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Abstract. Unsupervised monocular depth and ego-motion estimation
has drawn extensive research attention in recent years. Although current
methods have reached a high up-to-scale accuracy, they usually fail to
learn the true scale metric due to the inherent scale ambiguity from
training with monocular sequences. In this work, we tackle this problem
and propose DynaDepth, a novel scale-aware framework that integrates
information from vision and IMU motion dynamics. Specifically, we
first propose an IMU photometric loss and a cross-sensor photometric
consistency loss to provide dense supervision and absolute scales. To fully
exploit the complementary information from both sensors, we further drive
a differentiable camera-centric extended Kalman filter (EKF) to update
the IMU preintegrated motions when observing visual measurements. In
addition, the EKF formulation enables learning an ego-motion uncertainty
measure, which is non-trivial for unsupervised methods. By leveraging
IMU during training, DynaDepth not only learns an absolute scale, but
also provides a better generalization ability and robustness against vision
degradation such as illumination change and moving objects. We validate
the effectiveness of DynaDepth by conducting extensive experiments and
simulations on the KITTI and Make3D datasets. (code)

Keywords: Unsupervised Monocular Depth Estimation, Differentiable
Camera-Centric EKF, Visual-Inertial SLAM, Ego-motion Uncertainty

1 Introduction

Monocular depth estimation is a fundamental computer vision task which plays an
essential role in many real-world applications such as autonomous driving, robot
navigation, and virtual reality [36,20,44]. Classical geometric methods resolve this
problem by leveraging the geometric relationship between temporally contiguous
frames and formulating depth prediction as an optimization problem [9,29,8].
While geometric methods have achieved good performance, they are sensitive
to either textureless regions or illumination changes. The computational cost
for dense depth prediction also limits their practical use. Recently deep learning
techniques have reformed this research field by training networks to predict depth
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directly from monocular images and designing proper losses based on ground-
truth depth labels or geometric depth clues from visual data. While supervised
learning methods achieve the best performance [7,24,11,1,45], the labour cost
for collecting ground-truth labels prohibits their use in real-world. To address
this issue, unsupervised monocular depth estimation has drawn a lot of research
attention [48,14], which leverages the photometric error from backwarping.

Although unsupervised monocular depth learning has made great progress in
recent years, there still exist several fundamental problems that may obstruct
its usage in real-world. First, current methods suffer from the scale ambiguity
problem since the backwarping process is equivalent up to an arbitrary scaling
factor w.r.t. depth and translation. While current methods are usually evaluated
by re-scaling each prediction map using the median ratio between the ground-truth
depth and the prediction, it is difficult to obtain such median ratios in practice.
Secondly, it is well-known that the photometric error is sensitive to illumination
change and moving objects, which violate the underlying assumption of the
backwarping projection. In addition, though uncertainty has been introduced for
the photometric error map under the unsupervised learning framework [21,41], it
remains non-trivial to learn an uncertainty measure for the predicted ego-motion,
which could further benefit the development of a robust and trustworthy system.

In this work, we tackle the above-mentioned problems and propose DynaDepth,
a novel scale-aware monocular depth and ego-motion prediction method that
explicitly integrates IMU motion dynamics into the vision-based system under a
camera-centric extended Kalman filter (EKF) framework. Modern sensor suites
on vehicles that collect data for training neural networks usually contain multi-
ple sensors beyond cameras. IMU presents a commonly-deployed one which is
advantageous in that (1) it is robust to the scenarios when vision fails such as in
illumination-changing and textureless regions, (2) the absolute scale metric can
be recovered by inquiring the IMU motion dynamics, and (3) it does not suffer
from the visual domain gap, leading to a better generalization ability across
datasets. While integrating IMU information has dramatically improved the
performance of classical geometric odometry and simultaneous localization and
mapping (SLAM) systems [28,22,31], its potential in the regime of unsupervised
monocular depth learning is much less explored, which is the focus of this work.

Specifically, we propose a scale-aware IMU photometric loss which is con-
structed by performing backwarping using ego-motion integrated from IMU
measurements, which provides dense supervision by using the appearance-based
photometric loss instead of naively constraining the ego-motion predicted by net-
works. To accelerate the training process, the IMU preintegration technique [26,10]
is adopted to avoid redundant computation. To correct the errors that result
from illumination change and moving objects, we further propose a cross-sensor
photometric consistency loss between the synthesized target views using network-
predicted and IMU-integrated ego-motions, respectively. Unlike classical visual-
inertial SLAM systems that accumulate the gravity and the velocity estimates
from initial frames, these two metrics are unknown for the image triplet used
in unsupervised depth estimation methods. To address this issue, DynaDepth
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Fig. 1: (a) The overall framework of DynaDepth. Îvist and ÎIMU
t denote the

reconstructed target frames from the source frame Is. Detailed notations of other
terms are given in Section 3. (b) Histograms of the scaling ratios between the
medians of depth predictions and the ground-truth. (c) Generalization results on
Make3D using models trained on KITTI with (w/) and without (w.o/) IMU.

trains two extra lightweight networks that take two consecutive frames as input
and predict the camera-centric gravity and velocity during training.

Considering that IMU and camera present two independent sensing modalities
that complement each other, we further derive a differentiable camera-centric EKF
framework for DynaDepth to fully exploit the potential of both sensors. When
observing new ego-motion predictions from visual data, DynaDepth updates the
preintegrated IMU terms based on the propagated IMU error states and the
covariances of visual predictions. The benefit is two-fold. First, IMU is known to
suffer from inherent noises, which could be corrected by the relatively accurate
visual predictions. Second, fusing with IMU under the proposed EKF framework
not only introduces scale-awareness, but also provides an elegant way to learn an
uncertainty measure for the predicted ego-motion, which can be beneficial for
recently emerging research methods that incorporate deep learning into classical
SLAM systems to achieve the synergy of learning, geometry, and optimization.

Our overall framework is shown in Fig. 1. In summary, our contributions are:

– We propose an IMU photometric loss and a cross-sensor photometric consis-
tency loss to provide dense supervision and absolute scales

– We derive a differentiable camera-centric EKF framework for sensor fusion.
– We show that DynaDepth benefits (1) the learning of the absolute scale,
(2) the generalization ability, (3) the robustness against vision degradation
such as illumination change and moving objects, and (4) the learning of an
ego-motion uncertainty measure, which are also supported by our extensive
experiments and simulations on the KITTI and Make3D datasets.

2 Related Work

2.1 Unsupervised Monocular Depth Estimation

Unsupervised monocular depth estimation has drawn extensive research at-
tention recently [48,27,14], which uses the photometric loss by backwarping
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adjacent images. Recent works improve the performance by introducing multiple
tasks [42,32,19], designing more complex networks and losses [18,15,38,49], and
constructing the photometric loss on learnt features [35]. However, monocular
methods suffer from the scale ambiguity problem. DynaDepth tackles this problem
by integrating IMU dynamics, which not only provides absolute scale, but also
achieves state-of-the-art accuracy even if only lightweight networks are adopted.

2.2 Scale-Aware Depth Learning

Though supervised depth learning methods[7,11,1] can predict depths with ab-
solute scale, the cost of collecting ground-truth data limits its practical use.
To relieve the scale problem, local reprojected depth consistency loss has been
proposed to ensure the scale consistency of the predictions [2,47,43]. However, the
absolute scale is not guaranteed in these methods. Similar to DynaDepth, there
exist methods that resort to other sensors than monocular camera, such as stereo
camera that allows a scale-aware left-right consistency loss [13,14,46], and GPS
that provides velocities to constrain the ego-motion network [15,3]. In comparison
with these methods, using IMU is beneficial in that (1) IMU provides better
generalizability since it does suffer from the visual domain gap, and (2) unlike
GPS that cannot be used indoors and cameras that fail in texture-less, dynamic
and illumination changing scenes, IMU is more robust to the environments.

2.3 Visual-Inertial SLAM Systems

The fusion of vision and IMU has achieved great success in classical visual-inertial
SLAM systems [28,22,31], yet this topic is much less explored in learning-based
depth and ego-motion estimation. Though recently IMU has been introduced
into both supervised [5,4] and unsupervised [16,34,40] odometry learning, most
methods extract IMU features implicitly, while we explicitly utilize IMU dynamics
to derive explicit supervisory signals. Li et al. [23] and Wagstaff et al. [37] similarly
use EKF for odometry learning. Ours differs in that we do not require ground-
truth information [23] or an initialization step [37] to align the velocities and
gravities, but learn these quantities using networks. Instead of expressing the
error states in the IMU frame, we further derive a camera-centric EKF framework
to facilitate the training process. In addition, compared with odometry methods
that do not consider the requirements for depth estimation, we specifically design
the losses to provide dense depth supervision for monocular depth estimation.

3 Methodology

We present the technical details of DynaDepth in this section. We first revisit the
preliminaries of IMU motion dynamics. Then we give the details of camera-centric
IMU preintegration and the two IMU-related losses, i.e., the scale-aware IMU
photometric loss and the cross-sensor photometric consistency loss. Finally, we
present the differentiable camera-centric EKF framework which fuses IMU and
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camera predictions based on their uncertainties and complements the limitations
of each other. A discussion on the connection between DynaDepth and classical
visual-inertial SLAM algorithms is also given to provide further insights.

3.1 IMU Motion Dynamics

Let {wb
m,a

b
m} and {wb,aw} denote the IMU measurements and the underlying

vehicle angular and acceleration. The superscript b and w denote the vector is
expressed in the body (IMU) frame or the world frame, respectively. Then we
have wb

m = wb + bg + ng and ab
m = Rbw(a

w + gw) + ba + na, where gw is the
gravity in the world frame and Rbw is the rotation matrix from the world frame to
the body frame [17]. {bg, ba} and {ng,na} denote the Gaussian bias and random
walk of the gyroscope and the accelerometer, respectively. Let {pwbt , qwbt} and
vw
t denote the translation and rotation from the body frame to the world frame,

and the velocity expressed in the world frame at time t, where qwbt denotes the
quaternion. The first-order derivatives of {p,v, q} read: ˙pwbt = vw

t , ˙vw
t = aw

t ,
and ˙qwbt = qwbt ⊗ [0, 12w

bt ]T , where ⊗ denotes the quaternion multiplication.
Then the continuous IMU motion dynamics from time i to j can be derived as:

pwbj = pwbi + vw
i ∆t+

∫ ∫
t∈[i,j]

(Rwbta
bt − gw)dt2, (1)

vw
j = vw

i +

∫
t∈[i,j]

(Rwbta
bt − gw)dt, (2)

qwbj =

∫
t∈[i,j]

qwbt ⊗ [0,
1

2
wbt ]Tdt, (3)

where ∆t is the time gap between i and j. For the discrete cases, we use the
averages of {w,a} within the time interval to approximate the integrals.

3.2 The DynaDepth Framework

DynaDepth aims at jointly training a scale-aware depth network Md and an
ego-motion network Mp by fusing IMU and camera information. The overall
framework is shown in Fig. 1. Given IMU measurements between two consecutive
images, we first recover the camera-centric ego-motion { ˇRckck+1

, ˇpckck+1
} with

absolute scale using IMU motion dynamics, and train two network modules
{Mg,Mv} to predict the camera-centric gravity and velocity. Then a scare-
aware IMU photometric loss and a cross-sensor photometric consistency loss are
built based on the ego-motion from IMU. To complement IMU and camera with
each other, DynaDepth further integrates a camera-centric EKF module, leading
to an updated ego-motion { ˆRckck+1

, ˆpckck+1
} for the two IMU-related losses.

IMU Preintegration IMU usually collects data at a much higher frequency
than camera, i.e., between two image frames there exist multiple IMU records.
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Since the training losses are defined on ego-motions at the camera frequency,
naive use of the IMU motion dynamics requires recalculating the integrals at
each training step, which could be computationally expensive. IMU preintegra-
tion presents a commonly-used technique to avoid the online integral computa-
tion [26,10], which preintegrates the relative pose increment from the IMU records
by leveraging the multiplicative property of rotation, i.e., qwbt = qwbi ⊗ qbibt .
Then the integration operations can be put into three preintegration terms
which only rely on the IMU measurements and can be precomputed before-
hand: (1) αbibj =

∫ ∫
t∈[i,j]

(Rbibta
bt)dt2, (2) βbibj =

∫
t∈[i,j]

(Rbibta
bt)dt, and (3)

qbibj =
∫
t∈[i,j]

qbibt ⊗ [0, 12w
bt ]Tdt. Since IMU preintegration is performed in the

IMU body frame while the network predicts ego-motions in the camera fame, we
thus establish the discrete camera-centric IMU preintegrated ego-motion as:

ˇRckck+1
= RcbF−1(qbkbk+1

)Rbc, (4)

ˇpckck+1
= Rcbαbkbk+1

+ ˇRckck+1
Rcbpbc −Rcbpbc + ṽck∆tk − 1

2
˜gck∆t2k, (5)

where F denotes the transformation from rotation matrix to quaternion. {Rcb,pcb}
and {Rbc,pbc} are the extrinsics between the IMU and the camera frames. Of
note is the estimation of ṽck and ˜gck , which are the velocity and the gravity
vectors expressed in the camera frame at time k.

Classical visual-inertial SLAM systems jointly optimize the velocity and
the gravity vectors, and accumulate their estimates from previous steps. A
complicated initialization step is usually required to achieve good performance. For
unsupervised learning where the training units are randomly sampled short-range
clips, it is difficult to apply the aforementioned initialization and accumulation.
To address this issue, we propose to predict these two quantities directly from
images as well during training, using two extra network modules {Mv,Mg}.

IMU Photometric Loss State-of-the-art visual-inertial SLAM systems usually
utilize IMU preintegrated ego-motions by constructing the residues between the
IMU preintegrated terms and the system estimates to be optimized. However,
naively formulating the training loss as these residues on IMU preintegration
terms can only provide sparse supervision for the ego-motion network and thus is
inefficient in terms of the entire unsupervised learning system. In this work, we
propose an IMU photometric loss LIMU

photo to tackle this problem which provides
dense supervisory signals for both the depth and the ego-motion networks. Given
an image I and its consecutive neighbours {I−1, I1}, LIMU

photo reads:

LIMU
photo =

1

N

N∑
i=1

min
δ∈{−1,1}

L(I(yi), Iδ(ψ(KR̂δK
−1yi +

Kp̂δ

z̃i
))), (6)

L(I, Iδ) = α
1− SSIM(I, Iδ)

2
+ (1− α)||I − Iδ||1, (7)

where K and N are the camera intrinsics and the number of utilized pixels, yi

and z̃i are the pixel coordinate in image I and its depth predicted by Md, I(yi)
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is the pixel intensity at yi, and ψ(·) denotes the depth normalization function.

{R̂δ, p̂δ} denotes the ego-motion estimate from image I to Iδ, which is obtained
by fusing the IMU preintegrated ego-motion and the ones predicted by Mp under
our camera-centric EKF framework. SSIM(·) denotes the structural similarity
index [39]. We also adopt the per-pixel minimum trick proposed in [14].

Cross-Sensor Photometric Consistency Loss In addition to LIMU
photo, we

further propose a cross-sensor photometric consistency loss Lcons
photo to align the

ego-motions from IMU preintegration and Mp. Instead of directly comparing
the ego-motions, we use the photometric error between the backwarped images,
which provides denser supervisory signals for both Md and Mp:

Lcons
photo =

1

N

N∑
i=1

min
δ∈{−1,1}

L(Iδ(ψ(KR̃δK
−1yi +

Kp̃δ

z̃i
)), Iδ(ψ(KR̂δK

−1yi +
Kp̂δ

z̃i
))),

(8)

where {R̃δ, p̃δ} are the ego-motion predicted by Mp.

Remark: Of note is that using Lcons
photo actually increases the tolerance for illumi-

nation change and moving objects which may violate the underlying assumption
of the photometric loss between consecutive frames. Since we are comparing
two backwarped views in Lcons

photo, the errors incurred by the corner cases will be
exhibited equally in both backwarped views. In this sense, Lcons

photo remains valid,

and minimizing Lcons
photo helps to align {R̃δ, p̃δ} and {R̂δ, p̂δ} under such cases.

The Camera-Centric EKF Fusion To fully exploit the complementary IMU
and camera sensors, we propose to fuse ego-motions from both sensors under a
camera-centric EKF framework. Different from previous methods that integrate
EKF into deep learning-based frameworks to deal with IMU data [25,23], ours
differs in that we do not require ground-truth ego-motion and velocities to obtain
the aligned velocities and gravities for each IMU frame, but propose {Mv,Mg}
to predict these quantities. In addition, instead of expressing the error states in
the IMU body frame, we derive the camera-centric EKF propagation and update
processes to facilitate the training process which takes camera images as input.

EKF Propagation: Let ck denote the camera frame at time tk, and {bt} denote
the IMU frames between tk and time tk+1 when we receive the next visual
measurement. We then propagate the IMU information according to the state
transition model: xt = f(xt−1,ut) + wt, where ut is the IMU record at time
t, wt is the noise term, and xt = [ϕT

ckbt
,pT

ckbt
,vckT , gckT , bbtTw , bbtTa ]T is the

state vector expressed in the camera frame ck except for {bw, ba}. ϕckbt denotes
the so(3) Lie algebra of the rotation matrix Rckbt s.t. Rckbt = exp([ϕckbt ]

∧),
where [·]∧ denotes the operation from a so(3) vector to the corresponding skew
symmetric matrix. To facilitate the derivation of the propagation process, we
further separate the state into the nominal states denoted by (̄·), and the error
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states δxbt = [δϕT
ckbt

, δpT
ckbt

, δvckT , δgckT , δbbtTw , δbbtTa ]T , such that:

Rckbt = R̄ckbtexp([δϕckbt ]
∧), pckbt = p̄ckbt + δpckbt , (9)

vck = v̄ck + δvck , gck = ḡck + δgck , (10)

bbtw = b̄w
bt + δbbtw , bbta = b̄a

bt + δbbta . (11)

The nominal states can be computed using the preintegration terms, while
the error states are used for propagating the covariances. It is noteworthy that
the state transition model of δxbt is non-linear, which prevents a naive use of
the Kalman filter. EKF addresses this problem and performs propagation by
linearizing the state transition model at each time step using the first-order Taylor
approximation. Therefore, let ˙(·) denote the derivative w.r.t. time t, we derive the
continuous-time propagation model for the error states as: δẋbt = F δxbt +Gn.
Detailed derivations are given in the Supplementary material, and F and G read:

F =


−[w̄bt ]∧ 0 0 0 −I3 0

0 0 I3 0 0 0

−R̄ckbt [R̄
T
ckbt

ḡck + ābt ]∧ 0 0 −I3 0 −R̄ckbt

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,G =


−I3 0 0 0
0 0 0 0
0 0 −R̄ckbt 0
0 0 0 0
0 I3 0 0
0 0 0 I3


(12)

where w̄bt = wbt
m − b̄w

bt and ābt = abt
m − R̄T

ckbt
ḡck − b̄a

bt . Given the continuous
error propagation model and the initial condition Φtτ ,tτ = I18, the discrete state-

transition matrix Φ(tτ+1,tτ ) can be found by solving Φ̇(tτ+1,tτ ) = Ftτ+1
Φ(tτ+1,tτ ):

Φtτ+1,tτ = exp(

∫ tτ+1

tτ

F (s)ds) ≈ I18 + F δt+
1

2
F 2δt2, δt = tτ+1 − tτ . (13)

Let P̌ and P̂ denote the prior and posterior covariance estimates during
propagation and after an update given new observations. Then we have

ˇPtτ+1
= Φtτ+1,tτ P̌tτΦ

T
tτ+1,tτ +Qtτ , (14)

Qtτ =

∫ tτ+1

tτ

Φs,tτGQGTΦT
s,tτds ≈ Φtτ+1,tτGQGTΦT

tτ+1,tτ δt, (15)

where Q = D([σ2
wI3, σ

2
bw
I3, σ

2
aI3, σ

2
ba
I3]). D is the diagonalization function.

EKF Update: In general, given an observation measurement ξk+1 and its corre-
sponding covariance Γk+1 from the camera sensor at time tk+1, we assume the
following observation model: ξk+1 = h(xk+1) + nr, nr ∼ N(0,Γk+1).

Let Hk+1 = ∂h(xk+1)
∂δxk+1

. Then the EKF update applies as following:

Kk+1 = P̌k+1H
T
k+1(Hk+1

ˇPk+1H
T
k+1 + Γk+1)

−1, (16)

P̂k+1 = (I18 −Kk+1Hk+1)P̌k+1, (17)

δx̂k+1 = Kk+1(ξk+1 − h(x̌k+1)). (18)
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In DynaDepth, the observation measurement is defined as the ego-motion
predicted by Mp, i.e., ξk+1 = [ϕ̃T

ckck+1
, p̃T

ckck+1
]T . Of note is that the covariances

Γk+1 of {ϕ̃T
ckck+1

, p̃T
ckck+1

} are also predicted by the ego-motion network Mp. To
finish the camera-centric EKF update step, we derive h(x̌k+1) and Hk+1 as:

h(x̌k+1) =

[
ϕ̄ckck+1

R̄ckbk+1pbc + p̄ckbk+1

]
,Hk+1 =

[
Jl(−ϕ̄ckck+1)

−1Rcb 0 0 0 0 0
−R̄ckbk+1 [pbc]

∧ I3 0 0 0 0

]
. (19)

After obtaining the updated error states δx̂k+1, we add δx̂k+1 back to the
accumulated nominal states to get the corrected ego-motion. In detail, δx̂k+1 is
obtained by inserting Eq. (19) into Eq. (16-18), which can be inserted into Eq.

(9) to get the updated {ϕ̂ckbk+1
, p̂ckbk+1

}. Then by projecting {ϕ̂ckbk+1
, p̂ckbk+1

}
using the camera intrinsics, we obtain the corrected ego-motion {ϕ̂ckbk+1

, p̂ckbk+1
}

that fuses IMU and camera information based on their covariances as confidence
indicators, which are used to compute LIMU

photo and Lcons
photo.

Finally, in addition to {LIMU
photo, L

cons
photo}, the total training loss Ltotal in Dy-

naDepth also includes the vision-based photometric loss Lvis
photo and the disparity

smoothness loss Ls as proposed in monodepth2 [14] to leverage the visual clues.
We also consider the weak L2-norm loss Lvg for the velocity and gravity predic-
tions from Mv and Mg. In summary, Ltotal reads:

Ltotal = Lvis
photo + λ1Ls + λ2L

IMU
photo + λ3L

cons
photo + λ4Lvg, (20)

where {λ1, λ2, λ3, λ4} denote the loss weights which are determined empirically.

Remark: Alhough we have witnessed a paradigm shift from EKF to optimization
in classical visual-inertial SLAM systems in recent years [28,22,31], we argue that
in the setting of unsupervised depth estimation, EKF provides a better choice
than optimization. The major problem of EKF is its limited ability to handle
long-term data because of the Markov assumption between updates, the first-
order approximation for the non-linear state-transition and observation models,
and the memory consumption for storing the covariances. However, in our setting,
short-term image clips are usually used as the basic training unit, which indicates
that the Markov property and the linearization in EKF will approximately hold
within the short time intervals. In addition, only the ego-motions predicted by
Mp are used as the visual measurements, which is memory-efficient.

On the other hand, by using EKF, we are able to correct the IMU preintegrated
ego-motions and update {LIMU

photo, L
cons
photo} accordingly when observing new visual

measurements. Compared with formulating the commonly-used optimization
objective, i.e., the residues of the IMU preintegration terms, as the training losses,
our proposed LIMU

photo and Lcons
photo provide denser supervision for both Md and Mp.

From another perspective, EKF essentially can be regarded as weighting the
ego-motions from IMU and vision based on their covariances, and thus naturally
provides a framework for estimating the uncertainty of the ego-motion predicted
by Mp, which is non-trivial for the unsupervised learning frameworks.
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Table 1: Per-image rescaled depth evaluation on KITTI using the Eigen split.
The best and the second best results are shown in bold and underline. † denotes
our reproduced results. Results are rescaled using the median ground-truth from
Lidar. The means and standard errors of the scaling ratios are reported in Scale.

Methods Year Scale
Error↓ Accuracy↑

AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Monodepth2 R18 [14] ICCV 2019 NA 0.112 0.851 4.754 0.190 0.881 0.960 0.981

Monodepth2 R50† [14] ICCV 2019 29.128±0.084 0.111 0.806 4.642 0.189 0.882 0.962 0.982
PackNet-SfM [15] CVPR 2020 NA 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Johnston R18 [18] CVPR 2020 NA 0.111 0.941 4.817 0.189 0.885 0.961 0.981
R-MSFM6 [49] ICCV 2021 NA 0.112 0.806 4.704 0.191 0.878 0.960 0.981
G2S R50 [3] ICRA 2021 1.031±0.073 0.112 0.894 4.852 0.192 0.877 0.958 0.981

ScaleInvariant R18 [38] ICCV 2021 NA 0.109 0.779 4.641 0.186 0.883 0.962 0.982

DynaDepth R18 2022 1.021±0.069 0.111 0.806 4.777 0.190 0.878 0.960 0.982
DynaDepth R50 2022 1.013±0.071 0.108 0.761 4.608 0.187 0.883 0.962 0.982

4 Experiment

We evaluate the effectiveness of DynaDepth on KITTI [12] and test the gen-
eralization ability on Make3D [33]. In addition, we perform extensive ablation
studies on our proposed IMU losses, the EKF framework, the learnt ego-motion
uncertainty, and the robustness against illumination change and moving objects.

4.1 Implementation

DynaDepth is implemented in pytorch [30]. We adopt the monodepth2 [14]
network structures for {Md,Mp}, except that we increase the output dimension
of Mp from 6 to 12 to include the uncertainty predictions. {Mg,Mv} share the
same network structure as Mp except that the output dimensions are both set
to 3. {λ1, λ2, λ3, λ4} are set to {0.001, 0.5, 0.01, 0.001}. We train all networks for
30 epochs using an initial learning rate 1e-4, which is reduced to 1e-5 after the
first 15 epochs. The training process takes 1 ∼ 2 days on a single NVIDIA V100
GPU. The source codes and the trained models will be released.

4.2 Scale-Aware Depth Estimation on KITTI

We use the Eigen split [6] for depth evaluation. In addition to the removal of
static frames as proposed in [48], we discard images without the corresponding
IMU records, leading to 38,102 image-and-IMU triplets for training and 4,238
for validation. WLOG, we use the image resolution 640x192 and cap the depth
predictions at 80m, following the common practice in [14,18,15,3,38].

We compare DynaDepth with state-of-the-art monocular depth estimation
methods in Table 1, which rescale the results using the ratio of the median depth
between the ground-truth and the prediction. For a fair comparison, we only
present results achieved with image resolution 640x192 and an encoder with
moderate size, i.e., ResNet18 (R18) or ResNet50 (R50). In addition to standard
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Table 2: Unscaled depth evaluation on KITTI using the Eigen split. † denotes
our reproduced results. The best results are shown in bold.

Methods Year
Error↓ Accuracy↑

AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Monodepth2 R50† [14] ICCV 2019 0.966 15.039 19.145 3.404 0.000 0.000 0.000
PackNet-SfM [15] CVPR 2020 0.111 0.829 4.788 0.199 0.864 0.954 0.980

G2S R50 [3] ICRA 2021 0.109 0.860 4.855 0.198 0.865 0.954 0.980

DynaDepth R50 2022 0.109 0.787 4.705 0.195 0.869 0.958 0.981

depth evaluation metrics [7], we report the means and standard errors of the
rescaling factors to demonstrate the scale-awareness ability. DynaDepth achieves
the best up-to-scale performance w.r.t. four metrics and achieves the second
best for the other three metrics. Of note is that DynaDepth also achieves a
nearly perfect absolute scale. In terms of scale-awareness, even our R18 version
outperforms G2S R50 [3], which uses a heavier encoder. For better illustration,
we also show the scaling ratio histograms with and without IMU in Fig. 1(b).

We then report the unscaled results in Table 2, and compare with PackNet-
SfM [15] and G2S [3], which use the GPS information to construct velocity
constraints. Without rescaling, Monodepth2 [14] fails completely as expected. In
this case, DynaDepth achieves the best performance w.r.t. all metrics, setting a
new benchmark of unscaled depth evaluation for monocular methods.

4.3 Generalizability on Make3D

We further test the generalizability of DynaDepth on Make3D [33] using models
trained on KITTI [12]. The test images are centre-cropped to a 2x1 ratio for a fair
comparison with previous methods [14]. A qualitative example is given in Fig. 1(c),
where the model without IMU fails in the glass and shadow areas, while our model
achieves a distinguishable prediction. Quantitative results are reported in Table 3.
A reasonably good scaling ratio has been achieved for DynaDepth, indicating
that the scale-awareness learnt by DynaDepth can be well generalized to unseen
datasets. Surprisingly, we found that DynaDepth that only uses the gyroscope
and accelerator IMU information (w.o/ Lvg) achieves the best generalization
results. The reason can be two-fold. First, our full model may overfit to the
KITTI dataset due to the increased modeling capacity. Second, the performance
degradation can be due to the domain gap of the visual data, since both Mv

and Mg take images as input. This also explains the scale loss of G2S in this
case. We further show that DynaDepth w.o/ Lvg significantly outperforms the
stereo version of Monodepth2, which can also be explained by the visual domain
gap, especially the different camera intrinsics used in their left-right consistency
loss. Our generalizability experiment justifies the advantages of using IMU to
provide scale information, which will not be affected by the visual domain gap
and varied camera parameters, leading to improved generalization performance.
In addition, it is also shown that the use of EKF in training significantly improves
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Table 3: Generalization results on Make3D. ∗ denotes unscaled results while the
others present per-image rescaled results. The best results are shown in bold.
M, S, GPS, and IMU in Type denote whether monocular, stereo, GPS and IMU
information are used for training the model on KITTI. - means item not available.

Methods Lvg EKF Type Scale
Error↓ Accuracy↑

Absrel Sqrel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Zhou [48] - - M - 0.383 5.321 10.470 0.478 - - -
Monodepth2 [14] - - M - 0.322 3.589 7.417 0.163 - - -

G2S [3] - - M+GPS 2.81±0.85 - - - - - - -
DynaDepth M+IMU 1.37±0.27 0.316 3.006 7.218 0.164 0.522 0.797 0.914
DynaDepth ✓ M+IMU 1.26±0.27 0.313 2.878 7.133 0.162 0.527 0.800 0.916

DynaDepth (full) ✓ ✓ M+IMU 1.45±0.26 0.334 3.311 7.463 0.169 0.497 0.779 0.908

Monodepth2∗ [14] - - M+S - 0.374 3.792 8.238 0.201 - - -
DynaDepth∗ M+IMU - 0.360 3.461 8.833 0.226 0.295 0.594 0.794
DynaDepth∗ ✓ M+IMU - 0.337 3.135 8.217 0.201 0.384 0.671 0.845

DynaDepth∗ (full) ✓ ✓ M+IMU - 0.378 3.655 9.034 0.240 0.261 0.550 0.758

the generalization ability, possibly thanks to the EKF fusion framework that
takes the uncertainty into account and integrates the generalizable IMU motion
dynamics and the domain-specific vision information in a more reasonable way.

4.4 Ablation Studies

We conduct ablation studies on KITTI to investigate the effects of the proposed
IMU-related losses, the EKF fusion framework, and the learnt ego-motion uncer-
tainty. In addition, we design simulated experiment to demonstrate the robustness
of DynaDepth against vision degradation such as illumination change and moving
objects. WLOG, we use ResNet18 as the encoder for all ablation studies.

The effects of the IMU-related losses and the EKF Fusion Framework
We report the ablation results of the IMU-related losses and the EKF fusion
framework in Table 4. First, LIMU

photo presents the main contributor to learning the

scale. However, only a rough scale is learnt using LIMU
photo only. And the up-to-scale

accuracy is also not as good as the other models. Lcons
photo provides better up-to-

scale accuracy, but using Lcons
photo alone is not enough to learn the absolute scale

due to the relatively weak supervision. Instead, combining LIMU
photo and Lcons

photo

together boosts the performance of both the scale-awareness and the accuracy.
The use of Lvg further enhances the evaluation results. Nevertheless, as shown
in Section 4.3, Lvg may lead to overfitting to current dataset and harm the
generalizability, due to its dependence on visual data that suffers from the visual
domain gap between different datasets. On the other hand, EKF improves the
up-to-scale accuracy w.r.t. almost all metrics, while decreasing the learnt scale
information a little bit. Since the scale information comes from IMU, and the
visual data contributes most to the up-to-scale accuracy, EKF achieves a good
balance between the two sensors. Moreover, as shown in Table 3, the use of EKF
leads to the best generalization results w.r.t. both the scale and the accuracy.
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Table 4: Ablation results of the IMU-related losses and the EKF fusion framework
on KITTI. The best results are shown in bold.

EKF LIMU
photo L

cons
photo Lvg Scale

Error↓ Accuracy↑
AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

✓ ✓ 1.130±0.099 0.115 0.804 4.806 0.193 0.871 0.959 0.982
✓ ✓ 4.271±0.089 0.114 0.832 4.780 0.192 0.876 0.959 0.981
✓ ✓ ✓ 1.076±0.095 0.113 0.794 4.760 0.191 0.874 0.960 0.982
✓ ✓ ✓ ✓ 1.021±0.069 0.111 0.806 4.777 0.190 0.878 0.960 0.982

✓ ✓ 0.968±0.098 0.115 0.839 4.898 0.194 0.869 0.958 0.981
✓ ✓ ✓ 1.076±0.095 0.113 0.794 4.760 0.191 0.874 0.960 0.982

✓ ✓ ✓ 1.013±0.069 0.112 0.808 4.751 0.191 0.877 0.960 0.982
✓ ✓ ✓ ✓ 1.021±0.069 0.111 0.806 4.777 0.190 0.878 0.960 0.982

The robustness against vision degradation We then examine the robustness
of DynaDepth against illumination change and moving objects, two major cases
that violate the underlying assumption of the photometric loss. We simulate the
illumination change by randomly alternating image contrast within a range 0.5.
The moving objects are simulated by randomly inserting three 150x150 black
squares. In contrast to data augmentation, we perform the perturbation for each
image independently, rather than applying the same perturbation to all images in
a triplet. Results are given in Table 5. Under illumination change, the accuracy
of Monodepth2 degrades as expected, while DynaDepth rescues the accuracy
to a certain degree and maintains the correct absolute scales. EKF improves
almost all metrics in this case, and using both EKF and Lvg achieves the best
scale and AbsRel. However, the model without Lvg obtains the best performance
on most metrics. The reason may be the dependence of Lvg on the visual data,
which is more sensitive to image qualities. When there exist moving objects,
Monodepth2 fails completely. Using DynaDepth without EKF and Lvg improves
the up-to-scale accuracy a little bit, but the results are still far from expected.
Using EKF significantly improves the up-to-scale results, while it is still hard to
learn the scale given the difficulty of the task. In this case, using Lvg is shown to
provide strong scale supervision and achieve a good scale result.

The learnt ego-motion uncertainty We illustrate the training progress of
the ego-motion uncertainty in Fig. 2. We report the averaged covariance as the
uncertainty measure. The learnt uncertainty exhibits a similar pattern as the
depth error (AbsRel), meaning that the model becomes more certain about its
predictions as the training continues. Of note is that only indirect supervision is
provided, which justifies the effectiveness of our fusion framework. In addition,
DynaDepth R50 achieves a lower uncertainty than R18, indicating that a larger
model capacity also contributes to the prediction confidence, yet such difference
can hardly be seen w.r.t. AbsRel. Table 6 presents another interesting observation.
In KITTI, the axis-z denotes the forward direction. Since most test images
correspond to driving forward, the magnitude of tz is significantly larger than
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Table 5: Ablation results of the robustness against vision degradation on the
simulated data from KITTI. The best results are shown in bold. IC and MO
denote the two investigated vision degradation types, i.e., illumination change
and moving objects. - means item not available. † denotes our reproduced results.

Methods EKF Lvg Type Scale
Error↓ Accuracy↑

AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Monodepth2† [14] - - IC 27.701±0.096 0.127 0.976 5.019 0.220 0.855 0.946 0.972
DynaDepth IC 1.036±0.099 0.124 0.858 4.915 0.226 0.852 0.950 0.977
DynaDepth ✓ IC 0.946±0.089 0.123 0.925 4.866 0.196 0.863 0.957 0.981
DynaDepth ✓ ✓ IC 1.019±0.074 0.121 0.906 4.950 0.217 0.859 0.954 0.978

Monodepth2† [14] - - MO 0.291±0.176 0.257 2.493 8.670 0.398 0.584 0.801 0.897
DynaDepth MO 0.083±0.225 0.169 1.290 6.030 0.278 0.763 0.915 0.960
DynaDepth ✓ MO 0.087±0.119 0.126 0.861 5.312 0.210 0.840 0.948 0.979
DynaDepth ✓ ✓ MO 0.956±0.084 0.125 0.926 4.954 0.214 0.852 0.949 0.976
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Fig. 2: The training processes w.r.t. AbsRel (left)
and the averaged ego-motion covariance (right).

Table 6: The averaged mag-
nitude |t̄| and the variance
σ̄2
t of the translation pre-

dictions along each axis.

axis-x axis-y axis-z

|t̄| 0.017 0.018 0.811
σ̄2
t 7.559 5.222 0.105

{tx, ty}. Accordingly, DynaDepth shows a high confidence on tz, while large
variances are observed for {tx, ty}, potentially due to the difficulty to distinguish
the noises from the small amount of translations along axis-x and axis-y.

5 Conclusion

In this paper, we propose DynaDepth, a scale-aware, robust, and generalizable
monocular depth estimation framework using IMU motion dynamics. Specifically,
we propose an IMU photometric loss and a cross-sensor photometric consistency
loss to provide dense supervision and absolution scales. In addition, we derive a
camera-centric EKF framework for the sensor fusion, which also provides an ego-
motion uncertainty measure under the setting of unsupervised learning. Extensive
experiments support that DynaDepth is advantageous w.r.t. learning absolute
scales, the generalizability, and the robustness against vision degradation.
Acknowledgment This work is supported by ARC FL-170100117, DP-180103424,
IC-190100031, and LE-200100049.
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9. Engel, J., Schöps, T., Cremers, D.: Lsd-slam: Large-scale direct monocular slam. In:
Proceedings of the European Conference on Computer Vision (ECCV). pp. 834–849.
Springer (2014)

10. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: Imu preintegration on manifold
for efficient visual-inertial maximum-a-posteriori estimation. Georgia Institute of
Technology (2015)

11. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression
network for monocular depth estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2002–2011 (2018)

12. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research 32(11), 1231–1237 (2013)

13. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth es-
timation with left-right consistency. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 270–279 (2017)

14. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised
monocular depth estimation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 3828–3838 (2019)

15. Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., Gaidon, A.: 3d packing for
self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 2485–2494 (2020)

16. Han, L., Lin, Y., Du, G., Lian, S.: Deepvio: Self-supervised deep learning of monoc-
ular visual inertial odometry using 3d geometric constraints. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 6906–6913.
IEEE (2019)



16 S. Zhang, J. Zhang, and D.Tao

17. Huang, G.: Visual-inertial navigation: A concise review. In: 2019 IEEE International
Conference on Robotics and Automation (ICRA). pp. 9572–9582. IEEE (2019)

18. Johnston, A., Carneiro, G.: Self-supervised monocular trained depth estimation
using self-attention and discrete disparity volume. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4756–4765 (2020)

19. Jung, H., Park, E., Yoo, S.: Fine-grained semantics-aware representation en-
hancement for self-supervised monocular depth estimation. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 12642–12652
(2021)

20. Khan, F., Salahuddin, S., Javidnia, H.: Deep learning-based monocular depth
estimation methods—a state-of-the-art review. Sensors 20(8), 2272 (2020)

21. Klodt, M., Vedaldi, A.: Supervising the new with the old: learning sfm from sfm. In:
Proceedings of the European Conference on Computer Vision (ECCV). pp. 698–713
(2018)

22. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based
visual–inertial odometry using nonlinear optimization. The International Journal
of Robotics Research 34(3), 314–334 (2015)

23. Li, C., Waslander, S.L.: Towards end-to-end learning of visual inertial odometry
with an ekf. In: 2020 17th Conference on Computer and Robot Vision (CRV). pp.
190–197. IEEE (2020)

24. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images
using deep convolutional neural fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence 38(10), 2024–2039 (2015)

25. Liu, W., Caruso, D., Ilg, E., Dong, J., Mourikis, A.I., Daniilidis, K., Kumar, V.,
Engel, J.: Tlio: Tight learned inertial odometry. IEEE Robotics and Automation
Letters 5(4), 5653–5660 (2020)

26. Lupton, T., Sukkarieh, S.: Visual-inertial-aided navigation for high-dynamic motion
in built environments without initial conditions. IEEE Transactions on Robotics
28(1), 61–76 (2011)

27. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and
ego-motion from monocular video using 3d geometric constraints. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5667–5675
(2018)

28. Mourikis, A.I., Roumeliotis, S.I., et al.: A multi-state constraint kalman filter for
vision-aided inertial navigation. In: 2007 IEEE International Conference on Robotics
and Automation (ICRA). vol. 2, p. 6 (2007)

29. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate
monocular slam system. IEEE Transactions on Robotics 31(5), 1147–1163 (2015)

30. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing
Systems 32 (2019)

31. Qin, T., Li, P., Shen, S.: Vins-mono: A robust and versatile monocular visual-inertial
state estimator. IEEE Transactions on Robotics 34(4), 1004–1020 (2018)

32. Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J., Black, M.J.:
Competitive collaboration: Joint unsupervised learning of depth, camera motion,
optical flow and motion segmentation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 12240–12249 (2019)

33. Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from a single
still image. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5),
824–840 (2008)



IMU-Integrated Unsupervised Monocular Depth Estimation 17

34. Shamwell, E.J., Lindgren, K., Leung, S., Nothwang, W.D.: Unsupervised deep visual-
inertial odometry with online error correction for rgb-d imagery. IEEE Transactions
on Pattern Analysis and Machine Intelligence 42(10), 2478–2493 (2019)

35. Shu, C., Yu, K., Duan, Z., Yang, K.: Feature-metric loss for self-supervised learning
of depth and egomotion. In: European Conference on Computer Vision. pp. 572–588.
Springer (2020)

36. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: A survey from 2010
to 2016. IPSJ Transactions on Computer Vision and Applications 9(1), 1–11 (2017)

37. Wagstaff, B., Wise, E., Kelly, J.: A self-supervised, differentiable Kalman filter for
uncertainty-aware visual-inertial odometry. In: IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics (2022)

38. Wang, L., Wang, Y., Wang, L., Zhan, Y., Wang, Y., Lu, H.: Can scale-consistent
monocular depth be learned in a self-supervised scale-invariant manner? In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. pp.
12727–12736 (2021)

39. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing
13(4), 600–612 (2004)

40. Wei, P., Hua, G., Huang, W., Meng, F., Liu, H.: Unsupervised monocular visual-
inertial odometry network. In: Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence. pp. 2347–
2354 (2021)

41. Yang, N., Stumberg, L.v., Wang, R., Cremers, D.: D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1281–1292 (2020)

42. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and
camera pose. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1983–1992 (2018)

43. Zhan, H., Weerasekera, C.S., Bian, J.W., Reid, I.: Visual odometry revisited:
What should be learnt? In: 2020 IEEE International Conference on Robotics and
Automation (ICRA). pp. 4203–4210. IEEE (2020)

44. Zhang, J., Tao, D.: Empowering things with intelligence: a survey of the progress,
challenges, and opportunities in artificial intelligence of things. IEEE Internet of
Things Journal 8(10), 7789–7817 (2020)

45. Zhang, S., Zhang, J., Tao, D.: Information-theoretic odometry learning. arXiv
preprint arXiv:2203.05724 (2022)

46. Zhang, S., Zhang, J., Tao, D.: Towards scale consistent monocular visual odometry
by learning from the virtual world. arXiv preprint arXiv:2203.05712 (2022)

47. Zhao, W., Liu, S., Shu, Y., Liu, Y.J.: Towards better generalization: Joint depth-
pose learning without posenet. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9151–9161 (2020)

48. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth
and ego-motion from video. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1851–1858 (2017)

49. Zhou, Z., Fan, X., Shi, P., Xin, Y.: R-msfm: Recurrent multi-scale feature modulation
for monocular depth estimating. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 12777–12786 (2021)


	Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular Depth Estimation by Integrating IMU Motion Dynamics

