}nk=1 , where Sk denotes the k-th source model and mS

represents the modality on which the source models were trained. The source
models are denoted as FmS

Sk
which are trained models that map images from the

source modality distribution XmS

Sk
to probability distribution over the classes.

{xiSk
, yiSk
}nk
i=1 ∼ X

mS

Sk
are the data on which the k-th source model was trained,

nk being the number of training data points corresponding to the k-th source.
In our problem setting, at the time of knowledge transfer to the target modality,
the source data are unavailable for all the sources.

We also have access to an unlabeled dataset in the target modality {xiT }
nT
i=1 ∼

XmT

T , where nT is the number of target samples. Note that the target modality,
mT , is different from the source modality. Traditional source free UDA methods
try to mitigate domain shift by adapting the source models to unlabeled target
data that belong to the same modality [3, 4]. As we will show, applying these
methods directly to the cross-modal setting results in poor performance. Hence,
we propose to solve this problem using two novel losses as regularization terms
which minimize the modality gap between source and target modalities. Our
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goal is to learn a target classifier FmT

T , that adapts well on a target distribution
obtained from a different sensor modality (e.g., depth or NIR).

To train FmT

T , we employ (a) methods that enable learning feature embed-
dings for the target modality that closely match with the source modality embed-
dings, which we group under modality-specific losses, since it bridges the gap
between two different modalities; (b) modality-agnostic loss terms which operate
only on the unlabeled target data and do not take into account shift in modality.

We split each of the source models into two blocks – feature encoder and
classifier. For the k-th source model, we denote these blocks as fk and gk, respec-
tively. The function fk : RH×W → Rη maps the input image to an η dimensional
feature vector and gk : Rη → RN maps those features to the probability distri-
butions over the N classes, the maximum of which is treated as the classifier
prediction. We can thus write FmS

Sk
= gk ◦ fk , where “◦” is function compo-

sition. Since the classifier layer gk contains the information about unseen k-th
source domain distribution, following the protocol of [4], we freeze all the gk’s
and train the target specific feature encoders by optimizing over all fk’s.

4 Cross-Modal Feature Alignment

Traditional source free UDA methods [3, 4] use domain specific but modality-
agnostic losses which do not help in reducing the feature distance between the
source and target modalities. In order to train the target model, FmT

T , with
reduced modality-gap, we propose SOCKET, which uses task-irrelevant feature
matching and task-relevant distribution matching which are described next.

4.1 Task-irrelevant feature matching

Capturing the mapping between two modalities effectively requires lots of paired
data from both modalities [28]. For our task of interest, we do not have task
relevant (TR) data on the source side. As a result, it is not possible to match
the target modality with the source modality by using the data from task relevant
classes directly. Hence, we propose to use Task-Irrelevant (TI) paired data
from both modalities to reduce modality gap. TI data contain only classes that
are completely disjoint from the TR classes and can be from any external
dataset. For modalities like RGB-depth and RGB-IR, we can access a large
amount of paired TI data that contain classes with no privacy concerns, which
are available in public datasets or can be collected using multi-modal sensors.
Moreover there are many real world applications where pairwise TI data can
be collected and used beyond RGB-D or RGB-IR, such as autonomous driving,
adpatation of LiDAR data, medical applications [29]. We denote paired TI data
as {xmS

TIi
, xmT

TIi
}nTI
i=1 , where xmS

TIi
is the i-th TI data point from source modality and

xmT

TIi
is its paired counterpart from the target modality, nTI the total number of

pairs. We compute our proposed loss LTI using TI data as follows:
Step 1: We feed source modality images of the TI dataset through each of the
source models to pre-compute features that are good representations of modality
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mS . We denote the i-th TI source feature extracted from source j as ψij :

ψij = fj(x
mS

TIi
). (1)

Step 2: During the knowledge transfer phase, we feed the target modality images
of the TI dataset which are encouraged to match the corresponding pre-extracted
source modality features. We do so by minimizing LTI defined below with respect
to the parameters in the feature encoders for the target modality:

LTI =

nTI∑
i=1

n∑
j=1

∥∥ζj(ψij − fj(xmT

TIi
))
∥∥2 . (2)

4.2 Task-relevant distribution matching

In the task-irrelevant feature matching, we match the TI features of two modal-
ities in the feature space. Even if this captures some class independent cross
modal mapping between source and target modalities, it has no information
about the TR-class conditional cross modal mapping. By this term we refer
to the cross modal relationship between source and target, given the relevant
classes. Assuming that the marginal distribution of the source features across
the batches can be modeled as Gaussian, such feature statistics can be fully
characterized by its mean and variance. We propose to match the feature statis-
tics across the source and target, to reduce the modality gap further.

It might seem as though some amount of source data would be required
to estimate the batch-wise mean and and variance of its feature map, but the
running average statistics stored in the conventional BatchNorm (BN) layers are
good enough to serve our purpose. The BN layers normalize the feature maps
during the course of training to mitigate the covariate shifts [30, 31]. As a result
it is able to capture the channel-wise feature statistics cumulatively over all the
batches, which gives rise to a rough estimate of the expected mean and variance
of the batch-wise feature map, at the end of training. Let us consider that the
BN layer corresponding to the l-th convolution layer (Bl) has rl nodes and there
exist b number of such layers per source model. Then we refer to the expected
batch-wise mean and variance of the l-th convolution layer of the k-th source
model as E

[
µl|XmS

Sk

]
∈ Rrl and E

[
σ2
l |X

mS

Sk

]
∈ Rrl .

Prior to the start of the knowledge transfer phase, we pre-extract the infor-
mation about the source feature statistics from all of the pre-trained source
models. During the knowledge transfer phase, for each iteration we calculate the
batch-wise mean and variance of the feature map of target data from all the
source models, linearly combine them according to the weights ζi and minimize
the distance of this weighted combination with the weighted combination of the
pre-computed source feature statistics. We calculate this loss Ld given by

Ld =

b∑
l=1

(∥∥∥∥∥∥
n∑
j=1

ζjE
[
µl|XmS

Sj

]
−

n∑
j=1

ζj µ̂lj

∥∥∥∥∥∥+

∥∥∥∥∥∥
n∑
j=1

ζjE
[
σ2
l |X

mS

Sj

]
−

n∑
j=1

ζj σ̂2
lj

∥∥∥∥∥∥
)
,

(3)
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where E
[
µl|XmS

Sj

]
and E

[
σ2
l |X

mS

Sj

]
are the running mean and variance of the

batchnorm layer corresponding to the l-th convolution layer of source j, which
we refer as Bjl , and µ̂lj = 1

nT

∑nT

k=1 B
j
l (x

k
T ) and σ̂2

lj = 1
nT

∑nT

k=1(Bjl (xkT )− µ̂lj )2

denote the mean and variance of the target output from the same batchnorm
layer. The losses LTI and Ld minimize the modality gap between source and
target. We name the combination of these two losses as Modality Specific Loss
Lms = λTILTI + λdLd, where λTI and λd are regularization hyper-parameters.

4.3 Overall optimization

The two proposed methods above help to reduce the modality gap between source
and target without accessing task-relevant source data. In addition to them, we
employ the unlabeled target data directly for knowledge transfer. Specifically, we
perform information maximization along with minimization of a self-supervised
pseudo-label loss, which have shown promising results in source-free UDA [3, 4]
where the source and target modalities are the same.
Information Maximization (IM): IM is essentially the task of performing
maximization of the mutual information between distribution of the target data
and its labels predicted by the source models. This mutual information is a
combination of a conditional and a marginal entropy of the target label distri-
bution.

Motivated by [4], we calculate the conditional entropy Lent and the marginal
entropy termed as diversity Ldiv as follows:

Lent = − 1

nT

[ nT∑
i=1

(FmT

T (xiT )) log(FmT

T (xiT ))
]
,Ldiv = −

N∑
j=1

p̄j log p̄j , (4)

where FmT

T (xiT ) =
∑n
k=1 ζkF

mS

Sk
(xiT ), ζk is the weight assigned to the k-th source

such that ζk ≥ 0 ,
∑n
k=1 ζk = 1 and p̄ = 1

nT

∑nT

i=1

[
FmT

T (xiT )
]
∈ RN is the

empirical label distribution. The mutual information is calculated as LIM =
Ldiv−Lent. Maximization of LIM (or minimization of −LIM ) ensures the target
labels, as predicted by the sources, more confident and diverse in nature.
Pseudo-label loss: Maximizing LIM helps to obtain labels that are more confi-
dent in prediction and globally diverse. However, that does not prevent misla-
beling (i.e., assigning wrong labels to the inputs), which leads to confirmation
bias [32]. To alleviate this problem, we adopt a self supervised pseudo-label based
cross entropy loss, inspired by [3, 4] (see the supplement for the exact details
about computing the self-supervised pseudo-labels.) After calculating pseudo-
labels we compute the pseudo-label cross entropy loss Lpl as follows:

Lpl = − 1

nT

nT∑
i=1

K∑
k=1

1{ŷiT = k} log
[
FmT

T (xiT )
]
k
, (5)

where ŷiT is the pseudo-label for the i-th target data point and 1{.} is an indicator
function that gives value 1 when the argument is true. Our final loss is the
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combination of the above two losses. We call this combination modality agnostic
loss Lma, which is expressed as Lma = −LIM + λplLpl.

We calculate the overall objective function as the sum of modality agnostic
and modality specific losses and optimize Eq. (6) using Algorithm 1.

minimize
{fj}nj=1, ζ

Lma + Lms s.t.

n∑
k=1

ζk = 1, ζk ≥ 0 (6)

Algorithm 1: Algorithm to Solve Eq. (6)

Input: n source models trained on modality mS {FmS
Sk
}nk=1 = {gk ◦ fk}nk=1,

unlabeled target data {xiT }
nT
i=1 from modality mT , TI cross modal pairs

{xmS
TIi

, xmT
TIi
}nTI
i=1 , mixing weights {ζk}nk=1, max number of epochs E,

regularization parameters λTI , λd, number of batches B
Output: Optimal adapted feature enocoders {f?k}nk=1, mixing weights {ζ∗k}nk=1

Initialization: Freeze final classification layers {gk}nk=1, set ζk = 1
n

for all k
Calculate {ψij}nj=1 ∀i ∈ [1, 2 . . . , nTI ] using Eq. (1)
Retrieve E

[
µl|XSj

]
and E

[
σ2
l |XSj

]
for all j and l as in Section 4.2

Knowledge Transfer Phase:
for epoch = 1 to E do

for iteration = 1 to B do
Sample a mini batch of target data and feed it through each of the
source models

Calculate loss terms in Eq. (2), (3), (4), and (5)
Compute overall objective from Eq. (6)
Update parameters in {fj}nj=1 and {ζk}nk=1 by optimizing (6)
Make ζ non-negative by setting ζk := 1/(1 + e−ζk )
Normalize ζ by setting ζk := ζk/

∑n
i=1 ζi

end

end
Final target model FmT

T =
∑n
k=1 ζ

?
k(gk ◦ f?k )

5 Experiments

We first describe the datasets, baselines and experimental details we employ.
Next, we show results of single and multi-source cross modal transfer which
show the efficacy of our method. In Section 5.3 we demonstrate experimentally
why source free cross modal is a much harder problem compared to cross domain
knowledge transfer. We conclude this section by performing analysis on different
hyperparameters.

5.1 Datasets, baselines and experimental details

Datasets: To show the efficacy of our method we extensively test on publicly
available cross-modal datasets. We show results on two RGB-D (RGB and
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Depth) datasets – SUN RGB-D [33] and DIML RGB+D [34], and the RGB-NIR
Scene (RGB and Near Infrared) dataset [35]. We summarize the statistics of the
datasets in Table 2. In the supplement, we provide examples from each dataset
and the list of classes which we use as TI and TR data in our experiments.

1. SUN RGB-D: A scene understanding benchmark dataset which contains
10335 RGB-D image pairs of indoor scenes. The dataset has images acquired
from four different sensors named Kinect version1 (kv1), Kinect version2
(kv2), Intel RealSense and Asus Xtion. We treat these four sensors as four
different domains. Out of total 45 classes, 17 common classes are treated as
TR classes and the remaining 28 classes as TI classes. To train four source
models, one for each domain, we use the RGB images from the TR classes,
specific to that particular domain. We treat the TR depth images from each
of the domains as the target modality data.

2. DIML RGB+D: This dataset consists of more than 200 indoor/outdoor
scenes. We use the smaller sample dataset instead of the full dataset, which
has 1500/500 RGB-D pairs for training/testing distributed among 18 scene
classes. We split the training pairs into RGB and depth, and treat those
two as source and target, respectively. The synchronized RGB-D frames are
captured using Kinect v2 and Zed stereo camera [36–38].

3. RGB-NIR Scene: This dataset consists of 477 images from 9 scene categories
captured in RGB and Near-infrared (NIR). The images were captured using
separate exposures from modified SLR cameras, using visible and NIR [35].
We perform single source knowledge transfer from RGB to NIR and vice versa
for this dataset. For all the datasets, TR/TI split is done according to Table 2.

Baseline Methods: The problem statement we focus on in this paper is new
and has not been considered in literature before. As such, there is no direct
baseline for our method. However, the closest related works are source free cross
domain knowledge transfer methods that operates under both single and multi-
source cases [3, 4, 22–26]. SHOT [3] and DECISION [4] are the best-known works
on single source and multi-source SFDA and we compare against only these
two methods. Unlike SOCKET, neither of these baselines employ strategies to
overcome modality differences and use only the modality-agnostic loss Lma for
training the target models. Using scene classification as the task of interest, we
will show that SOCKET outperforms these baselines for cross-modal knowledge
transfer with no access to task-relevant source data. We provide details about
the network architecture in the supplement. We note that there a few more
recent works [22–26] which have shown small improvements over SHOT, and
are orthogonal to the ideas in this paper. Incorporating these improvements for
SOCKET as well can be interesting and consider this future work.
Performing knowledge transfer: Recall that we initialize the target models
with the source weights and the classifier layers are frozen. The weights in the
feature encoders and source mixing weight parameters (ζk’s) in the case of multi-
source are the optimization parameters. The values of various parameters like
the learning rate are given in the supplement.
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Table 2. Datasets statistics

SUN-RGBD [33] RGB-NIR Scene [35] DIML [34]

Number of domains 4 1 1
Domain names kv1,kv2,Realsense,Xtion N/A N/A

# of TR images for source training 1264,1234,238,2512 204 527
# of TR unlabeled images 1264,1234,238,2512 204 527

Number of TI paired images 1709 153 1088
Number of TR & TI classes 17 & 28 6 & 3 6 & 12

Modalities RGB-D RGB-NIR RGB-D

Table 3. Results on the SUN RGB-D dataset [33] for the task of single-
source cross-modal knowledge transfer from RGB to depth modality
without access to task relevant source data. The rows represent RGB domains
on which the source models are trained. The columns represent the knowledge transfer
results on the depth domains for three methods – Unadapted shows results with
unadapted source, SHOT[3] and SOCKET.

Source RGB
Target depth Kinect v1 Kinect v2 Realsense Xtion

Unadapted SHOT SOCKET Unadapted SHOT SOCKET Unadapted SHOT SOCKET Unadapted SHOT SOCKET

Kinect v1 14.8 16.7 25.3 14.6 20.3 23.6 9.0 11.9 13.4 7.1 15.3 18.1
Kinect v2 4.0 12.8 13.6 17.0 29.4 35.2 10.8 19.3 22.8 10.6 7.0 8.3
Realsense 2.0 7.9 20.3 7.1 18.4 23.5 14.7 27.4 30.0 5.1 9.5 11.8
Xtion 0.7 9.5 14.2 6.0 20.2 24.2 9.0 21.8 23.5 8.1 13.2 22.2

Average 5.4 11.7 18.4 11.2 22.1 26.6 10.9 20.1 22.4 7.7 11.3 15.1

λpl is set as 0.3 for all the experiments following [4]. For the regularization
parameters λTI and λd of modality specific losses, we set them to be equal. We
empirically choose those parameters in such a way so as to balance it with the
modality agnostic losses such that no loss component overpowers the other by a
large margin. Empirically we found that a range of (0.1, 0.5) works best. All of the
values in this range outperform the baselines and we report the best accuracies
amongst those. For images from the modalities other than RGB, which are depth
and NIR, we repeat the single-channel images into three-channel images, to
be able to feed it through the feature encoders which are initialized from the
source models trained on RGB images. We use a batch size of 32 for all of our
experiments. We run our method 3 times for all experiments with 3 random
seeds in PyTorch [39] and report the average accuracies over those.

5.2 Main results

Results on the SUN RGB-D dataset [33]: Our method is general enough
to deal with any number of sources and we demonstrate both single and multi-
source knowledge transfer. In Table 3, we show single source RGB to depth
results for all of the four domains. Treating the unlabeled depth data of each
domain as target, we adapt these using source models trained on RGB data from
each of the four domains. It is easily evident from Table 3, that for the target
domains Kinect V1, Kinect V2, Realsense and Xtion, SOCKET consistently
outperforms the baseline by a good margin of 6.7%, 4.5%, 2.3%, and 3.8%,
respectively, thus proving the efficacy of SOCKET in a source-free cross modal
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Table 4. Results on the SUN RGB-D dataset [33] for the task of multiple
cross-modal knowledge transfer from RGB to depth modality without
access to task relevant source data. The rows show the six combinations of two
trained source models on RGB data from four different domains. The columns represent
the knowledge transfer results on the domain specific depth data for DECISION [4],
the current SOTA for multiple source adaptation without source data, and SOCKET

Source RGB
Target depth Kinect v1 Kinect v2 Realsense Xtion

DECISION SOCKET DECISION SOCKET DECISION SOCKET DECISION SOCKET

Kinect v1 + Kinect v2 17.9 19.5 34.2 36.6 18.8 19.8 14.6 18.0
Kinect v1 + Realsense 12.6 18.0 23.3 26.8 24.3 24.7 10.9 12.2

Kinect v1 + Xtion 11.7 23.9 29.6 35.7 20.3 21.1 16.7 20.0
Kinect v2 + Realsense 7.4 11.7 22.7 33.1 28.4 29.4 6.9 9.1

Kinect v2 + Xtion 14.8 16.2 27.0 31.0 25.4 25.0 11.6 18.3
Realsense + Xtion 8.3 10.7 23.1 25.2 30.1 31.5 9.5 10.8

Average 12.1 16.6 26.7 31.4 24.6 25.3 11.7 14.7

Table 5. Classification accuracy (%) on DIML dataset with different TI data

Unadapted SHOT [3] SOCKET SOCKET
TI data N/A N/A DIML RGB+D SUN RGB-D

RGB→Depth 26.9 41.4 46.1 53.2

setting. In some of the cases SOCKET outperforms the baseline by a very large
margin, as high as 12.4% (Realsense-RGB to Kinect V1-depth). We show two-
source RGB to depth adaptation results in Table 4. For four domains we get six
two-source combinations, each of which is used for adaptation to depth data from
all four domains. We see that in this case also, on average SOCKET outperforms
the baseline for all four target domains by good margins. SOCKET shows good
improvement for some individual cases like (Kinect v1 + Xtion)-RGB to Kinect
v1 depth – improvement of 12.2% – and (Kinect v2 + Realsense)-RGB to Kinect
v2 depth –improvement of 10.4%.

Results on the DIML RGB+D dataset [34]: We performed a single source
adaptation experiment (Table 5) by restructuring the dataset according to
Table 2. In Table 5, we use the TI data from both the DIML RGB+D as well
as SUN RGB-D datasets in two separate columns, where the TI data of SUN
RGB+D is the same that have been used for experiments related to the SUN
RGB-D dataset. By doing so, we show that SOCKET can perform well even
with TI data from a completely different dataset, and find that SOCKET has a
gain of 4.7% and 11.8% over baseline for these two TI data settings, respectively.

Results on the RGB-NIR scene dataset [35]: We now show that
SOCKET also outperforms baslines when the modalitiies are RGB and NIR
using the RGB-NIR dataset. We follow the splits described in Table 2. We do
experiments on both RGB to NIR and vice versa. The results are given in Table 6.
For RGB to NIR transfer, SOCKET shows 3.5% improvement, while for NIR
to RGB transfer, it shows 0.5% improvement over the competing method.
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Table 6. Results on RGB-NIR dataset [35] for the task of single-source cross-modal
knowledge transfer from RGB to NIR and vice versa without task-relevant source data

Setting
Method

Unadapted SHOT [3] SOCKET

RGB → NIR 84.8 86.7 90.2
NIR → RGB 65.2 92.2 92.7

Table 7. Cross modal vs cross domain knowledge transfer for SUN RGB-
D dataset scene classification using SHOT[3]: (1) The first columm shows the
accuracies for RGB to depth transfer within the same domain. (2) The second column
is generated by transferring knowledge from one RGB domain to other three RGB
domains taking the average of the accuracies

Source Cross-Modal Cross-Domain

Kinect v1 16.7 24.5
Kinect v2 29.4 39.6
Realsense 27.4 29.7
Xtion 13.2 43.1

Average 21.7 34.2

5.3 Cross Modal vs Cross Domain

In order to show the importance of the novel problem we consider, we compare
the single-source knowledge transfer results on the SUN RGB-D dataset for
modality change vs domain shift in Table 7. We use SHOT [3] which is a source-
free UDA method for this experiment. All the domain-specific source models are
trained on RGB images. For domain shift, the targets are all the RGB images
of the remaining 3 domains and we report the average over them. Domain shift
involves changes in sensor configuration, viewpoints, etc. For modality change,
the target data are depth images from the same domain. The scenes are the
same as in the RGB source, except they are captured using the depth sensor.
The table clearly shows that the accuracy drops by a large margin of 12.5%
when we transfer knowledge across modalities instead of domains of the same
modality. This shows that a cross-modal knowledge transfer is not the same as
DA and a framework like SOCKET is necessary to reduce the modality gap.

5.4 Ablation and sensitivity analysis

Contribution of loss components: In Table 8, the first row has the result with
just the modality agnostic loss Lma, whereas second and third row shows the
individual effect of our proposed modality specific losses along with the Lma. For
all cases, SOCKET outperforms the baseline and using both losses in conjunc-
tion with Lma yields best results.
Effect of number of TI images: We randomly chose six classes from SUN
RGB-D dataset as TI data. Table 9 clearly shows that increasing per class



14 Ahmed et al.

Table 8. Ablation of contribution of our proposed novel loss components. The
first accuracy column (a) corresponds to single source adaptation from RGB to depth
on kv2 domain, whereas the second column (b) shows the multi-source adaptation
result from kv1+xtion to kv1 domain of SUN RGB-D dataset. We show the accuracy
gain over using Lma only inside the parentheses

Lma Ld LTI (a) accuracy (%) (b) accuracy (%)

3 30.0 11.7
3 3 31.6 (↑1.6) 18.3 (↑6.6)
3 3 34.9 (↑4.9) 22.6 (↑10.9)
3 3 3 36.3 (↑6.3) 23.9 (↑12.2)

Table 9. Left: Effect of number of TI data. We perform knowledge transfer from
Kinect v1 RGB to unlabeled depth data. We use six random TI classes and vary
the number of TI images per class from 0 to 60 in steps of 20. Right: Effect of
regularization hyper-parameters. We perform Kinect v1 and Kinect v2 RGB to
Kinect v1 depth transfer with varying (λTI , λd) and tabulate the accuracy of SOCKET

Images per class 60 40 20 0

Accuracy (%) 25.0 22.5 20.3 16.7

(λTI , λd) 0.00 0.05 0.10 0.50 1.00

Kinect v1 16.1 15.0 16.6 23.4 21.0
Kinect v2 29.3 34.2 35.0 36.7 16.3

samples of TI data results in improving the scene-classification accuracy for
RGB to depth transfer on the SUN RGB-D dataset. In short, for a fixed number
of TI classes, the more TI images per class, the better SOCKET performs.
Effect of regularization parameters: In Table 9, we observe the effect of test
accuracy vs the regularization hyper-parameters for our novel losses proposed as
a part of SOCKET. We keep λTI and λd equal to each other for values between
0 to 1. Using the value of 0 is the same as using SHOT. From the table, we see
that as the value of the parameter increases the accuracy also increases up to a
certain point, and then it starts decreasing.

6 Conclusion

We identify the novel and challenging problem of cross-modality knowledge
transfer with no access to the task-relevant data from the source sensor modality,
and only unlabeled data in the target. We propose our framework, SOCKET,
which includes devising loss functions that help bridge the gap between the two
modalities in the feature space. Our results for both RGB-to-depth and RGB-to-
NIR experiments show that SOCKET outperforms the baselines which cannot
effectively handle modality shift.
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Electric Research Laboratories. SMA and ARC were partially supported by ONR
grant N00014-19-1-2264 and the NSF grants CCF-2008020 and IIS-1724341.



Bibliography

[1] Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision
transfer. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. (2016) 2827–2836

[2] Ahmed, S.M., Lejbolle, A.R., Panda, R., Roy-Chowdhury, A.K.: Camera
on-boarding for person re-identification using hypothesis transfer learning.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. (2020) 12144–12153

[3] Liang, J., Hu, D., Feng, J.: Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation. In: Inter-
national Conference on Machine Learning, PMLR (2020) 6028–6039

[4] Ahmed, S.M., Raychaudhuri, D.S., Paul, S., Oymak, S., Roy-Chowdhury,
A.K.: Unsupervised multi-source domain adaptation without access to
source data. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2021) 10103–10112

[5] Perrot, M., Habrard, A.: A theoretical analysis of metric hypothesis transfer
learning. In: International Conference on Machine Learning, PMLR (2015)
1708–1717

[6] Thoker, F.M., Gall, J.: Cross-modal knowledge distillation for action recog-
nition. In: 2019 IEEE International Conference on Image Processing (ICIP),
IEEE (2019) 6–10

[7] Dai, R., Das, S., Bremond, F.: Learning an augmented rgb representation
with cross-modal knowledge distillation for action detection. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. (2021)
13053–13064

[8] Garcia, N.C., Bargal, S.A., Ablavsky, V., Morerio, P., Murino, V., Sclaroff,
S.: Dmcl: Distillation multiple choice learning for multimodal action recog-
nition. arXiv preprint arXiv:1912.10982 (2019)

[9] Wang, J., Tang, Z., Li, X., Yu, M., Fang, Q., Liu, L.: Cross-modal knowledge
distillation method for automatic cued speech recognition. arXiv preprint
arXiv:2106.13686 (2021)

[10] Sayed, N., Brattoli, B., Ommer, B.: Cross and learn: Cross-modal self-
supervision. In: German Conference on Pattern Recognition, Springer
(2018) 228–243

[11] Hoffman, J., Gupta, S., Leong, J., Guadarrama, S., Darrell, T.: Cross-modal
adaptation for rgb-d detection. In: 2016 IEEE international conference on
robotics and automation (ICRA), IEEE (2016) 5032–5039

[12] Zhao, L., Peng, X., Chen, Y., Kapadia, M., Metaxas, D.N.: Knowledge as
priors: Cross-modal knowledge generalization for datasets without superior
knowledge. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2020) 6528–6537

[13] Ferreri, A., Bucci, S., Tommasi, T.: Translate to adapt: Rgb-d scene recog-
nition across domains. arXiv preprint arXiv:2103.14672 (2021)



16 Ahmed et al.

[14] Du, D., Wang, L., Wang, H., Zhao, K., Wu, G.: Translate-to-recognize
networks for rgb-d scene recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. (2019) 11836–
11845

[15] Ayub, A., Wagner, A.R.: Centroid based concept learning for rgb-d indoor
scene classification. arXiv preprint arXiv:1911.00155 (2019)

[16] Peng, K.C., Wu, Z., Ernst, J.: Zero-shot deep domain adaptation. In:
Proceedings of the European Conference on Computer Vision (ECCV).
(2018) 764–781

[17] Hsu, H.K., Yao, C.H., Tsai, Y.H., Hung, W.C., Tseng, H.Y., Singh, M.,
Yang, M.H.: Progressive domain adaptation for object detection. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. (2020) 749–757

[18] Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative
domain adaptation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. (2017) 7167–7176

[19] Paul, S., Tsai, Y.H., Schulter, S., Roy-Chowdhury, A.K., Chandraker, M.:
Domain adaptive semantic segmentation using weak labels. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part IX 16, Springer (2020) 571–587

[20] Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A.,
Darrell, T.: Cycada: Cycle-consistent adversarial domain adaptation. In:
International conference on machine learning, PMLR (2018) 1989–1998

[21] Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment
matching for multi-source domain adaptation. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. (2019) 1406–
1415

[22] Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Generalized
source-free domain adaptation. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. (2021) 8978–8987

[23] Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Exploiting the
intrinsic neighborhood structure for source-free domain adaptation. arXiv
preprint arXiv:2110.04202 (2021)

[24] Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Casting a
bait for offline and online source-free domain adaptation. arXiv preprint
arXiv:2010.12427 (2020)

[25] Agarwal, P., Paudel, D.P., Zaech, J.N., Van Gool, L.: Unsupervised robust
domain adaptation without source data. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. (2022) 2009–2018

[26] Liang, J., Hu, D., Wang, Y., He, R., Feng, J.: Source data-absent unsuper-
vised domain adaptation through hypothesis transfer and labeling transfer.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

[27] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette,
F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural
networks. The journal of machine learning research 17(1) (2016) 2096–2030



SOCKET 17

[28] Bridle, J.S., Heading, A.J., MacKay, D.J.: Unsupervised classifiers, mutual
information and’phantom targets’. (1992)

[29] Kutbi, M., Peng, K.C., Wu, Z.: Zero-shot deep domain adaptation with
common representation learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021)

[30] Ioffe, S., Normalization, C.S.B.: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167

[31] Yin, H., Molchanov, P., Alvarez, J.M., Li, Z., Mallya, A., Hoiem, D., Jha,
N.K., Kautz, J.: Dreaming to distill: Data-free knowledge transfer via
deepinversion. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2020) 8715–8724

[32] Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results.
In: Advances in neural information processing systems. (2017) 1195–1204

[33] Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding
benchmark suite. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. (2015) 567–576

[34] Cho, J., Min, D., Kim, Y., Sohn, K.: Deep monocular depth estimation
leveraging a large-scale outdoor stereo dataset. Expert Systems with Appli-
cations 178 (2021) 114877
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Cross-Modal Knowledge Transfer Without
Task-Relevant Source Data

(Supplementary Material)

7 Dataset example images

In Figure 3 and Figure 4 we show some example samples from SUN RGB-D
dataset, whereas in Figure 5 and Figure 6, samples from RGB-NIR scene dataset
has been shown. For both datasets, some random samples of Task-Relevant (TR)
and and Task-Irrelevant (TI) classes are shown. As DIML dataset has most of
the classes overlapped with SUN RGB-D, we do not show examples for that
dataset here. For the TR classes, source data are discraded after training the
source models and we transfer knowledge from those models to the unlabeled
data of target modality. For the TI classes, we have paired samples from both
modalities. Note that for all the cases, TR and TI classes are completely disjoint.

Fig. 3. SUN RGB-D TR samples. We show some example images of the four
domains of SUN RGB-D. Both modalities from 4 out of 17 TR classes are shown here.
We discard the RGB source data after training four source models and we do not use
any label information for the target depth data.
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Fig. 4. SUN RGB-D TI samples. We show some example images of the TI data
from SUN RGB-D dataset. Six classes, each with paired example of RGB and depth
are shown here. The TR and TI classes are completely disjoint.

Fig. 5. RGB-NIR scene samples. We show some example images of the of RGB-
NIR scene dataset. Both modalities of all 6 TR classes are shown here. We discard the
source data after training the source model and we do not use any label information
for the target data.

8 Calculation of pseudo-labels

For these steps, we mainly follow [3, 4]. We first compute the cluster centroids
of all the classes, followed by linearly combining the centroids using the current
learned weight vector. We then take each of the weighted features and label
it according to it’s nearest neighbors from the set of K weighted centroids. In
the next step, we update the pseudo labels by repeating these steps. Below, we
describe mathematically these steps in detail:

1. We first compute the cluster centroids of all the classes k ∈ {1, 2, . . . N}
induced by source j ∈ {1, 2, . . . , n} for the 0-th iteration, by the following
equation:

c
(0)
kj

=

∑
xT∈X

mT
T

[
F̃mS

Sj
(xT )

]
k
f̃j(xT )∑

xT∈X
mT
T

[
F̃mS

Sj
(xT )

]
k

(7)
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Fig. 6. RGB-NIR scene samples We show some example images of the TI data
from RGB-NIR scene dataset. Three classes, each with paired example of RGB and
NIR are shown here. The TR and TI classes are completely disjoint.

where
[
.
]
k

indicates the k-th element of the vector in argument , f̃j denotes

the j-th source model’s feature extractor and F̃mS

Sj
= gj ◦ f̃j represents the

complete j-th source model from the last iteration.
2. In the next step, we linearly combine these centroids as well as the target

features extracted from all the source models from last iteration, with the
current learned weight vector ζ as follows:

c
(0)
k =

n∑
j=1

ζjc
(0)
kj

(8)

x̄T =

n∑
j=1

ζj f̃j(xT ) (9)

3. We take each of the weighted features and label it according to it’s nearest
neighbour from the set of K weighted centroids, i.e., for a particular target
feature, if the nearest neighbour is k-th centroid, we assign class label k for

that particular feature. The assigned pseudo-label ŷ
i(0)
T for the i-th target

feature x̄iT at iteration 0 is calculated as:

ŷ
i(0)
T = arg min

k
‖x̄iT − c

(0)
k ‖

2
2 (10)

4. We update the pseudo-labels in the next iteration by repeating the steps as
follows:

c
(1)
kj

=

∑
xT∈X

mT
T

1{ŷ(0)T = k}f̃j(xT )∑
xT∈X

mT
T

1{ŷ(0)T = k}
(11)

where, 1{.} is an indicator function operator which takes value 1, when its
argument is true.

c
(1)
k =

n∑
j=1

ζjc
(1)
kj

(12)
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ŷ
i(1)
T = arg min

k
‖x̄iT − c

(1)
k ‖

2
2 (13)

Following the protocol of [4], we take ŷ
(1)
T as the final pseudo-label ŷiT ,

without further reiteration.
Finally the pseudo-label cross entropy loss Lpl is calculated as follows:

Lpl = − 1

nT

nT∑
i=1

K∑
k=1

1{ŷiT = k} log
[
FmT

T (xiT )
]
k
. (14)

9 More details about datasets

SUN RGB-D[33]: The 17 common scene classes shared among the four domains
are bathroom, classroom, computer room, conference room, corridor, discussion
area, home office, idk, kitchen, lab, living room, office, office kitchen, printer
room, reception room, rest space, study space.

The 28 scene classes used as TI data are basement, bedroom, book store, cafe-
teria, coffee room, dancing room, dinette, dining area, dining room, exhibition,
furniture store, gym, home, study, hotel room, indoor balcony, study space, laun-
dromat, lecture theatre, library, lobby, mail room, music room, office dining, play
room, reception, recreation room, stairs, storage room.
DIML RGB+D[34]: The 6 scene classes used as TR data are bathroom, class-
room, computer room, kitchen, corridor, living room.

The 12 scene classes used as TI data are bedroom, billiard hall, book store,
cafe, church, hospital, laboratory, library, metting room, restaurant, store, ware-
house.
RGB-NIR Scene[35]: The 6 scene classes used as TR data are country, field,
indoor, mountain, street, water.

The 3 scene classes used as TI data are forest, old building, urban.

10 Effect of regularization parameters

For the single source adaptation results, we empirically observe that, (λTI , λd) =
(0.5, 0.5), (0.5, 0.5), (0.1, 0.1), (0.5, 0.5) yields best result for Kinect v1, Kinect v2,
Realsense and Xtion as targets respectively. For the DIML RGB+D datset, the
parameters are set to be (0.5, 0.5), whereas for the RGB-NIR scene dataset, it
is set as (0.01, 0.05). Note that, for all of the cases this hyper-parameters are
chosen to balance the two loss terms. Our method always performs better than
the baseline in the range of values of the hyperparameters we tested and are
close to the best accuracies reported in the paper.

11 Network architectures

In our experiments, we take the Resnet50 [40] model pretrained on ImageNet
as the backbone architecture for training the source models, the same way as
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[3, 21, 41]. Following the architectures used in [4, 42], we replace the last fully
connected (FC) layer with a bottleneck layer containing 256 units, within which
we add a Batch Normalization [43] (BN) layer at the end of the FC layer. A
task specific FC layer with weight normalization [44] is added at the end of the
bottleneck layer.

12 Training source models

For training the source models, we resize all the source images to 224 × 224.
Moreover, to increase model robustness, we use smooth labels instead of one-
hot encodings [45, 46] during this procedure. We set the maximum number of
training epochs to 20 for all of the sources, irrespective of the datasets. We utilize
stochastic gradient descent with a momentum 0.9 and weight decay 10−3. The
learning rates are set to 10−3 for the feature encoders (fk’s) and 10−2 for the
added bottleneck layer. During adaptation and knowledge transfer to the target
modality, a learning scheduler setting similar to [3, 42] θ = θ0(1 + 10p)−

3
4 is

used, where θ and θ0 represent the current and initial learning rates and p is a
real number between 0 to 1 which captures the training progress. θ0 is set to be
10−3 for the feature encoders (fk’s) and 10−2 for the added bottleneck layers
along with the source mixing weight parameters (ζk’s). The maximum number
of epochs during target adaptation is set to be 15.

13 Knowledge transfer details

During adaptation and knowledge transfer to the target modality, a learning
scheduler setting similar to [3, 42] θ = θ0(1+10p)−

3
4 is used, where θ and θ0 repre-

sents the current and initial learning rates and p is real number between 0 to 1
which captures the training progress. θ0 is set to be 10−3 for the feature encoders
(fk’s) and 10−2 for the added bottleneck layers along with the source mixing
weight parameters (ζk’s). The learning rate decreases exponentially during the
course of training. The maximum number of epochs during target adaptation is
set to be 15.

14 Modification of our algorithm in presence of TI
unpaired data

In this section, we explore the scenario of inaccessibility of pairwise cross-modal
data for TI classes. In practical scenario, one might not be able to acquire cross
modal paired data. In this case we show that adversarial matching between
two cross modal distributions works reasonably well. Inspired from [18], we
propose the following loss function in order to align the two cross modal
data distributions which are unpaired. For this purpose, we incorporate a
discriminator D in our framework.
Our adversarial loss has two components: (1) True Discriminator loss LTD
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and (2) Adversarial Discriminator loss LAD. The first loss tries to distinguish
between source and target, while the second loss is a proxy for the generator
part of the well known usual adversarial loss component, which tries to fool the
discriminator in such a way, so that it fails to distinguish between source and
target domain. The generator is irrelevant in our framework since we are not
generating any new samples, rather as a proxy of the generator we use the same
discriminator as an adversary in the second loss. In short, the first loss tries to
correctly classify the source and target samples, while the second loss tries to
do the opposite. Now, we describe the losses mathematically below:

LTD = − 1

nTI

nTI∑
i=1

[
logD

( n∑
j=1

ζjψ
i
j

)
+ log

(
1−D

( n∑
j=1

ζjfj(x
mT

TIi
)
))]

(15)

LAD = − 1

nTI

nTI∑
i=1

[
logD

( n∑
j=1

ζjfj(x
mT

TIi
)
)]

(16)

Note that, LTD is essentially a cross entropy loss computed with source TI
labels as 1 and target TI labels as 0, while LAD is also a cross entropy loss but
computed with target TI labels as 1. So, clearly LAD will try to oppose the loss
LTD, so that the source and target features are indistinguishable. So our overall
adversarial loss Ladv is calculated as follows:

Ladv = LTD + λADLAD (17)

where λAD is a regularization parameter to balance the two adversarial loss
components. In the absence of TI paired data, the overall new objective function
Ltot will be

Ltot = Lma + λadvLadv + λdLd (18)

To show the effectiveness of this loss, we conduct a small experiment in table 10.
We transfer knowledge from the kv2 RGB model to unlabeled kv2 depth data.
Due to time constraint we just run this algorithm with one random seed. λAD is
set to be 10 to give slightly more importance to LAD compare to LTD, since our
ultimate goal is to learn a feature embedding that can not distinguish between
source and target. Clearly we see that our new adversarial loss has an increment
of almost 2.9% when used with Lma. Though this gain is not as high compare to
the case of having paired TI data (see table 8 in main paper), it is still significant
and has great potential. This result is intuitively expected and show that even
if with unpaired TI data, we can reduce the modality gap in the absence of TR
source data. We hypothesize that for the unpaired TI data case, it is possible to
reach a certain extent of the level of performance when using paired TI data, by
using relatively more amount of unpaired data. We will explore it in detail for
the future work.
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Table 10. Effect of our proposed adversarial loss component. The accuracy
column corresponds to single source adaptation from RGB to depth on kv2 domain
of SUN RGB-D dataset. We show the accuracy gain over using Lma only inside the
parentheses

Lma Ld Ladv (a) accuracy (%)

3 31.0
3 3 33.9 (↑2.9)
3 3 3 34.2 (↑3.2)

15 Future work, limitations and potential negative
impact

Further studies are required to better understand the effect of amount of TI data
and the diversity present in the data on the knowledge transfer results, which will
require access to larger and more diverse datasets. Another interesting avenue
for future direction is applying these ideas to other modalities like point clouds,
medical imaging, etc.

The work in this paper is a general method for improving knowledge transfer
from a source modality to a target modality with unlabeled data. The impact
of this line of research is to make it easier to train networks for modalities and
tasks where large amounts of data and labeled data are not available. This may
lead to a wider deployment of deep learning for such modalities. For example
in applications like person re-identification, one might have access to the source
models trained on private IR labeled data, which they can use to adapt RGB
unlabeled data using our method, in order to match people across cameras.
Thus, these algorithms can of course be good or bad for society depending on
the particular application in which these ideas are employed, the bias in the
datasets being used etc. This is also in true in general for other source-free DA
methods [3, 4]. Therefore, steps need to be taken to ensure positive and fair
outcomes of this technology.


	Cross-Modal Knowledge Transfer Without Task-Relevant Source Data

