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Abstract. The Visual-and-Language Navigation (VLN) task requires
understanding a textual instruction to navigate a natural indoor envi-
ronment using only visual information. While this is a trivial task for
most humans, it is still an open problem for AI models. In this work,
we hypothesize that poor use of the visual information available is at
the core of the low performance of current models. To support this hy-
pothesis, we provide experimental evidence showing that state-of-the-art
models are not severely affected when they receive just limited or even
no visual data, indicating a strong overfitting to the textual instructions.
To encourage a more suitable use of the visual information, we propose a
new data augmentation method that fosters the inclusion of more explicit
visual information in the generation of textual navigational instructions.
Our main intuition is that current VLN datasets include textual instruc-
tions that are intended to inform an expert navigator, such as a human,
but not a beginner visual navigational agent, such as a randomly initial-
ized DL model. Specifically, to bridge the visual semantic gap of current
VLN datasets, we take advantage of metadata available for the Matter-
port3D dataset that, among others, includes information about object
labels that are present in the scenes. Training a state-of-the-art model
with the new set of instructions increase its performance by 8% in terms
of success rate on unseen environments, demonstrating the advantages
of the proposed data augmentation method.

Keywords: computer vision, natural language processing, navigation,
VLN, data augmentation

1 Introduction

The ability of a robot to receive an instruction in natural language and navigate
in unknown environments has been an attractive research topic in recent years
[7, 15, 16, 22, 24, 28]. In particular, the Visual-and-Language Navigation (VLN)
task [1] proposes that an agent can follow a textual instruction such as “Go
up the stairs, turn right, and stop right at the left of the table”, and use it to
navigate a natural indoor environment from a starting to a goal position using
only visual information. In spite of current advances in AI, this task, that results
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trivial for most humans, it is still out of reach for autonomous robots. As an
example, under current benchmarks [25], state-of-the-art AI models based on
Deep Learning (DL) do not reach the intended goal position more than 65% of
the time [12].

There are several reasons that can help to explain the low performance of
current models to face the VLN task [25]. Among them, we believe that lack of
a proper visual understanding of the environment is a key factor. In effect, hu-
mans actively use relevant views of the environment to identify visual semantic
information such as navigational cues, objects, scenes, or other situations, how-
ever, current AI models focus their operation on identifying relevant correlations
between the textual instructions and visual data present in the training set [17].
As a consequence, current VLN models exhibit limited generalization capabil-
ities, leading to a large drop in performance when they are tested in unseen
environments [7, 22,25].

In effect, today there is abundant experimental evidence indicating that cur-
rent DL based models operate as associative memory engines triggered by super-
ficial data correlations [2,3,10], fostering the detection of direct stimulus-response
associations. Indeed, given enough parameters, DL models are able to memorize
arbitrary noisy data [26]. In the case of VLN, this problem leads to a poor use
of the visual information. As a consequence, instead of unveiling the richness of
the visual world, DL models limit their operation to memorize low level corre-
lations between textual and visual data. Even worse, in several cases, models
ignore completely the visual information, learning a direct mapping between the
textual instructions and robot action.

To support the previous observation, as a first contribution of this work,
we provide experimental evidence indicating that current VLN models do not
make a suitable use of the visual information available about the environment.
Specifically, we demonstrate that when we provide to the model just limited
or even no visual data, the model exhibits just a slight drop in performance,
showing that their operation is heavily biased to the use of textual instructions.

The previous observation motivates our main research question: how can
we contribute to improve the use visual information in VLN models?. While the
answer to this question is manifold, in this work we focus our contribution to the
generation of more suitable training data. Specifically, we believe that a relevant
problem of current VLN datasets is that, during their generation, the humans
providing the textual instructions assume that they are intended for an expert
navigator, as an example, another human. We believe that this scheme leads to
the generation of high level textual instructions, where it is hardly complex to
extract meaningful visual cues to inform a beginner visual navigational agent,
such as a randomly initialized DL model. As a consequence, we believe that the
data generation for a beginner should include a more detailed description of the
visual world around the agent.

To bridge the visual semantic gap of current VLN datasets, we present a
new data augmentation method that fosters the inclusion of more explicit visual
information in the generation of textual navigational instructions. To do this, we
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resort to object labels present in the metadata available for the Matterport3D
dataset 1 that we refer here as Matterport3DMeta. Using this data, we propose
new semantically richer natural language instructions for the Room-to-Room
(R2R) dataset [1] that are generated with an improved version of the Speaker-
Follower model presented in [7]. Specifically, we use scene objects and crafted
instructions created with a set of rules that we encode to feed a set of auxiliary
visual tasks. As a main finding, the resulting navigational instructions provide
a significant boost in the performance of current VLN models when they are
tested in previously unseeing environments.

As a further contribution, after publication, we will make available the se-
mantically enriched dataset generated in this work as well as a set of software
tools to generate further data. These tools incorporate modules to access scene
nodes in the Matterport3D dataset [4] that include information about relevant
objects, their position, size, distance, heading, and elevation. We believe that
this is a powerful starting point to use scene metadata to create semantically
richer visual navigational instructions.

This work is organized as follows. Section 2 describes the VLN task and cur-
rent benchmarks. Section 3 reviews relevant previous works. Section 4 presents
an experimental setup to highlight the limitations of current VLN models to use
visual information. Afterwards, Section 5 describes the construction of our visual
semantically richer instructions for the VLN task. Finally, Section 6 presents our
conclusions and future research avenues.

2 Visual-and-Language Navigation task

During the last decade several studies have been related to the VLN task, how-
ever, the visual aspect was discarded due to lack of real images in the proposed
problems [1]. In 2017, the Matterport3D dataset [4] was introduced, contain-
ing RGB-D building scale scenes of 90 different home environments. Later that
year, a new navigation problem was proposed: Room-to-Room (R2R) [1], the
first dataset for the Visual-and-Language Navigation task (VLN) on real 3D
environments, introducing a Matterport3D based simulator, which simulates its
environments with the possibility of navigate trough them. In R2R, 90 different
environments from Matterport3D have been divided into training and valida-
tion (seen and unseen) splits. There are a total of 7,189 distinct paths (starting
point, target point), with 3 distinct human instructions for each, a total of 21,567
navigation instructions with an average of 29 words [1].

We construct over Matterport3DMeta a set of tools named 360-visualization2

for getting objects and navigable nodes with their intrinsic data for each view,
as shown in Figure 1.

1 https://github.com/niessner/Matterport/tree/master/metadata
2 https://github.com/cacosandon/360-visualization

https://github.com/cacosandon/360-visualization
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Fig. 1. Objects and viewpoints visualization sampled with 360-visualization scripts.

2.1 The Visual-and-language navigation task

The task of VLN for an agent is to follow natural language instructions from an
initial to a target position through navigation in a real environment, simulated
by Matterport3D Simulator [1]. At the beginning of each episode an instruction
x = ⟨x1, x2, .., xL⟩ is given, where L is the instruction length and xi a word token.
The agent observes a RGB image v0 depending on an initial 3D position, heading
ψ0 and elevation θ0, resulting in a world state s0 = ⟨v0, ψ0, θ0⟩. The agent must
execute a sequence of actions ⟨a0, a1, .., aT ⟩ where each action at leads to a new
state st+1 = ⟨vt+1, ψt+1, θt+1⟩ and generates a new visual panoramic view vt+1.
It is important to note that actions are given by the simulator, which are limited
according to the node where the agent is located. The episode ends when the
agent selects the <STOP> action, and the task is successful if the agent arrives at
a location near the target position, recognizing it as the goal.

3 Related Work

VLN task has been the main motivation for many researchers on Computer
Vision. Interesting surveys and reviews [9, 25] talk about several techniques de-
veloped over the baseline architecture proposed by R2R.

They group them on categories such as the inclusion of auxiliary tasks [13,
16, 19, 21, 28], the improvement of navigation and exploration [11, 13, 14, 23, 24]
and curriculum learning with data augmentation [7, 15,22].

Data augmentation has become an essential part of training in various tasks,
not only increasing quantity of training data, but also providing more informative
data to reduce overfitting, and improve generalization and performance [6,18,20].
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On navigation, different approaches have proposed augmenting training instruc-
tions [7, 22] but it has been shown that they do not follow human syntax or
include relevant information [27].

That’s why we focus on this topic, basing our study on the Speaker-Follower
[7], which consists of two modules: one that follows instructions (follower) and
other that performs data augmentation to feed the training of the follower
(speaker), which we improve for generate new semantically richer instructions.

State-of-art leaderboard is summarized in Table 1. VLN-BERT+REM [12]
has the highest success rate (SR), followed by SSM [23] and Active Gather-
ing [24]. These models have high overhead costs due to the time and resources
required by their complex architectures. We demonstrate that focusing on data
augmentation greatly benefits navigation performance without making models
even more complex.

Table 1. Comparison of the different models solving the Room-to-Room task, in unseen
test set using Single Run.

Model PL ↓ NE ↓ SPL ↑ SR ↑

Speaker-Follower [7] 14.82 6.62 0.28 0.35
Tactical Rewind [11] 22.08 5.14 0.41 0.54
Self-Monitoring [13] 17.11 5.99 0.32 0.43
Environmental Dropout [22] 11.70 - 0.47 0.51
Regretful-Agent [14] 13.69 5.69 0.40 0.48
ORIST [19] 10.90 4.72 0.51 0.57
VLN-BERT + REM [12] 13.11 3.87 0.59 0.65
SSM [23] 20.7 4.32 0.45 0.62
Active Gathering [24] 20.6 4.36 0.4 0.58

4 Models problem

Aiming to demonstrate models deficits, we experiment in both visual and lin-
guistic areas on the state-of-the-art models, based on [9] analysis. A summary
diagram is shown in Figure 2.

4.1 Visual area

In order to evaluate the effectiveness of visual components within VLN architec-
tures, it is interesting to know the importance of visual scene information when
deciding the next action on navigation through the environment.

We run our experiments over Self-Monitoring [13] and Regretful-Agent [14],
because of their public codebase3 4. Each of these architectures were trained in

3 https://github.com/chihyaoma/selfmonitoring-agent/
4 https://github.com/chihyaoma/Regretful-Agent

https://github.com/chihyaoma/selfmonitoring-agent/
https://github.com/chihyaoma/Regretful-Agent
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Fig. 2. Experiments diagram. Visual features are replaced with zeros. In the linguis-
tic area, four experiments are performed: without nouns, without adjectives, without
nouns+adjectives and without features.

two different conditions. The first condition is the base model, where the visual
features are obtained from a pre-trained ResNet-152. The second condition is
the replacement of visual features with zeros, i.e., the agent is completely blind.

Because both models are built on top of the Speaker-Follower architecture,
they also offer an optional pre-training phase that includes training with syn-
thetic data. This synthetic data contains 178,000 sampled routes with associated
instructions generated with the Speaker module [7], the same instructions we im-
prove later in this work. Six experiments evaluated in known (seen) and unknown
(unseen) environments were performed, which are shown in Tables 2 and 3.

4.2 Language area

We also experiment changing the text of the instruction, in order to check which
components are relevant for the agent to better decide.

We use spaCy [8], an NLP model used in the industry to obtain text features.
Each word of each instruction was classified according to the context, as adjec-
tive, noun or other. The Regretful-Agent model was trained by extracting from
each instruction: all adjectives, all nouns, all nouns+adjectives and extracting
the whole text (i.e. without linguistic features), training the model for a total of
100 hours with the 8 experiments, which results are shown in Table 4.

Comparison metrics To compare the performance of presented configura-
tions, we use path length (PL), navigation error (NE) and success rate (SR), as
proposed in R2R [1]. We also use a new metric called success rate weighted by
Path Length (SPL) [13,15,22,28], that measures the success rate normalized by
path length.
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Table 2. Visual ablation study on Self-Monitoring [13] and Regretful-Agent [14], seen
environment with Single Run (not Beam Search).

Model PL ↓ NE ↓ SPL ↑ SR ↑

Self-Monitoring + ResNet-152 13.34 4.02 0.62 0.62
Self-Monitoring + pre-training + ResNet-152 12.3 3.03 0.63 0.7
Self-Monitoring + blind 15.64 7.1 0.23 0.32
Regretful-Agent + ResNet-152 12.66 4.18 0.51 0.59
Regretful-Agent + pre-training + ResNet-152 12.49 3.07 0.63 0.71
Regretful-Agent + blind 19.05 7.6 0.14 0.27

Table 3. Visual ablation study on Self-Monitoring [13] and Regretful-Agent [14], un-
seen environment with Single Run (not Beam Search).

Model PL ↓ NE ↓ SPL ↑ SR ↑

Self-Monitoring + ResNet-152 15.88 6.47 0.27 0.39
Self-Monitoring + pre-training + ResNet-152 16.27 5.99 0.30 0.42
Self-Monitoring + blind 15.86 6.6 0.24 0.35
Regretful-Agent + ResNet-152 16.09 5.99 0.30 0.43
Regretful-Agent + pre-training + ResNet-152 15.75 5.62 0.35 0.47
Regretful-Agent + blind 18.8 6.62 0.19 0.36

Table 4. Language ablation study on Self-Monitoring [13] and Regretful-Agent [14],
unseen environment with Single Run (not Beam Search). w/ means without

Model PL ↓ SR ↑

Training with real data
Regretful-Agent baseline 16.1 0.43
Regretful-Agent w/ nouns 15.5 0.35
Regretful-Agent w/ adjectives 14.8 0.42
Regretful-Agent w/ nouns+adjectives 14.9 0.37
Regretful-Agent w/ all textual features 18.0 0.25

Training with real data + augmented data
Regretful-Agent baseline 15.8 0.47
Regretful-Agent w/ nouns 14.8 0.36
Regretful-Agent w/ adjectives 15.5 0.48
Regretful-Agent w/ nouns+adjectives 13.9 0.39
Regretful-Agent w/ all textual features 18.0 0.25
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4.3 Ablation studies

When experimenting in the visual area by removing all the visual features we
notice a clear difference between seen and unseen environments. In seen envi-
ronments the difference in success rate is very large (Table 2). While the Self-
Monitoring and Regretful-Agent models achieve about 60% of success rate (SR)
without pre-training, removing the agent’s sight (+ blind) greatly reduces its
performance (-30%).

In unknown environments the difference is much smaller. We observe that
both models without pre-training don’t improve by more than 7% SR over the
blind model. This demonstrates good memorization but lack of generalization,
being visual information almost useless on previously unknown scenes.

When experimenting in the linguistic area, we noticed that when we extract
the whole language, it only reaches a 25% SR. This means that 1 out of 4
random walks actually reaches the goal, noting the biases of the R2R dataset,
where agents can navigate correctly to the goal point without any instruction.

If we extract the nouns or nouns+adjectives from the instruction, then the
model reduces the SR moderately. This explains that many of the instructions
are based on prompts such as “turn right” or “walk straight to the bottom”,
without necessarily reference the environment.

Because of the high-level instructions, removing adjectives increases the SR,
indicating that nouns descriptions are actually interfering with the model per-
formance.

We propose to create and train with semantically richer instructions, in order
to include more detailed description of the visual environment and then force
the agent to use all the available information.

5 Semantically richer instructions proposal

To navigate using vision, we must first learn to follow semantically meaningful
instructions that foster the use of visual information. We create simple instruc-
tions that are scene-object based, referencing them and their context, enriching
over generic non visual instructions like “go straight”.

We construct our model over Speaker-Follower, but using only the Speaker
module. On Figure 3 is our complete model. The original Speaker module takes,
for each path, the sequence of panoramic views and also the actions sequence
(RIGHT, <END>, FORWARD, etc.), and pass them across an encoder module. This
encoder gives us an encoded context ctx, used for generating each word of the
new instruction through an LSTM, which uses also the previous cell and hidden
states, as shown in the figure.

On R2R, each path has three instructions. For each, the Speaker module
builds the loss as the Negative Log Loss (NLL) between the corresponding word
of the instruction and the generated word, as shown on the figure.

Generated instructions on the Speaker module are now being used for almost
all state-of-the-art models of VLN task on a pre-training phase. However, it
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Fig. 3. Speaker with proposed auxiliary tasks.

has been shown that they do not follow human syntax, they have orientation
problems and do not include relevant information, being incorrect in most cases
[27].

Using Matterport3DMeta, we propose to add relevant objects to generated
instructions applying two loss auxiliary tasks: objects and crafted instructions,
aiming the vision to be mandatory for the agent to navigate. These two are also
included in Figure 3.

5.1 Objects and crafted instructions

Object metadata is available on Matterport3DMeta, but it is raw and difficult
to use. That’s why we created 360-visualization, a script for fetching and
visualizing objects and navigable viewpoints on each node, for each heading and
elevation.

These objects are the main component of the objects auxiliary task, but we
also use them for the generation of crafted instructions.

For a specific path, we generate an atomic instruction for each node on the
sequence. Having the current 360 ° visual image and the next node we can select
the best object to reference, following a set of rules. For instance, in Figure 4 we
start with a big painting at the right of the next node, generating the first atomic
instruction: “Turn left, walk straight down the left of the painting.”. Then, we
concatenate all this atomic instructions, generating a new crafted instruction for
the selected path.

5.2 Objects auxiliary task

For each node of a path sequence, we fetch all objects with 360-visualization

and filter them by distance, area, uniqueness and usability (excluding many
objects, like “floor” that has large area).

We assign the best N objects to each word of the instructions of that path,
matching word index with the closer node index.

For instance, in Figure 3 we recommend the model to use “bed” and “closet”
(N = 2) for the first word.



10 J. Ossandón et al.

Fig. 4. Crafted instruction example. Panoramic views sequence on top and human
instructions + crafted instruction on bottom. Images are sequenced through the arrows.
Presented objects and scenes names are sampled from the data.

The objects auxiliary task consists on adding Negative Log Loss between the
generated word and the N recommended objects to the final loss. The sum of
these losses are weighted by λ, a modifiable parameter.

The final loss on training the Speaker results as follows

wordLoss =

3∑
i=0

NLL (log(logit), woriginali) + λ

N∑
i=0

NLL (log(logit), wobjecti)

A resulting generated instruction with Speaker + objects auxiliary task is
shown on Figure 5.

5.3 Crafted instructions auxiliary task

Having our own crafted instructions, we use them directly on training and also
adding a Negative Log Loss between the generated instruction and the crafted
instruction, word by word.

The sum of these losses are weighted by β, another modifiable parameter.
The final loss for each generated word is

wordLoss =

3∑
i=0

NLL (log(logit), woriginali) + β ·NLL (log(logit), wcrafted)

5.4 Results and discussion

After training the Speaker module with auxiliary tasks, we generate instructions
based on the same sampled paths as the original augmented dataset with dif-
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Fig. 5. Objects auxiliary task instruction example. Panoramic views sequence above
and human instruction + base speaker instruction + new generated instruction below.
Images are sequenced through the arrows.

ferent values for λ and β, hyperparameters that weigh auxiliary tasks loss. We
execute separated auxiliary tasks, because it is redundant information. Crafted
instructions used in the crafted instructions auxiliary task use the same objects
as the ones we pass directly on the objects auxiliary task.

We then train the Regretful Agent navigation model with the augmented
data or crafted instructions directly (Phase I), and finetune it with the original
training data (Phase II). Results for seen and unseen environments are on Tables
5 and 6.

Best results are achieved pre-training with instructions generated using ob-
jects auxiliary task with λ = 0.5 or crafted instructions auxiliary task with
β = 0.3, increasing up to 51% the success rate on unseen environment. Using
our new augmented instructions the success rate increment is doubled compared
using original Speaker module synthetic instructions, this is, +8% versus the
baseline model.

We extend the experiments to the HAMT model [5], pre-training with the
best settings we got from above. Results are on Table 7. Although we get a lower
increase, adding visual information to the instructions is still useful across all
models. As future work, we can test with different configurations of the auxil-
iary tasks to see which dataset generates higher benefits. We make objects and
crafted instructions available in 360-visualization5 so they can be added to
any language model, as we propose with the Speaker module.

The new module with auxiliary tasks have several advantages in the quality
of the generated instructions. One example is shown on Figure 5.

5 https://github.com/cacosandon/360-visualization

https://github.com/cacosandon/360-visualization
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First, it corrects the Speaker module in orientation, since we help the model
by indicating which objects to reference in the instruction, relating them with
the next node position. For instance, in the figure’s sequence the agent must turn
right, while the Speaker generates an instruction that wrongly says the opposite.

Second, compared to human instructions we realize that a complex instruc-
tion is not necessary, since agent is a beginner on navigation. Humans describe
the path in a high level, which makes it even more complicated to extract visual
information. Our module generates low-level instructions, describing the best
way to orientate another DL model.

At last, generated instructions reference objects that exist in the environment
but not in the original instructions, as it does with the word “toilet” at the end
of the instruction showed in Figure 5. The model learned to use objects even
though it has never seen them before, nor has any type of information (such
as the instruction showed on the figure, which is from the validation set, and
therefore, never seen before).

We also demonstrate that the increase of success rate using original data
augmentation does not depend on the quality of the Speaker’s instructions, but
rather the quantity is the main contributor. This means, quantity compensates
quality for improving performance (178,300 augmented instructions over 4675
train instructions).

As we mentioned before, using the same 178,300 sampled paths, we also
create totally new crafted instructions (Figure 4) without the need of human
instructions in order to use them as pre-training. On Tables 5 and 6 it is shown
as “PWIF Crafted Directly”. We almost reach the same success rate as the full
training (Phases I + II) with human instructions and we exceed base training
by 4%.

We then show that the Speaker module as a instruction generator does not
contribute more than our crafted instructions generated based on rules, unless we
add the proposed auxiliary tasks, where the performance increase is remarkable.

6 Conclusions

Different methodologies have been developed to improve scene understanding,
in order to achieve a better performance in navigation with human interaction.
They focus mainly on model architecture, leaving aside the base of the task: the
dataset. As we present, navigation agents do not use visual information available
on environments for making a decision. Removing visual features generates a
slight success rate drop of only 7% on unseen environments, evidencing that the
R2R dataset has instructions that do not reference the context in which agent
is situated. This last factor allows agents to execute actions in almost a random
manner, reaching the goal anyway.

In addition, these same instructions are too complex and high level, confusing
agents that start as beginners on navigation. To bridge the visual semantic gap
presented on the datasets, we create new semantically richer instructions.
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Table 5. Regretful-Agent [14] pre-training with instructions generated from different
models, evaluated on seen environments with Single Run (not Beam Search) and
original human instructions. PWIF means Pre-training with instructions from and AT

means Auxiliary Task.

Regretful-Agent + PL ↓ NE ↓ SPL ↑ SR ↑

Without pre-training 12.66 4.18 0.51 0.59
PWIF Speaker base 12.49 3.07 0.63 0.71

PWIF Speaker + Objects AT λ = 0.3, N = 2 12.97 3.10 0.62 0.71
PWIF Speaker + Objects AT λ = 0.5, N = 1 11.65 3.38 0.61 0.67
PWIF Speaker + Objects AT λ = 0.5, N = 2 12.09 2.93 0.65 0.72
PWIF Speaker + Objects AT λ = 0.5, N = 3 12.80 3.48 0.58 0.67
PWIF Speaker + Objects AT λ = 0.6, N = 2 12.07 3.09 0.63 0.70
PWIF Speaker + Crafted AT β = 0.1 12.41 3.16 0.62 0.70
PWIF Speaker + Crafted AT β = 0.2 11.83 3.29 0.62 0.68
PWIF Speaker + Crafted AT β = 0.3 12.24 2.86 0.63 0.72
PWIF Speaker + Crafted AT β = 0.4 12.16 3.08 0.62 0.70
PWIF Crafted directly 12.50 3.32 0.59 0.67

Table 6. Regretful-Agent [14] pre-training with instructions generated from different
models, evaluated on unseen environments with Single Run (not Beam Search) and
original human instructions. PWIF means Pre-training with instructions from and AT

means Auxiliary Task.

Regretful-Agent + PL ↓ NE ↓ SPL ↑ SR ↑

Without pre-training 16.09 5.99 0.30 0.43
PWIF Speaker base 15.75 5.62 0.35 0.47

PWIF Speaker + Objects AT λ = 0.3, N = 2 15.27 5.39 0.36 0.49
PWIF Speaker + Objects AT λ = 0.5, N = 1 14.66 5.80 0.35 0.46
PWIF Speaker + Objects AT λ = 0.5, N = 2 14.61 5.29 0.39 0.51
PWIF Speaker + Objects AT λ = 0.5, N = 3 15.24 5.77 0.34 0.47
PWIF Speaker + Objects AT λ = 0.6, N = 2 15.82 5.46 0.34 0.48
PWIF Speaker + Crafted AT β = 0.1 14.90 5.75 0.35 0.47
PWIF Speaker + Crafted AT β = 0.2 14.37 5.58 0.38 0.48
PWIF Speaker + Crafted AT β = 0.3 15.42 5.52 0.37 0.50
PWIF Speaker + Crafted AT β = 0.4 15.44 5.43 0.36 0.47
PWIF Crafted directly 15.97 6.03 0.33 0.46
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Table 7. HAMT [5] pre-training with instructions generated from best Speaker con-
figurations (ranked by success rate after pre-training the Regretful Agent), evaluated
on unseen environments with Single Run (not Beam Search) and original human in-
structions. PWIF means Pre-training with instructions from and AT means Auxiliary
Task.

HAMT + SPL ↑ SR ↑

Without pre-training 54.4 48.7
PWIF Speaker base 56.3 52.3

PWIF Speaker + Objects AT λ = 0.5, N = 2 57.4 52.4
PWIF Speaker + Crafted AT β = 0.3 57.3 52.6

For this purpose, we use scene objects and crafted instructions to feed a set
of auxiliary tasks. The resulting model generates new instructions that help to
correct the errors existing in the original instructions, while increase the success
rate by 8% in unseen environments when we use them as pre-training, which
doubles the increase of the original Speaker. We then demonstrate that the cre-
ation of semantically richer instructions that include explicit visual information
allows the agent to better learn to navigate.

In order to follow this same line to improve robot navigation, we propose
different branches for further research:

– Own object detection: We construct our auxiliary task based on avail-
able metadata of different environments (Matterport3DMeta). If we want
to expand to new environments where this metadata is not available, we
must detect objects on our own. Indoor object detection is an unresolved
task, which can be improved directly using the same scene objects that we
retrieve from raw data.

– 3-phase Curriculum Learning: We pre-train our model with our seman-
tically richer instructions, and then finetune with the original instructions,
which are complex and high level. Starting with an easier task will allow the
agent to use environment information progressively. Standing in a random
node, we have the 360 ° image, different possible navigation nodes and an
atomic instruction. The agent has to decide which node to move to. The
agent will learn simpler and shorter instructions that refer to the environ-
ment, the basics for starting to execute this tasks on sequence.
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