
MorphoActivation: Generalizing ReLU activation
function by mathematical morphology

Santiago Velasco-Forero and Jesús Angulo

MINES Paris, PSL University,
Centre for mathematical morphology (CMM), France

santiago.velasco@mines-paristech.fr, jesus.angulo@mines-paristech.fr

Abstract. This paper analyses both nonlinear activation functions and
spatial max-pooling for Deep Convolutional Neural Networks (DCNNs)
by means of the algebraic basis of mathematical morphology. Addition-
ally, a general family of activation functions is proposed by considering
both max-pooling and nonlinear operators in the context of morpholog-
ical representations. Experimental section validates the goodness of our
approach on classical benchmarks for supervised learning by DCNN.

Keywords: Matheron’s representation theory; activation function; math-
ematical morphology; deep learning.

1 Introduction

Artificial neural networks were introduced as mathematical models for biolog-
ical neural networks [24]. The basic component is a linear perceptron which is
a linear combination of weights with biases followed by a nonlinear function
called activation function. Such components (usually called a layer) can then
be concatenated eventually leading to very complex functions named deep ar-
tificial neural networks (DNNs) [7]. Activation function can also be seen as an
attached function between two layers in a neural network. Meanwhile, in order
to get the learning in a DNNs, one needs to update the weights and biases of
the neurons on the basis of the error at the output. This process involves two
steps, a Back-Propagation from prediction error and a Gradient Descent Op-
timization to update parameters [7]. The most famous activation function is
the Rectified Linear Unit (ReLU) proposed by [27], which is simply defined as
ReLU(x) = max(x, 0). A clear benefit of ReLU is that both the function itself and
its derivatives are easy to implement and computationally inexpensive. However,
ReLU has a potential loss during optimization because the gradient is zero when
the unit is not active. This could lead to cases where there is a gradient-based
optimization algorithm that will not adjust the weights of a unit that was never
initially activated. An approach purely computational motivated to alleviate po-
tential problems caused by the hard zero activation of ReLU, proposed a leaky
ReLU activation [18]: LeakyReLU(x) = max(x, .01x). A simple generalisation is
the Parametric ReLU proposed by [11], defined as PReLUβ(x) = max(x, βx),
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where β ∈ R is a learnable parameter. In general, the use of piecewise-linear
functions as activation function has been initially motivated by neurobiological
observations; for instance, the inhibiting effect of the activity of a visual-receptor
unit on the activity of the neighbouring units can be modelled by a line with two
segments [10]. On the other hand, for the particular case of structured data as
images, a translation invariant DNN called Deep Convolutional Neural Networks
(DCNN) is the most used architecture. In the conventional DCNN framework
interspersed convolutional layers and pooling layers to summarise information
in a hierarchical structure. The common choice is the pooling by a maximum
operator called max-pooling, which is particularly well suited to the separation
of features that are very sparse [3].

As far as these authors know, that morphological operators have been used
in the context of DCNNs following the paradigm of replacing lineal convolutions
by non-linear morphological filters [31,34,15,26,13], or hybrid variants between
linear and morphological layers [30,32,14,33]. Our contribution is more in the
sense of [5] where the authors show favourable results in quantitative perfor-
mance for some applications when seeing the max-pooling operator as a dilation
layer. However, we go further to study both nonlinear activation and max-pooling
operators in the context of morphological representation theory of nonlinear op-
erators. Finally, in the experimental section, we compare different propositions
in a practical case of training a multilayer CNNs for classification of images in
several databases.

2 ReLU activation and max-pooling are morphological
dilations

2.1 Dilation and Erosion

Let us consider a complete lattice (L,≤), where and
∨

and
∧

are respectively
its supremum and infimum. A lattice operator ψ : L → L is called increasing
operator (or isotone) is if it is order-preserving, i.e., ∀X,Y , X ≤ Y =⇒ ψ(X) ≤
ψ(Y ). Dilation δ and erosion ε are lattice operators which are increasing and
satisfy

δ

(∨
i∈J

Xi

)
=
∨
i∈J

δ (Xi) ; ε

(∧
i∈J

Xi

)
=
∧
i∈J

ε (Xi) .

Dilation and erosion can be then composed to obtain other operators [12]. In this
paper, we also use morphological operators on the lattice of functions F(Rn, R̄)
with the standard partial order ≤. The sup-convolution and inf-convolution of
function f by structuring function g are given by

(f ⊕ g)(x) = δg(f)(x) := sup
y∈Rn

{f(x− y) + g(y)} , (1)

(f 	 g)(x) = εg(f)(x) := inf
y∈Rn

{f(x+ y)− g(y)} . (2)
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2.2 ReLU and max-pooling

Let us now consider the standard framework of one-dimensional1 signals on
DCNNs where any operator is applied on signals f(x) supported on a discrete
grid subset of Z. The ReLU activation function [27] applied on every pixel x of
an image f is defined as

ReLU(f(x)) := max (0, f(x)) . (3)

The Max-pooling operator of pooling size R and strides K, maps an image f
of n pixels onto an image of n′ := bn−RK + 1c by taking the local maxima in a
neighbour of size R, and moving the window K elements at a time, skipping the
intermediate locations:

MaxPoolR(f)(x) = δMaxPoolR (f)(x) :=
∨

y∈WR(x)

{f(K · x− y)}. (4)

where WR(y) = 0 if y belongs to the neighbour of size R centred in x and
−∞ otherwise. There are other operations in DCNN which use the maximum
operation as main ingredient, namely the Maxout layer [8] and the Max-plus
layer (morphological perceptron) [4,37].

From the definition of operators, it is straightforward to prove the following
proposition

Proposition 1. ReLU activation function and max-pooling are dilation opera-
tors on the lattice of functions.

Proof. Using the standard partial ordering ≤, we note that both ReLU and
max-pooling are increasing:

f ≤ g =⇒ ReLU(f) ≤ ReLU(g); δMaxPoolR (f) ≤ δMaxPoolR (g).

They commute with supremum operation

ReLU(f ∨ g) = ReLU(f) ∨ ReLU(g); δMaxPoolR (f ∨ g) = δMaxPoolR (f) ∨ δMaxPoolR (g).

These two operators are both also extensive, i.e., f ≤ δ(f). ReLU is also idempo-
tent, i.e., ReLU(ReLU(f)) = ReLU(f). Then ReLU is both a dilation and a closing.

Remark 1: Factoring activation function and pooling. The compo-
sition of dilations in the same complete lattice can often be factorized into a
single operation. One can for instance define a nonlinear activation function and
pooling dilation as

δActPool
R;α (f)(x) :=

∨
y∈WR(x)

{max (0, f(K · x− y) + α)} ,

where W denotes a local neighbour, usually a square of side R. Note that that
analysis does not bring any new operator, just the interpretation of composed
nonlinearities as a dilation.
1 The extension to d-dimensional functions is straightforward.
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Remark 2: Positive and negative activation function, symmetric
pooling. More general ReLU-like activation functions also keep a negative part.
Let us consider the two parameters β+, β− ∈ R, we define (β+, β−)-ReLU as

ReLUβ+,β−(f)(x) :=

{
β+f(x) if f(x) > 0
β−f(x) if f(x) ≤ 0

In the case when β+ ≥ β−, one has

ReLUβ+,β−(f)(x) = max
(
β−f(x), β+f(x)

)
. (5)

Note that the Leaky ReLU [18] corresponds to β+ = 1 and β− = 0.01. The
Parametric ReLU [11] takes β+ = 1 and β− = θ learned along with the other
neural-network parameters. More recently [17] both β+ and β− are learned in
the ACtivateOrNot (ACON) activation function, where a softmax is used to
approximate the maximum operator.

Usually in CNNs, the max-pooling operator is used after activation, i.e.,
δMaxPool
R (ReLUβ+,β−(f)), which is spatially enlarging the positive activation and
removing the negative activation. It does not seem coherent with the goal of us-
ing the pooling to increase spatial equivariance and hierarchical representation
of information. It is easy to "fix" that issue by using a more symmetric pooling
based on taking the positive and negative parts of a function. Given a function
f , it can be expressed in terms of its positive f+ and negative parts f−, i.e.,
f = f+ − f−, with f+(x) = max(0, f(x)) and f−(x) = max(0,−f(x)), where
both f+ and f− are non-negative functions. We can now define a positive and
negative max-pooling. The principle is just to take a max-pooling to each part
and recompose, i.e.,

δ
MaxPool+−
R (f)(x) = δMaxPoolR (f+)(x)− δMaxPoolR (f−)(x) (6)

= δMaxPoolR (max(0, f))(x) + εMinPoolR (min(0, f))(x).

We note that (6) is self-dual and related to the dilation on an inf-semilattice [16].
However, in the general case of (6) by learning both β−, β+,

δ
MaxPool+−
β+,β−,R(f)(x) = δMaxPoolR (max(0, β−f))(x) + εMinPoolR (min(0, β+f))(x) (7)

is not always self-dual.

3 Algebraic theory of minimal representation for
nonlinear operators and functions

In the following section, we present the main results about representation theory
of nonlinear operators from Matheron [23], Maragos [20] and Bannon-Barrera
[1] (MMBB).
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3.1 MMBB representation theory on nonlinear operators

Let us consider a translation-invariant (TI) increasing operator Ψ . The domain
of the functions considered here is either E = Rn or E = Zn, with the additional
condition that we consider only closed subsets of E. We consider first the set
operator case applied on P(E) and functions f : E → R ∩∞.

Kernel and basis representation of TI increasing set operators. The
kernel of the TI operator Ψ is defined as the following collection of input sets [23]:
Ker(Ψ) = {A ⊆ E : 0 ∈ Ψ(A)}, where 0 denotes the origin of E.

Theorem 1 (Matheron (1975) [23]). Consider set operators on P(E). Let
Ψ : P(E)→ P(E) be a TI increasing set operator. Then

Ψ(X) =
⋃

A∈Ker(Ψ)

X 	A =
⋂

B∈Ker(Ψ̄)

X ⊕ B̌.

where the dual set operator is Ψ̄(X) = [Ψ(Xc)]c and B̌ is the transpose struc-
turing element.

The kernel of Ψ is a partially ordered set under set inclusion which has an
infinity number of elements. In practice, by the property of absorption of erosion,
that means that the erosion by B contains the erosions by any other kernel set
larger than B and it is the only one required when taking the supremum of
erosions. The morphological basis of Ψ is defined as the minimal kernel sets [20]:

Bas(Ψ) = {M ∈ Ker(Ψ) : [A ∈ Ker(Ψ) and A ⊆M ] =⇒ A = M} .

A sufficient condition for the existence of Bas(Ψ) is for Ψ to be an upper
semi-continuous operator. We also consider closed sets on P(E).

Theorem 2 (Maragos (1989) [20]). Let Ψ : P(E)→ P(E) be a TI, increas-
ing and upper semi-continuous set operator2 . Then

Ψ(X) =
⋃

M∈Bas(Ψ)

X 	M =
⋂

N∈Bas(Ψ̄)

X ⊕ Ň .

Kernel and basis representation of TI increasing operators on func-
tions. Previous set theory was extended [20] to the case of mappings on functions
Ψ(f) and therefore useful for signal or grey-scale image operators. We focus on
the case of closed functions f , i.e., its epigraph is a closed set. In that case, the
2 Upper semi-continuity meant with respect to the hit-miss topology. Let (Xn) be any
decreasing sequence of sets that converges monotonically to a limit setX,i.e.,Xn+1 ⊆
Xn∀n and X = ∩nXn; that is denoted by Xn ↓ X.
An increasing set operator Φ on F(E) is upper semi-continuous if and only if Xn ↓ X
implies that Φ(Xn) ↓ Φ(X).
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dual operator is Ψ̄(f) = −Ψ(−f) and the transpose function is f̌(x) = f(−x).
Let

Ker(Ψ) := {f : Ψ(f)(0) ≥ 0}

be the kernel of operator Ψ . As for the TI set operators, a basis can be obtained
from the kernel functions as its minimal elements with respect to the partial
order ≤, i.e.,

Bas(Ψ) := {g ∈ Ker(Ψ) : [f ∈ Ker(Ψ) and f ≤ g] =⇒ f = g} .

This collection of functions can uniquely represent the operator.

Theorem 3 (Maragos (1989) [20]). Consider an upper semi-continuous op-
erator Ψ acting on an upper semi-continuous function 3 f . Let Bas(Ψ) = {gi}i∈I
be its basis and Bas(Ψ̄) = {hj}j∈J the basis of the dual operator. If Ψ is a TI
and increasing operator then it can be represented as

Ψ(f)(x) = sup
i∈I

(f 	 gi)(x) = sup
i∈I

inf
y∈Rn

{f(x+ y)− gi(y)} (8)

= inf
j∈J

(f ⊕ ȟj)(x) = inf
j∈J

sup
y∈Rn

{
f(x− y) + ȟj(y)

}
(9)

The converse is true. Given a collection of functions B = {gi}i∈I such that all
elements of it are minimal in (B,≤), the operator Ψ(f) = supi∈I {f 	 gi} is a
TI increasing operator whose basis is equal to B.

For some operators, the basis can be very large (potentially infinity) and even
if the above theorem represents exactly the operator by using a full expansion
of all erosions, we can obtain an approximation based on smaller collections
or truncated bases B ⊂ Bas(Ψ) and B̄ ⊂ Bas(Ψ̄). Then, from the operators
Ψl(f) = supg∈B{f 	 g} and Ψu(f) = infh∈B̄{f ⊕ ȟ} the original Ψ is bounded
from below and above, i.e., Ψl(f) ≤ Ψ(f) ≤ Ψu(f). Note also that in the case of
a non minimal representation by a subset of the kernel functions larger than the
basis, one just gets a redundant still satisfactory representation.

The extension to TI non necessarily increasing mappings was presented by
Bannon and Barrera in [1], which involves a supremum of an operator involving
an erosion and an anti-dilation. This part of the Matheron-Maragos-Bannon-
Barrera (MMBB) theory is out of the scope of this paper.

3 A function f : Rn → R̄ is upper semi-continuous (u.s.c) (resp. lower semi-continuous
(l.s.c.)) if and only if, for each x ∈ Rm and t ∈ R̄, f(x) < t (resp. f(x) > t) implies
that f(y) < t (resp. f(y) < t) for all in some neighbourhood of x. Similarly, f is
u.s.c. (resp. l.s.c.) if and only if all its level sets are closed (resp. open) subsets of
Rn. A function is continuous iff is both u.s.c and l.s.c.
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3.2 Max-Min representation for Piecewise-linear functions

Let us also remind the fundamental results from the representation theory by
Ovchinnikov [28,29] which is rooted in a Boolean and lattice framework and
therefore related to the MMBB theorems. Just note that here we focus on a
representation for functions and previously it was a representation of operators
on functions. Let f be a smooth function on a closed domain Ω ⊂ Rn. We are
going to represent it by a family of affine linear functions gt which are tangent
hyperplanes to the graph of f . Namely, for a point t ∈ Ω, one defines

gt(x) = 〈∇f(t), x− t〉+ f(t), x ∈ Ω, (10)

where ∇f(t) is the gradient vector of f at t. We have the following general
result about the representation of piecewise-linear (PL) functions as max-min
polynomial of its linear components.

Theorem 4 ([9][2][29]). Let f be a PL function on a closed convex domain
Ω ⊂ Rn and {g1 = β1x + α1, · · · , gd = βdx + αd} be the set of the d linear
components of f , with βi, αi ∈ Rn. There is a family {Ki}i∈I of subsets of set
{1, · · · , d} such that

f(x) =
∨
i∈I

∧
j∈Ki

gj(x), x ∈ Ω. (11)

Conversely, for any family of distinct linear functions {g1, · · · , gd} the above
formula defines a PL function.

The expression is called a max-min (or lattice) polynomial in the variable gi. We
note that a PL function f on Ω is a “selector” of its components gi, i.e., ∀x ∈ Ω
there is an i such that f(x) = gi(x). The converse is also true, with functions
{gi} linearly ordered over Ω [29].

Let us also mention that from this representation we can show that a PL
function is representable as a difference of two concave (equivalently, convex)-PL
functions [29]. More precisely, let note hi(x) = infj∈Ki

gj(x), with hi a concave
function. We are reminded that sums and minimums of concave functions are
concave. One have hi =

∑
k hk −

∑
k 6=i hk, therefore

f =
∨
i∈I

hi =
∑
k

hk −
∧
i∈I

∑
k 6=i

hk.

4 Morphological universal activation functions

Using the previous results, we can state the two following results for the activa-
tion function and the pooling by increasing operators. Additionally, a proposed
layer used in the experimental section is formulated.
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4.1 Universal representation for activation function and pooling

Proposition 2. Any piecewise-linear activation function σ : R → R can be
universally expressed as

σ(x) =
∧
j∈J

[∨
i∈I

{
βji x+ αji

}]
=
∧
j∈J

pj(x) (12)

where pj =
∨
i∈I

{
βji x+ αji

}
is a PL convex function.

Proposition 3 (Pooling). Any increasing pooling operator π : Rn → Rn
′
can

be universally expressed as

π(f)(x) =
∧
j∈J

[
δbj (f)

(
K · x)], (13)

where {bj}j∈J is a family of structuring functions defining by transpose the basis
of the dual operator to π.

In both cases, there is of course a dual representation using the maximum
of erosions. The dilation operator of type z 7→

∨
i[βiz + αi] plays a fundamental

role in multiplicative morphology [12].

Remark: Tropical polynomial interpretation. The max-affine function
pj =

∨
i∈I

{
βji z + αji

}
is a tropical 4 polynomial such that in that geometry, the

degree of the polynomial corresponds to the number of pieces of the PL convex
function. The set of such polynomials constitutes the semiring Rmax of tropical
polynomials. Tropical geometry in the context of lattice theory and neural net-
works is an active area of research [22] [21] [25], however those previous works
have not considered the use of minimal representation of tropical polynomials
as generalised activation functions.

Remark: Relationships to other universal approximation theorems.
These results on universal representation of layers in DCNN are related to study
the capacity of neural networks to be universal approximators for smooth func-
tions. For instance, both maxout networks [8] and max-plus networks [37] can
approximate arbitrarily well any continuous function on a compact domain. The
proofs are based on the fact that [35] continuous PL functions can be expressed
as a difference of two convex PL functions, and each convex PL can be seen as
the maximum of affine terms.

Tropical formulation of ReLU networks has shown that a deeper network
is exponentially more expressive than a shallow network [36]. To explore the
expressiveness of networks with our universal activation function and pooling
layer respect to the deepness of DCNN is therefore a fundamental relevant topic
for future research.
4 Tropical geometry is the study of polynomials and their geometric properties when
addition is replaced with a minimum operator and multiplication is replaced with
ordinary addition.
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4.2 MorphoActivation Layer

We have now all the elements to justify why in terms of universal representation
theory of nonlinear operators ReLU and max-pooling can be replaced by a more
general nonlinear operator defined by a morphological combination of activation
function, dilations and downsampling, using a max-plus layer or its dual.

More precisely, we introduce two alternative architectures of the MorphoAc-
tivation layer (Activation and Pooling Morphological Operator) f 7→ ΨMorpho :
Rn → Rn

′
either by composition [π ◦ σ(f)](x) or [σ ◦ π(f)](x) as follows:

ΨMorpho
1 (f) =

∧
1≤j≤M

δMaxPoolR,bj

 ∨
1≤i≤N

(βji f + αji )

 , (14)

ΨMorpho
2 (f) =

∧
1≤i≤N

 ∨
1≤j≤M

(
βji δ

MaxPool
R,bi (f) + αji

) , (15)

where 
δMaxPoolR,bj

(f)(x) = δbj (f)(R · x), with

δbj (f)(x) = (f ⊕ bj)(x) =
∨
y∈W {f(x− y) + bj(y)}

In the context of an end-to-end learning DCNN, the parameters βj , αj and
structuring functions bj are learnt by backpropagation [34]. The learnable struc-
turing functions bj play the same role as the kernel in the convolutions. Note
that one can have R = 1, the pooling does not involve downsampling. We note
that in a DCNN network the output of each layer T k is composed of the affine
function x 7→Wkx + bk, where Wk is the weight matrix (convolution weights
in a CNN layer) and bk the bias, and the activation function σ, i.e., T k =
σ
(
WkT k−1 + bk

)
, where σ is acting elementwise. Using our general activa-

tion (12), we obtain that

T k =
∧
j∈J

[∨
i∈I

{
βjki WkT k−1 + βjki bk + αjki

}]
,

and therefore the bias has two terms which are learnt. We propose therefore to
consider in our experiments that bk is set to zero since its role will be replaced
by learning the αjki .

5 Experimental Section

Firstly, to illustrate the kind of activation functions that our proposition can
learn, we use the MNIST dataset as a ten class supervised classification prob-
lem and an architecture composed of two convolutional layers and a dense
layer for reducing to the number of classes. The activation functions that we
optimise by stochastic gradient descent have as general form min(max(β0x +
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α0, β1x + α1, α2), α3), which corresponds to (14) and (15) where R = 1, i.e.,
without pooling. We have initialised all the activation functions to be equal
to max(min(ReLU(x), 6),−6) as it is illustrated in Fig.1(left). The accuracy of
this network without any training is 14%. Surprisingly when one optimises 5

only the parameters of activation functions the network accuracy increases to
the acceptable performance of 92.38% and a large variability of activation func-
tions are found Fig.1(center). This is a way to assess the expressive power6 of
the parameter of the activation as it has been proposed in [6]. Additionally, an
adequate separation among classes is noted by visualising the projection to two-
dimensional space of the last layer via the t-SNE [19] algorithm. Of course, a
much better accuracy (98, 58%) and inter-class separation is obtained by opti-
mising all the parameters of the network Fig.1(right).

Fig. 1. First Row: Left: Random Initialisation with (14%) of accuracy on the test set,
We use a simplified version of proposed activation min(max(β0x+α0, β1x+α1, α2), α3),
with initialisation max(min(ReLU(x), 6),−6) Centre: Training only activation functions
(92.38%), Right: Training Full Network (98,58%). Second Row: t-SNE visualisation of
last layer is the 10-classes MNIST prediction for a CNN.

Secondly, we compare the performance of (6), (7), (14) and (15) following
the common practice and train all the models using a training set and report the
standard top-one error rate on a testing set. We use as architecture a classical
two-layer CNN (without bias for (14) and (15)) with 128 filters of size (3×3) per
layer, and a final dense layer with dropout. After each convolution the different

5 We use ADAM optimizer with a categorical entropy as loss function, a batch size of
256 images and a learning rate of 0.001.

6 The expressive power describes neural networks ability to approximate functions.
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propositions are used to both produce a nonlinear mapping and reduce spatial
dimension via pooling stride of two. As a manner of comparison, we include
the case of a simple ReLU activation followed by a MaxPool with stride two.
The difference in top-one error rate on a testing set is reported in Table 1 for
CIFAR10, CIFAR100 and Fashion-MNIST databases. These quantitative results
shown in propositions (6) and (7) do not seem to improve the performance in
the explored cases. Additionally, (15) performs better than (14), and it improves
the accuracy in comparison with our baseline in all the considered databases.

Fashion MNIST CIFAR10 CIFAR100
MaxPool(ReLU) 93.11 78.04 47.57

Self-dual Relu in (6) -2.11 -20.12 -31.14
(7) -0.95 -1.75 -4.39

MorphoActivation in (14) N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4
M=2 -0.06 -0.05 -0.1 -0.42 0.02 -0.02 0.44 0.7 0.4
M=3 -0.14 -0.14 -0.06 -0.57 -0.4 -0.35 0.56 0.49 0.61
M=4 -0.02 -0.08 -0.01 0.05 -0.62 -0.5 0.41 0.35 0.73

MorphoActivation in (15) N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4
M=2 0.04 -0.16 -0.12 1.84 2.02 1.49 3.31 3.5 3.45
M=3 0.08 -0.09 0.12 2.39 1.96 1.82 3.48 3.55 3.86
M=4 -0.02 0.09 -0.03 2.49 2.25 2.13 3.47 3.73 3.58

Table 1. Relative difference with respect to our baseline (ReLU followed by a MaxPool).
Architecture used is a CNN with two layers. ADAM optimiser with an early stopping
with patience of ten iterations. Only Random Horizontal Flip has been used as image
augmentation technique for CIFARs. The results are the average over three repetitions
of the experiments.

6 Conclusions and Perspectives

To the best of our knowledge, this is the first work where nonlinear activation
functions in deep learning are formulated and learnt as max-plus affine func-
tions or tropical polynomials. We have also introduced an algebraic framework
inspired from mathematical morphology which provides a general representation
to integrate the nonlinear activation and pooling functions.

Besides more extended experiments on the performance on advanced DCNN
networks, our next step will be to study the expressivity power of the networks
based on our morphological activation functions. The universal approximation
theorems for ReLU networks would just be a particular case. We conjecture that
the number of parameters we are adding on the morphological activation can
provide a benefit to get more efficient approximations of any function with the
same width and depth.
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