2207.14417v1 [cs.GT] 29 Jul 2022

arxXiv

Optimistic and Topological Value Iteration for
Simple Stochastic Games

Mugsit Azeem®, Alexandros Evangelidis™ ®, Jan Kfetinsky®, Alexander
Slivinskiy®, and Maximilian Weininger

Technical University of Munich, Munich, Germany
firstname.lastname@tum.de

Abstract. While value iteration (VI) is a standard solution approach to
simple stochastic games (SSGs), it suffered from the lack of a stopping cri-
terion. Recently, several solutions have appeared, among them also “opti-
mistic” VI (OVI). However, OVI is applicable only to one-player SSGs with
no end components. We lift these two assumptions, making it available to
general SSGs. Further, we utilize the idea in the context of topological VI,
where we provide an efficient precise solution. In order to compare the new
algorithms with the state of the art, we use not only the standard bench-
marks, but we also design a random generator of SSGs, which can be biased
towards various types of models, aiding in understanding the advantages of
different algorithms on SSGs.

1 Introduction

Stochastic games (SGs) are a standard model for decision making in the presence
of adversary and uncertainty, by combining two (opposing) non-determinisms with
stochastic dynamics. Thus, they extend both Markov decision processes (MDPs),
the standard model for sequential decision making and probabilistic verification,
and 2-player graph games, the standard model for reactive synthesis. Simple stochas-
tic games (SSGs) [12] form an important special case where the goal is to reach a
given state. In technical terms, an SSG is a zero-sum two-player turn-based game
played on a graph by Maximizer and Minimizer, who choose actions in their re-
spective vertices (also called states). Each action is associated with a probability
distribution determining the next state to move to. The objective of Maximizer
is to maximize the probability of reaching a given target state; the objective of
Minimizer is the opposite. The interest in SSGs stems from two sources. Firstly,
solving an SSG is polynomial-time equivalent to solving perfect information Shap-
ley, Everett and Gillette games [1] and further important problems can be reduced
to SSGs, for instance parity games, mean-payoff games, discounted-payoff games
and their stochastic extensions [6]; yet, the complexity of solving SSGs remains a
long-standing open question, known to be in UPNcoUP [23], but with polynomial-
time algorithm staying elusive. Secondly, the problem is practically relevant in ver-
ification and synthesis in stochastic environments, with many applications, e.g.,
[27,9,10,5], surveyed in detail in [31]. Consequently, heuristics improving perfor-
mance of the algorithms for solving SSGs are also practically relevant.

Algorithms used to (approximately) solve SSGs can be divided into several classes,
most notably quadratic programming (QP) and dynamic programming, the latter

http://orcid.org/0000-0003-4532-8344
mailto:alexandros.evangelidis@tum.de
http://orcid.org/0000-0003-4032-3042
http://orcid.org/0000-0002-8122-2881
http://orcid.org/0000-0002-0856-106X
http://orcid.org/0000-0002-0163-2152

2 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

comprising strategy iteration (SI) and value iteration (VI). For their practical com-
parison, see the recent [24].

On the one hand, only when exact solutions are required, SI is mostly used.
It provides a sequence of improving strategies and, accompanied by evaluation of
Markov chains via systems of linear equations, can yield the precise result. On
the other hand, approximate solutions (with a certain imprecision) are faster to
compute and often sufficient. For this reason, VI is the technique used in practice
the most, e.g., in PRISM-games [25], although not necessarily always the best. It
gradually approximates (from below) the optimal probability to reach the target
from each state. Interestingly, until very recently no means were known to determine
the current precision, and so standard implementations terminating whenever no
significant improvements occur can be arbitrarily wrong [20]. More surprisingly,
this was even the case for MDPs, i.e., SSGs with a single player.

In 2014 [4,20], the first stopping criterion for MDPs was given, quantifying
precision of the current approximation by providing also a sequence converging to
the optimal probabilities from above. The difficulty to obtain such converging upper
bound arises from cyclic dependencies of the optimal probabilities in so-called end
components (ECs). For instance, an action surely self-looping on a state trivializes
the equations, stating only that the probability in this state is simply equal to
itself, yielding an infinity of solutions, not just the optimal one. This issue has been
solved for MDPs [4,20] by “collapsing” these ECs into single states with no loops,
which corresponds to identifying cyclically dependent variables into a single one.

In 2018 [18], the idea was finally extended to SSGs, giving rise to bounded value
iteration (BVI) with the first stopping criterion for SSGs. Note that the MDP
solution could not be directly used since the analog of ECs in SSGs is more complex:
different states in an EC in an SSG can have different optimal probabilities and
thus cannot be merged. Instead, “deflating” manipulates the values in smaller and
dynamically changing “simple ECs”.

Since the first VI stopping criterion was given for MDPs, several alternatives
have been proposed, most notably sound VI (SVI) [30] and optimistic VI (OVI)
[21]. However, the termination proofs of both require the MDP to contain no ECs.
They achieve this by collapsing ECs, which is not applicable to SSGs.

Our contribution. In this paper, we extend the idea of OVI in two ways so that
we obtain algorithms for SSGs.

First algorithm The idea of OVI [21] is to run VI (converging from below) until
changes are small, then to guess slightly larger values and check whether they form
an upper bound. If not, the process continues. To overcome the requirement that
there is no EC, we complement the procedure of [21] with the deflating of [18].
However, to ensure monotonicity of the Bellman operator, the so-called “simple”
ECs must be computed differently from [18]. While the rest of the proof is analogous
to [21], we try to make it simpler and more elegant by separating the core idea from
the practical improvements. As a result, we obtain an OVI algorithm for SSGs.

Second algorithm We consider the classic “topological” optimization of VI [16],
where the system is analysed per strongly connected component (SCC) in the
bottom-up order. While such decomposition often leads to savings in runtime and
memory, also when expected accumulated rewards are considered [3], the impreci-

Optimistic and Topological VI for SSGs 3

sions from lower SCCs propagate to the upper ones, yielding the method useless
whenever the system is too deep (with as few SCCs in a row as 20) even for Markov
chains, see Example 1. We fix this issue by precise and fast computations in each
SCC as follows. First, we quickly obtain an approximate solution by VI, then we
optimistically guess the solution, but in contrast to OVI which guesses values, we
guess optimal strategies, which turns out to require orders of magnitude fewer
guesses. If the guess is not correct, a step of SI can be cheaply performed. This
version of OVI can thus be also seen as a possible warm start for SI.

Comparison and model generation We compare the resulting approaches to BVI
and a more recent SSG solution called “widest path” [28] (WP). While there is no
clear winner, we provide insights as to which algorithm to use in different settings.
As noticed already in [24], the performance of SSG algorithms is extremely sensitive
to the structure of the models. Unfortunately, there are too few realistic case studies
and thus a very limited number of model structures. Consequently, in order to be
able to experimentally compare our algorithms in a reasonable way, we propose
an approach for random SSG generation. While we prove that our approach can
generate every SSG, it skews towards certain types of models. Hence we provide
means for the user to skew towards model structures that they are interested in,
e.g., increasing or decreasing the number of SCCs. This helps to find out which
algorithms are sensitive to which model parameters, e.g., amount of SCCs. While
this is only the first step towards filling this gap of random SSG (and MDP)
generation, we hope to encourage more research on the topic through this effort.

Our contribution can be summarized as follows:

— We design an extension of OVI to SSGs. As a side effect, we extend OVI on
MDPs, lifting the requirement of no ECs (Section 3).

— We extend the landscape by providing an efficient VI-based approach for precise
solutions, using the OVI idea on strategies, rather than values (Section 4).

— We provide and evaluate a random generator of SSGs, which can be biased
towards various types of models (Section 5).

— We compare the resulting methods to the state of the art (BVI, WP, SI) ex-
perimentally (Section 6).

Related work. Closest to our work, in the case of SSGs, is the work of [18] where
the first stopping criterion for VI was given. It extends both normal BVI [20] and its
learning-based counterpart [4] from MDPs by incorporating the so-called deflating
procedure as part of their computation. Recently, another BVI variant for SSGs
was proposed which introduces a global propagation of upper bounds [28]. Also,
the simpler case of an SSG with one-player ECs is discussed in [33].

In general, the tools which are available for solving SGs are limited. PRISM-
games [25] implements the standard VI algorithms, and it also considers other
objectives apart from reachability, such as mean-payoff and ratio reward. Further,
GAVS+ [11] is an algorithmic game solver with support for solving SSGs, and GIST
[8] allows for the qualitative verification of SGs.

4 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

I e f [
\E/ 1</2@:)e

Fig.1: An example of an SG with S = {sq,s1,f,z},Sg = {s1,f}, So = {so0, z}, the
initial state so and set of actions A = {a, b, c,d,e}; Av(sp) = {a} with d(sp,a)(s1) =
1; Av(s1) = {b, c} with d(s1,b)(so) = 1 and &(s1,c)(f) = &(s1,¢)(z) = 3. For actions
with only one successor, we do not depict the transition probability 1.

2 Preliminaries

2.1 Simple stochastic games

A probability distribution on a finite set X is a mapping 6 : X — [0, 1], such that
> wex 0(x) = 1. The set of all probability distributions on X is denoted by Dist(X).

Definition 1 (Stochastic game (SG), e.g., [13]). A stochastic turn-based two-
player game is defined by a tuple G = (S,Sm, SO, s0, A, Av, 8) where S is a finite
set of states partitioned into a set of Minimizer (So) and Maximizer (Sg) states,
respectively. so € S is the initial state. A is a finite set of actions. Av : S — 2A
assigns to every state a set of available actions. Finally, § : S x A — Dist(S) is the
transition function.

Note that a Markov decision process (MDP) is a special case of an SG where
either Sy = 0 or Sg = 0 and a Markov chain is a special case of an MDP where
in each state there is only one available action.

Without loss of generality, we assume SGs to be non-blocking, i.e., for all s €
S : Av(s) # 0. For convenience, we use the following notation: Given a state s € S
and an action a € Av(s), the set of successor states is denoted as Post(s,a) :=
{s' | 6(s,a,s") > 0}. For a set of states T C S, we use Tg = T N S to denote all
Maximizer states in T', and dually for Minimizer. Figure 1 shows an example SG.

Semantics: paths, strategies and the value. Formally, an infinite path p is
defined as p = spagsiai... € (S x A)¥, such that for every i € N, a; € Av(s;) and
Si+1 € Post(s;,a;). The set of all paths in an SG G is denoted as Pathsg. A finite
path is a prefix of an infinite path ending in a state s.

A Maximizer strategy is a function o : Sg — A such that o(s) € Av(s) for
all s; Minimizer strategies 7 are defined analogously. We restrict attention to mem-
oryless deterministic strategies, because they are sufficient for the objective we
consider [12]. By fixing both players’ choices according to a pair of strategies (o, 7),
we turn an SG G into a Markov chain G(©™) with state space S and the transition
function 077 (s, s") = d(s,0(s), s’) for Maximizer states s and dually for Minimizer
with o replaced by 7. Given a state s, the Markov chain G(7) induces a unique
probability distribution P2 over the set of all infinite paths [2, Sec. 10.1].

Since we consider SSGs, we complement an SG with a set of goal states F C S
and formalize the objective of reaching F, as follows: we denote as OF := {p | p =
S0aps1ai... € Pathsg AJi € N.s; € F} the (measurable) set of all paths which even-
tually reach F. We are interested in the value of every state s, i.e., the probability

Optimistic and Topological VI for SSGs 5

that s reaches a goal state if both players play optimally. Formally, for each s € S,
its value is defined as

V(s) :=supinf P77 (OF) = inf sup PZ" (OF), (1)

where the equality follows from [12]. We use V : S — R to denote the function that
maps every s € S to its value. When comparing functions f1, fo : S — R, we use
point-wise comparison, i.e., fi < fo if and only if for all s € S: f1(s) < fa(s).

2.2 Value iteration and bounded value iteration

To compute the value function V for an SSG, the following partitioning of the state
space is useful: firstly the goal states F, secondly the set of sink states that do
not have a path to the target Z = {s € S | #p = spapsiai... € Pathsg : 5o =
s A p € OF}, and finally the remaining states S?. For F and Z (which can be easily
identified by graph-search algorithms), the value is trivially 1 respectively 0. Thus,
the computation only has to focus on S”.

The well-known approach of value iteration leverages the fact that V is the least
fixpoint of the Bellman equations, cf. [7]:

1 ifseF
0 ifse”Z
V(S) - maxXgeAv(s) (Zs/ES 5(87a, 3/) . V(s’)) if s e S?D (2)

mingeay(s) (Zs,es 0(s,a, s - V(S/)) if s e SE}
Now we define! the Bellman operator B : (S — R) — (S — R):

MaX,eau(s) (zs,es §(s,a,s) - f(s’)) if s € Sy
mingeav(s) (ZS’ES 0(s,a,s’) - f(y)) if s € S

Value iteration starts with the under-approximation

1 ifseF
LQ(S):{

B(f)(s) = 3)

0 otherwise

and repeatedly applies the Bellman operator. Since the value is the least fixpoint
of the Bellman equations and Ly <V is lower than the value, this converges to the
value in the limit [7] (formally lim; . B*(Lo) = V).

While this approach is often fast in practice, it has the drawback that it is not
possible to know the current difference between B?(Lg) and V for any given i. To
address this, one can employ bounded value iteration (BVI, also known as inter-
val iteration [4,20,18]) It additionally starts from an over-approximation Uy, with
Uo(s) =1 for all s € S. However, applying the Bellman operator to this upper esti-
mate might not converge to the value, but to some greater fixpoint instead, see [18,
Section 3] for an example. The core of the problem are so called end components.

! In the definition of BB, we omit the technical detail that for goal states s € F, the value
has to remain 1. Equivalently, one can assume that all goal states are absorbing, i.e.,
only have self looping actions.

6 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Definition 2 (End component (EC)). A set of states T with) 2T CS is an
end component if and only if there exists a set of actions) # B C |J,cq Av(s)
such that:
1. for each s € T, a € BN Av(s) we have Post(s,a) CT.
2. for each s, s’ € T there exists a finite path w = sag...ans’ € (T' X B)* x T.

An end component T is a maximal end component (MEC) if there is no other
ECT' such that T C T".

Intuitively, ECs can be problematic, because the over-approximation U is higher
in the EC than the value. Thus, Maximizer prefers staying in the EC and keeping
the illusion of achieving the high U; it is an illusion, because staying will never
reach a target, and Maximizer actually has to use some exit of the EC. The solution
proposed in [18] explicitly identifies these situations and forces all states in the EC
to decrease their U by making it depend on the best exit of the EC. This operation
is called deflating, to evoke the impression of releasing the pressure in an EC that
is bloated by having too high estimates. To define deflating more formally, we need
two definitions from [18]:

Definition 3 (Best exit). Given a set of states T C S and a function f :S = R,
the best exit according to f from T is defined as:

bexit;(T') = max : <Z 5(s,a,s) - f(S,a)),

s€TH,a€AvV(s pp
Post(s,a);(_T s'c

with the convention that maxy = 0.

Definition 4 (Simple end component (SEC)). An EC T is a simple end com-
ponent (SEC) if for all s € T, V(s) = bexity(T")

In SSGs, states in an EC can have different values. Thus, it is necessary to find
the SECs. In these simple sub-parts of the EC all states have the same value, namely
that of the best exit. By setting the over-approximation to bexity(T") for each SEC T'
(additionally to applying B), we ensure that it converges to the value [18]. As a final
complication, computing SECs is difficult, since they depend on the value V that
we want to compute. The solution of [18] is to use the current under-approximation
L to guess which states form a SEC and as L converges to V in the limit, eventually
we guess correctly.

Thus, we can augment the Bellman operator with additional deflating and define
an operator BP : (S — R) — (S — R). Note that it depends on an L to guess the
SECs. Given a function U, it proceeds as follows:

— Apply a Bellman update B(U).
— Guess the SECs according to L by using [18, Algorithm 2].
— For each SEC T and all states s € T, set U(s) = min(U(s), bexity(T")). The min

is only to ensure monotonicity.

In summary, BVI computes two sequences: the sequence of lower bounds L; =
Bi(L) for i € N and an additional sequence of upper bounds U; = (BP)?(U). Note
that for the i-th application of BLD , it uses the current lower bound L;. Both se-
quences converge to the value V in the limit [18, Theorem 2|. This allows to termi-
nate the algorithm when the difference between the lower and upper bound is less
than a pre-defined precision € and obtain an e-approximation of the value.

Optimistic and Topological VI for SSGs 7

3 Optimistic Value Iteration

The idea of optimistic value iteration (OVI, [21]) is to leverage the fact that classic
VI (only from below) typically converges quickly to the correct value. Indeed, the
following “naive” stopping criterion results in an approximation that is e-close in
all available realistic case studies: stop when for all s € S applying the Bellman
update does not result in a big difference, i.e. diff(L(s), B(L)(s)) < &, where we use
diff(old, new) = new —old to denote the absolute difference between two numbers?.
However, the naive stopping criterion can also terminate early when the estimate
still is arbitrarily wrong [20].

OVI first performs classic VI with the naive stopping criterion, optimistically
hoping that it will terminate close to the value. Additionally, it uses a verification
phase, where it checks whether the result of VI was indeed correct. If it was, OVI
terminates with the guarantee that we are e-close to the value. Otherwise, if the
result of VI cannot be verified, OVI continues VI with a higher precision &’. By
repeating this, at some point &’ is so small that when VI terminates, OVI can verify
that the result is e-precise.

Our version of OVI for SSGs is given in Algorithm 1. Lines 2-3 are the classic
VI, Lines 4-9 the verification phase. Concretely, in the verification phase we first
guess a candidate upper bound U (Line 4), so that the difference between L and U
is small enough that, if U indeed is an upper bound, we could terminate. Formally,

for all s € S, U(s) = diff " (L(s)), where diff (z) = {O fz =0 absolute
x+¢e otherwise

difference®. Then we apply the Bellman operator once (Line 6) and check whether
BP(U) < U (Line 7). If that holds, we know (by arguments from lattice theory)
that V < U, i.e. that U is a valid upper bound on the value. Thus, since L and U
are e-close to each other and L <V < U, we return an e-approximation of the value
(Line 8). The key difference between the original algorithm for MDPs and the
extension to SSGs is that we do not use B in Line 6 any more, but the Bellman
operator with additional deflating B°. On MDPs, the termination of OVI relied on
the assumption that there were no ECs. This is justified, since in MDPs one can
remove the ECs by “collapsing” them beforehand, cf. [4,20]. On SSGs, collapsing is
not possible [18], which is why we need the new operator.

We have addressed the case that the guessed U can indeed be verified as an
upper bound. In the other case where we are not (yet) able to verify it, Algorithm
1 continues applying BP for a finite number of times (we chose 5, Line 5). If for
all iterations we cannot verify U as an upper bound, the precision ¢’ for the naive
stopping criterion is increased (we chose %/) and we start over (Line 10).

Theorem 1. Given an SSG G and a lower bound Ly < V, OVI(G,Ly,¢,¢e) ter-
minates and returns (L,U) such that L <V < U and diff(U(s),L(s)) < ¢ for all
s€S.

Our formulation of Algorithm 1 is simpler than [21, Algorithm 2|, since we
include only the key parts that are necessary for the proof of Theorem 1 (provided

new—old
new

2 One can also use the relative difference, i.e. diff(old, new) =
3 diffT(x) = z * (1 +¢) for relative difference.

8 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Algorithm 1 Optimistic value iteration for SSGs.

Input: SSG G, lower bound L <V, precision € > 0 and naive precision &' > 0
Output: (L,U) such that L <V < U and diff(U(s),L(s)) <eforall s€S
1: procedure OVI(G,L,e,¢)
> Classic VI with naive convergence criterion
2: while for some state s € S : diff(L(s), B(L)(s)) > &’ do
L+ B(L)

w

> Verification phase
U« {s > difff (L(s)) | s € S} > Guess candidate upper bound
for é times do
U" « BP(U)
if U < U then
return (L, U) > Found inductive upper bound
For all s € S” : U(s) < min(U(s), U’(s)) > Ensure monotonicity

10: return OVI(G, L, ¢, %l) > Try again with more precision

in Appendix A). Below we comment on three ways in which our algorithm can be
changed, following the ideas of [21, Algorithm 2]. All these changes are not necessary
for correctness or termination, but they can practically improve the algorithm.

1. We can include a check BP(U) > U. It allows to detect whether U <V, i.e.
U actually is a lower bound on the value. In that case, one can immediately
terminate the verification phase and use U as the new L. We include this im-
provement in our implementation, and it is used in almost every unsuccessful
verification phase.

2. The original version continues to update the lower bound during the verification
phase. This is used for an additional breaking condition if the lower bound
crossed the upper bound in some state. For clarity of presentation, we chose to
separate concerns and only update the upper bound in the verification phase.
This improvement never made a significant difference in our experiments.

3. The original version used Gauf-Seidel VI, cf. [21, Section 3.1], for both the lower
and the upper bound. Our implementation allows the user to select whether to
use classic or Gauf-Seidel VI.

4 Precise topological value iteration

Topological value iteration (TVI, [16]) is a variant of VI that does not solve the
whole game at once, but rather proceeds piece by piece. This can speed up con-
vergence and help with memory issues. Concretely, it uses the insight that the
strongly connected components (SCCs) of an SSG always form a directed acyclic
graph. Thus, one can first solve the bottom SCCs, i.e. the last in the topological
ordering, and then proceed backwards one SCC by the next, relying on the results
of the already computed successor SCCs. This idea is not restricted to VI algo-
rithms, but can also be used for other solutions methods like strategy iteration (SI)
and quadratic programming [24].

The evaluation of [24] showed that this can be quite useful in some cases, but
also much slower in other, possibly even running into time outs on models where

Optimistic and Topological VI for SSGs 9

Algorithm 2 Precise topological value iteration

Input: SSG G
Output: The precise value V for all states in G

1: procedure PTVI(G)

2 for every SCC T in reverse topological ordering do

3: Select arbitrary e

4: L,U < computed by some VI-algorithm with precision &
5‘

6

Compute strategies o, 7 which are optimal according to L and U
Precisely compute the value Vo, of T' in the Markov chain gl

7 if Forall s e T : {U(s) € argmax,ea(s) Voo (s,0) ifs€Sp then
7(s) € argmin, a5y Vgor (s,a) if s € So

8: Return Vg, as value for T

9: else

10: Apply strategy iteration, using o or 7 as initial strategy.

the normal algorithms succeed. The reason for this is a complex problem that did
not occur in the proof of correctness, as it is related to machine precision: SCCs
are not solved precisely, but only with e-precision. That means that SCCs which
are considered later in the computation have suboptimal information about their
exits. This not only slows down convergence, but can even aggregate and lead to
precision problems and non-termination when there is a chain of many SCCs, as
we show in the following example.

Example 1. To exemplify TVI and show when its precision problems occur, we
consider an SSG that is a chain of n SCCs, each with one state. Every state either
loops or continues to the next state, both with probability 0.5. At the end of the
chain, we go to the goal with 0.6 and to the sink with 0.4.

Formally, S = Sg = {t, 2, S0, 51, - ., Sn }, where sq is the initial state and t € F
is the only goal state. There only is one action a, so Av(s) = A = {a} for all states
s € S. For every s; with ¢ < n, we have §(s;,a,s;) = 6(s;,a,s;4+1) = 0.5 and for s,,,
we have (sp,a,t) = 0.6 and §(s,,a,z) = 0.4. Both states ¢ and z are absorbing,
so they loop with probability one.

Running topological bounded VI on this SSG, we first solve the bottom SCCs,
i.e. t and z, and (by graph algorithms) infer their values of 1 and 0, respectively.
Then we solve the SCC {s,} and set both its bounds to 0.6. Next, for the SCC
{sn—1} bounded VI returns an e-precise result, as with the self-loop the precise
value is only obtained in the limit. Using precision of ¢ = 1076, the resulting in-
terval is [0.5999994277954102, 0.6000003814697266]. Now the imprecisions start to
add up: when solving the next SCC {s,_2}, we depend on the imprecise bounds for
{sn—1}. Thus, the progress we make in every Bellman update is smaller. This not
only slows down convergence, but it also leads to the first e-precise interval being
[0.5999994099140338, 0.6000003933906441]. So when BVI for the SCC {s,_2} ter-
minates, both the lower and the upper bound are less precise than in the previous
SCC. In state s,,_19, this imprecision has aggregated such that the computation is
stuck at the interval [0.5999994000000000, 0.6000004000000001], where the differ-
ence is larger than €. Even though theoretically we make progress with a Bellman
update, this progress is smaller than machine precision, so practically we can nei-
ther converge nor terminate.

10 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Note that the SSG in this example is a Markov chain, so this problem occurs
not only in SSGs, but already in Markov chains and MDPs. A

We address this problem by introducing the precise-topological-optimization
(PTVI, see Algorithm 2). The idea of PTVI is that, after an SCC has been solved
with e-precision (Line 4), we first extract the strategies for both players from the
result (Line 5) and then compute the exact value of all states in the SCC under this
pair of strategies (Line 6). Finally, we use a simple local check to verify that this
is indeed the optimal value (Line 7). If it is, we return the precise values that the
next SCCs can safely depend on (Line 8). If it is not, then we have to continue with
some precise solution method (Line 10). Since we have just extracted near-optimal
strategies, it makes sense to continue with SI, see e.g., [24, Section 3.2]. For details
on the selection of the strategies and the proof of Theorem 2, see Appendix B.

Theorem 2. Algorithm 2 returns the precise solution V.

The strength of PT'VI is the simple local check that allows it to conclude that the
estimates for an SCC are precise. It relies on guessing both strategies. This differs
from guessing an upper bound, as OVI does; or guessing one strategy, as in SI with
a warm start [24, Section 4.3]. We emphasize that even using the classical naive
stopping criterion in Line 4, this local check succeeded on more than 99% of the
case studies, and thus the additional steps of Line 10 are almost never necessary.
Using bounded VI in Line 4, we immediately succeeded on all case studies. In
contrast, the first verification phase of OVI — having the same estimates and thus
“information” as PTVI has when performing the local check — succeeded only for
15% of the random case studies; in 85% of the random cases as well as several
larger real case studies OVI had to perform additional verification phases.

Note that PTVI can be seen from different directions. (i) It is a practical fix of
TVI [16]. (ii) Tt is a new way to make classical VI return a precise result, which
is more efficient than running for an exponential number of steps and rounding as
described in [7]. (iii) It is a warm start for SI, in the seldom case that the SI phase
of the algorithm (Line 10) is necessary. (iv) Just like OVI, it optimistically iterates
the lower bound and then uses guessing to verify this guess. However, unlike OVT it
produces a precise result, albeit at the cost of solving a Markov chain precisely; and
it uses the information available at the time of guessing more efficiently, succeeding
on the first check more often OVI.

5 Random Generation of Simple Stochastic Games

In order to properly evaluate and compare our algorithms, we need a diverse set
of benchmarks. However, to the best of our knowledge, there are only 12 SSG case
studies modelling real world problems and 3 handcrafted models for theoretical
corner cases. Since the underlying structure of a model greatly affects the runtime
of algorithms [24], only scaling these few models is insufficient. Thus, we propose
an algorithm for random generation of SSG case studies, which enables us to test
our algorithms on a broader spectrum of models.

Moreover, as we are interested in the relation between our verification algo-
rithms and certain features of the model structure, our implementation also allows

Optimistic and Topological VI for SSGs 11

for skewing the probability distribution towards models that exhibit certain fea-
tures. This is very useful, since it allows us to test our algorithms on models whose
features were not considered before (e.g., large number of actions per state, etc.).
In particular, we provide: (i) parameters to tune features that can be affected by
parameters of single states (e.g., the size, percentage of Minimizer states, actions
per state, etc.). For example, if for each state the probability of being a Maximizer
or Minimizer state is equal, we get 50% Minimizer states on average. Similarly, by
choosing a high probability of adding another action to a state during the gener-
ation, we obtain states with up to 90 actions and an average around 7; (ii) more
involved guidelines to affect features which depend on the interactions of several
states (e.g., the number and size of SCCs and ECs, etc.). Intuitively, to obtain an
SCC or MEC of a certain size n, we have to restrict the choice of successors during
the transition or action generation to ensure that there are n strongly connected
states.

We provide a detailed description of our random generation algorithm in Ap-
pendix C. There, we also prove that it can generate every possible SSG with positive
probability and describe and discuss the aforementioned guidelines. Additionally,
we give a detailed analysis of model features for all random case studies used in
the evaluation, as well as a comparison to the features of the real case studies in
Appendix D.

6 Experiments

In this section we talk about the practical evaluation of our algorithms and the
comparison to the state of the art. First, we describe the setup in Section 6.1.
Then we give a general overview in Section 6.2 before analyzing the algorithms’
performance in more detail in Sections 6.3 and 6.4.

6.1 Experimental setup

Algorithms. Our implementation is based on PRISM-games [25] and available at
https://github.com/ga67vib/Algorithms-For-Stochastic- Games.

We compare to the following algorithms from related work: classical value itera-
tion (VI, [7]), bounded value iteration (BVI, [18]) and the improvement of bounded
value iterations based on widest paths (WP, [28]). Moreover, as a representative of
a competitor yielding a precise result, we implemented a precise variant of strategy
iteration (SI), which relies on linear programming for solving the opponent MDP.

The new algorithms are optimistic VI (OVI, Section 3) and the precise topo-
logical version of VI (Section 4). For the latter, we give two variants with different
stopping criteria in Line 4 of the algorithm: PTVI uses the naive criterion and
PTBVI the e-guaranteed one. Finally, we consider several optimizations, but their
analysis is delegated to Appendix E.1 due to space constraints. Quite surprisingly,
for all optimizations, their impact can be positive or negative on different models.

Case studies. We consider case studies from three different sources: (i) all real
case studies that were already used in [24], and are mainly part the PRISM bench-
mark suite [26]; (ii) several handcrafted corner case models: haddad-monmege (the
adversarial example from [20]), BigMec and MulMec (a single big MEC or a long
chain of many small MECs from [24]), as well as two new models to analyse the

https://github.com/ga67vib/Algorithms-For-Stochastic-Games

12 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

behaviour of OVI and one large model with many SCCs; (iii) randomly gener-
ated models as discussed in Section 5. Note that throughout our experiments, we
omitted models solved by pre-computations.

Technical details. We conducted the experiments on a server with 64 GB of RAM
and a 3.60GHz Intel CPU running Manjaro Linux. We always use a precision of
£ = 1075, The timeout was set to 15 minutes and the memory limit was 6 GB for
all models except for large models (> 1,000,000 states). For the large models, the
timeout was set to 30 minutes and the memory limit to 36 GB.

6.2 Overview

8000

/ . WP 6000 / . WP
VI .S

750 ovl ovl
BVI BVI
500 .S « PTBVI
* PTBVI 2000 L] VI

1000

Time
*
Time

0 0

2.5 5.0 75 10.0 12.5 15.0 17.5 0 20 10 GO 80 100
Solved benchmarks Solved benchmarks

(a) Real models (b) Random models

Fig. 2: Overview of the performance of the main algorithms on the real and random
case studies. See Section 6.2 for a description.

Figure 2 gives an overview of the performance of the algorithms on the real and
random case studies. The plots depict the number of solved benchmarks (horizontal
axis) and the time it took to solve them (vertical axis). For each algorithm, the
benchmarks are sorted in ascending order by verification time. A line stops when
no further benchmarks could be solved. Intuitively, the further to the bottom right
a line extends, the better. The algorithms shown in the legend on the right are
sorted based on their performance, in descending order. Note that these plots have
to be interpreted with care, as they greatly depend on the selection of benchmarks.

The precise algorithms provide harder guarantees, so we expect them to be
slower. This is visible for PTBVI, which is slower and solves less benchmark than
others. Still, PTBVI is optimal on certain kinds of models, as we detail in Sec-
tion 6.3. Surprisingly, SI performed very well, even competing with the approximate
algorithms BVI, OVI and WP. However, this comes from the model selection,
particularly of the random models. Firstly, they exhibit very small transition prob-
abilities, since we wanted the models to be hard for VI so that we can distinguish
the different stopping criteria. This slows down convergence of VI, but does not
affect SI. Secondly, they contain few states, so using a linear program is feasible.
In Appendix E.4, we show that as model size increases, SI becomes less viable.

The algorithms giving e-guarantees are overall quite comparable. This was also
the case in the evaluation of [21], where the authors note that “for probabilistic
reachability, there is no clear winner”. In Section 6.4, we give more details on how
the performance of certain algorithms is affected by the structural features of a
case study. Note that we included classical VI as a baseline, even though it gives

Optimistic and Topological VI for SSGs 13

1000s

100s

100s

TSI_LP, WP

. «
4 2
| # %4
Oz et oo |
10s =~ S oo,
. % 10s
Ko o 0% = PTBVI/TSLLP « PTBVI/TSI_LP
o « PTBVI/ WP ‘ « PTBVI/WP
15 T T — T 8¢ 10s 100s 1060s
PTBVI PTBVI
(a) Comparison on all models except (b) Comparison on large models

large

Fig.3: PTBVI compared to ST and WPon all datasets.

no guarantees. It returned wrong results on two random models as well as the
handcrafted haddad-monmege and MulMec.

Finally, it is important to note that random models of size 10,000 were already
very hard for all algorithms, while some real models with more than 100,000 states
could be solved quickly. This confirms the hypothesis of [24] that the graph struc-
ture of an SG (e.g., number of actions per state, depth of topological ordering,
connectedness) is more important than its pure size.

6.3 Detailed analysis of precise algorithms.

PTVI and PTBVI are able to solve the chain of SCCs MulMec where normal
topological VI [24] was stuck, so we achieved our original goal.

We use scatter plots to evaluate the algorithms’ performance in detail. Each
point in a scatter plot denotes a model. If a point is below the diagonal, the algo-
rithm on the horizontal axis required more time to solve it than the corresponding
algorithm on the vertical axis and vice versa. The two lines next to the diagonal
mark the case where one algorithm was twice as fast as the other.

Figure 3 shows a scatter plot of PTBVI (which performed better than PTVT)
versus the precise SI and the approximate, but very performant WP. While on
smaller models PTBVT does not perform very well (Figure 3(a)), on larger models
it often outperforms SI, in many cases halving the runtime or even reducing it by an
order of magnitude, as shown in Figure 3(b). We conjecture that this comes from the
fact that SI has to solve a linear program multiple times, while PTBVI only guesses
the optimal strategies once and then solves a single Markov chain. We emphasize
that PTBVI never had to resort to actually performing strategy iteration, because
it guessed the correct strategies in all case studies. Moreover, PTBVTI even beats the
best approximate method, WP, in sufficiently large instances that contain multiple
chained SCCs. In summary, PTBVI is a promising alternative to SI when needing
precise solutions, especially on large models with chains of SCCs.

14 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

T T
.
100s 5 b 100s
o o
g 5
- >
10s 10s
. = OVI/BVI = OVI/BVI
° & « OVI/WP = Ovi/wp
1s 1s = :
1s 10s 100s T 1s 10s 100s T
ovi ovi
(a) Real and Handcrafted models (b) Random models

Fig. 4: OVI compared to BVI and WP on all datasets.

6.4 Detailed analysis of approximate (e-precise) algorithms

All e-precise algorithms perform similarly well. WP has the smallest accumu-
lated runtime (Figure 2), no models where it is significantly worse than BVI
(Appendix E.2) and only few models where it is significantly worse than OVI
(Figure 4). As already observed in [28], it is particularly good when there are sev-
eral or many MECs (especially on the handcrafted MulMec). Thus, it is a valid
initial choice except when the models are large with a chain of big SCCs, where we
concluded in Section 6.3 that PTBVI is better.

We analysed OVTI in more detail to find our what features of the model af-
fect its performance. Details validating the following statements are provided in
Appendix E.3. Intuitively, OVI outperforms the other algorithms when the lower
bound quickly converges, but the upper bound does not. Dually, if the lower bound
converges slowly, this is problematic for OVI. Note that there are many hyper-
parameters of OVI, for example the number of steps in the verification phase or
the modification of the precision after a failed verification phase. We conjecture
that these parameters affect the runtime and the choice can be improved; however,
it is unlikely that there are parameter choices suitable for all kinds of models.

7 Conclusion

We extended optimistic VI from MDPs to SSGs. Moreover, using the “optimistic”
idea, we fixed the issue of topological VI, so that it works even in the case of deeper
models with more SCCs arranged in longer chains in the topological order. Besides,
this fix also makes the method return the exact result. While this may be at the
cost of a higher runtime, it becomes the only option when the overall model is very
large, so that per-SCC analysis becomes unavoidable, and deep, so that precise
values must be computed to converge at all. PTVI can be viewed as a separate
algorithm or as an optimization on top of any approach from which a strategy can
be extracted.

Optimistic and Topological VI for SSGs 15

The experimental results show that the algorithms are of comparable perfor-
mance, especially on real models from the standard benchmark sets. However, an
in-depth analysis of the handcrafted and random models reveals that the perfor-
mance of these algorithms is often sensitive to the underlying graph structure and,
thus, their performance can vary accordingly. While we discuss some rules of thumb
as to which algorithm is to be used for a particular benchmark, a part of the future
work is to provide clearer and more algorithmic recommendations. An interesting
direction here might also be to apply machine learning to recommend the most
appropriate algorithm, as done for software model checkers already a few years
ago, e.g., [15].

Moreover, we introduced a random generator, capable of producing various
patterns even to extreme degrees. While this is very useful to find bugs and corner
cases, many of the patterns need not be realistic. Consequently, we introduce a
powerful set of tools to bias the generation. Nevertheless, future work shall amend
this spectrum of tools with further hyper-parameters and approaches. We hope to
hereby establish the platform for the community to contribute, complementary to
benchmark sets [26,22].

References

1. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on graphs.
In: ISAAC. LNCS, vol. 5878, pp. 112-121. Springer (2009)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

3. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reliability
of your model checker: Interval iteration for markov decision processes. In: CAV (1).
LNCS, vol. 10426, pp. 160-180. Springer (2017)

4. Brazdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretinsky, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: ATVA. LNCS, vol. 8837, pp. 98-114. Springer (2014)

5. Camara, J., Moreno, G.A., Garlan, D.: Stochastic game analysis and latency aware-
ness for proactive self-adaptation. In: SEAMS 2014. pp. 155-164 (2014)

6. Chatterjee, K., Fijalkow, N.: A reduction from parity games to simple stochastic
games. In: GandALF. pp. 74-86 (2011)

7. Chatterjee, K., Henzinger, T.A.: Value iteration. In: 25 Years of Model Checking.
LNCS, vol. 5000, pp. 107-138. Springer (2008)

8. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: A solver for
probabilistic games. In: CAV. pp. 665-669. Springer Berlin Heidelberg (2010)

9. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. FMSD, 43(1), 61-92 (2013)

10. Chen, T., Kwiatkowska, M.Z., Simaitis, A., Wiltsche, C.: Synthesis for multi-objective
stochastic games: An application to autonomous urban driving. In: QEST. pp. 322—
337 (2013)

11. Cheng, C., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: an open platform for
the research of algorithmic game solving. In: TACAS. LNCS, vol. 6605, pp. 258-261.
Springer (2011)

12. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203-224 (1992)

13. Condon, A.: On algorithms for simple stochastic games. In: Advances In Computa-
tional Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 13, pp. 51-71. DIMACS/AMS (1993)

14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857-907 (1995)

16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Czech, M., Hiillermeier, E.; Jakobs, M., Wehrheim, H.: Predicting rankings of software
verification tools. In: SWANQ@QESEC/SIGSOFT FSE. pp. 23-26. ACM (2017)

Dai, P., Mausam, Weld, D.S., Goldsmith, J.: Topological value iteration algorithms.
J. Artif. Intell. Res. 42, 181-209 (2011)

Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge university
press (2002)

Eisentraut, J., Kelmendi, E., Kfetinsky, J., Weininger, M.: Value iteration for simple
stochastic games: Stopping criterion and learning algorithm. Information and Com-
putation (2022)

Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical
Society, second revised edition edn. (2006)

Haddad, S., Monmege, B.: Interval iteration algorithm for mdps and imdps. Theor.
Comput. Sci. 735, 111-131 (2018)

Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV (2). LNCS, vol.
12225, pp. 488-511. Springer (2020)

Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative
verification benchmark set. In: TACAS (1). LNCS, vol. 11427, pp. 344-350. Springer
(2019)

Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Management Sci-
ence 12(5), 359-370 (1966)

Kietinsky, J., Ramneantu, E., Slivinskiy, A., Weininger, M.: Comparison of algorithms
for simple stochastic games. EPTCS 326, 131-148 (Sep 2020)

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Prism-games 3.0: Stochastic
game verification with concurrency, equilibria and time. In: CAV (2). LNCS, vol.
12225, pp. 475-487. Springer (2020)

Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST
2012. pp. 203-204. IEEE Computer Society (2012)

LaValle, S.M.: Robot motion planning: A game-theoretic foundation. Algorithmica
26(3-4), 430-465 (2000)

Phalakarn, K., Takisaka, T., Haas, T., Hasuo, I.: Widest paths and global propagation
in bounded value iteration for stochastic games. In: CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part I1. LNCS, vol. 12225, pp. 349-371. Springer (2020)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Statistics, Wiley (1994)

Quatmann, T., Katoen, J.: Sound value iteration. In: CAV (1). LNCS, vol. 10981, pp.
643-661. Springer (2018)

Svorenové, M., Kwiatkowska, M.: Quantitative verification and strategy synthesis for
stochastic games. Eur. J. Control 30, 15-30 (2016)

Tarjan, R.: Depth first search and linear graph algorithms. SIAM JOURNAL ON
COMPUTING 1(2) (1972)

Ujma, M.: On verification and controller synthesis for probabilistic systems at run-
time. Ph.D. thesis, University of Oxford, UK (2015)

Optimistic and Topological VI for SSGs 17

A Proof of Theorem 1

We first give an overview of the proof and delegate the technical details to the
proofs of the lemmata below.

Correctness: Since L is computed by a classic VI variant, we know that L <V
by e.g., [7]. We have guessed U such that diff(U(s),L(s)) < e for all s € S. It remains
to show that upon termination V < U, i.e. that U is a correct upper bound.

The algorithm terminates if and only if it has found an upper bound with
U’ = BP(U) < U (see Lines 7 and 8). To show that this implies our goal U > V,
we apply standard arguments from lattice theory [17, Theorem 8.20]*. This is the
point of Lemma, 2. For it, we need that BP is a monotonic operator, which is shown
in Lemma 1.

Termination: We prove this in Lemma 3 by a case distinction on the relation
between U and V, similar to [21], but aggregating some cases and including an
argument about the additional deflating.

Lemma 1. BP is monotonic, i.e. fi < fo implies BP(f1) < BP(f2).

Before we prove this, we mention this is not true when using B° as BVI from [18]
does. There, the L used for guessing the SECs is always updated and changed in
every iteration. This can theoretically lead to non-monotonic behaviour. Thus, it
is important that we fix L (and the implied set of SEC-candidates) for the whole
verification phase. For Algorithm 1, this is obviously true as we do not update L
during the verification phase. However, we must not continue iterating the lower
bound during verifications as in [21] or depend on the upper bound when guessing
the SECs.

Proof. BP(f) modifies the given function two times: first by applying the Bellman
operator B3, which is monotonic, as addition, multiplication, taking maximum or
minimum and their combinations are monotonic. Secondly, BE(f) applies deflat-
ing. Since L is fixed, the set of states affected by this is constant, namely the union
of all SEC-candidates according to L. For every state in this set, f is updated to
min(f(s), bexits(T")). The min ensures that the estimate cannot increase, and the
computation of the best exit again contains only max, multiplication and summa-
tion. Thus, BP is a monotonic operator.

Lemma 2. BP(U) < U implies that V < U.

Proof. We restate [17, Theorem 8.20]: Given a complete lattice (P, <) and a mono-
tonic self-map f on this lattice, f(z) < x implies Ifp(f) < x, where Ifp(f) denotes
the least fixpoint of f.

We consider the complete lattice ({U | U : S — R}, <) of functions mapping S
to probabilities with the ordering according to pointwise comparison. The bottom
element of the lattice is the vector that maps every state to 0, the top element
maps every state to 1.

BE is a self-map on this lattice, as it takes a function of values for every state and
returns another such function. Moreover, it is monotonic by Lemma 1. So, using [17,

* This is what was called Park induction in [21]. Since we were not able to access the
work cited in that paper, we use a variant of the same claim from another textbook.

18 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Theorem 8.20] and instantiating f with BP and = with U, we get BP(U) < U implies
Ifp(BP) < U. Thus, to prove our goal, it remains to show that Ifp(BP) = V.

Deflating is sound and monotonic by [18, Lemma 3], i.e. it can never decrease a
function U with U > V below V and it can never increase a function. So deflating
any x < V just returns x and thus for z < V, BP does the same thing as 3. From
this and using that V is the least fixpoint of the Bellman operator B, see e.g., [7],
we conclude

V = Ifp(B) = Ifp(BP).
Lemma 3. Given an SG G and a lower bound Ly <V, OVI(G, Ly, €,¢) terminates.

Proof. We prove this by a case distinction on the relation between U and V, similar
to [21]. Our proof mainly differs in that we aggregate Cases 2 and 3 in their proof
into case 1 of our proof and include an argument about the additional deflating.

— U(s) > V(s) for all s € S: If U truly is an upper bound on the value, we want
to terminate. Note that this is also the only case in which we can terminate, as
otherwise we recursively call OVI again with more precision for VI and more
iterations in the verification phase. Thus, since the precision of VI increases,
we can assume that L has converged close enough to V such that all SECs are
detected correctly. Note that it is possible that we terminate even if the SECs
are not yet guessed correctly. However, to prove termination, this assumption
is necessary.

By [18, Theorem 2|, the value function V is the unique fixpoint of the operator
BP, since Bellman updates and deflating together ensure that U converges to
the value.

As in [21], we made the Bellman update monotonic by using Line 9, to avoid
a particular corner case where there is an alternating increase and decrease,
see |21, Section 4.2].

The remaining argument is the same as in Cases 2 and 3 of the original termi-
nation proof. Intuitively, given enough steps (and the number of steps in the
verification phase increases, so there eventually will be enough steps), all states
see a decrease in value. The corner case of a state already having the correct
value and hence not decreasing is handled in the same pragmatic way: we just
abort the verification phase and try again with another upper bound that is
necessarily higher than before.

— Otherwise, so if there exists a state s € S with U(s) < V(s): In such a case,

the verification phase will certainly be aborted, as we terminate if and only if
BP(U) < U, which cannot happen when some U(s) < V(s) = Ifp(BP)(s). Thus,
we need to abort the verification phase with this U, which happens after a finite
number of iterations (see Line 5). Note that the additional breaking conditions
mentioned at the end of Section 3 help to detect this case faster.
It remains to show that we cannot stay in this case forever, but that eventually
we guess a U > V. This happens, because L converges to V, see e.g., [7]. Since the
increase of difF;|r for guessing the upper bound is constant®, we will eventually
guess an upper bound that is greater than the value and our algorithm will
eventually detect that and terminate.

® Or, in the case of relative error, can be lower bounded by L(s) * &

Optimistic and Topological VI for SSGs 19
B Proofs for Section 4

B.1 Details on PTVI (Algorithm 2)

Computing optimal strategies: How to compute the strategies is a heuristic that
should get the best from the given information of the VI-algorithm. We phrased it
such that the computation depends on both a lower bound L and an upper bound
U in order to show how to use it with both BVI and OVI. When using naive VI, we
set U := L. We use U to guess the Minimizer strategy and L to guess the Maximizer
strategy, as this is using the most conservative estimate that we have available.

From an estimate function, we can derive a strategy by picking actions that are
optimal according to this estimate, similar to the Bellman equations 2.2. Indeed,
for Minimizer this is sufficient, so we set

7+ {(s,a) | s € S, a picked randomly from argminU(s,a’)}
a’€A(s)

For Maximizer this is not sufficient, because Maximizer might have actions with
optimal value that however do not make progress towards the target. Imagine for
example a Maximizer state with an action a that loops and an action b leading to
the goal. While picking a for a finite number of times does not decrease the value,
as the state can still play b and reach the goal surely, committing to playing a
infinitely often reduces the value to 0. Thus, when deriving a Maximizer strategy,
we cannot just pick some optimal action.

There are several ways to deal with this problem: firstly, to obtain a memoryless
deterministic strategy, one can use graph algorithms to compute a distance measure
between states in S; and goal states; then the strategy picks actions that not only
are optimal according to the estimate, but additionally reduce the distance to the
goal. This is similar to the construction used in [1, Theorem 2] for deriving strategies
of Maximizer in a reachability game. However, we want to avoid the additional
computation time for these graph algorithms. Thus, we use a second approach:
strengthening the notion of strategy to allow for randomization. A randomized
strategy is map S — Dist(A) that for every state s returns a probability distribution
over available actions Av(s). We write (s,a,p) € o to say that o(s)(a) = p; a
strategy is well-defined when all triples with p > 0 are enumerated. Thus, we select
the Maximizer strategy as

1
o« {(s,a,p) | s € Sg,a € argmaxL(s,a’),p=
a’€A(s) |arg maxXgsea(s) L(Sa a/)|

This is correct, because every action that is optimal (according to the estimate)
has positive probability to be selected. The “staying” actions do not decrease the
value, and almost surely we eventually pick an action that makes progress towards
the goal. In the words of [1, Lemma 5|: the strategy is safe and stopping. Note
that this does not drastically decrease the transition probabilities in the resulting
Markov chain, as there typically are less than 3 actions per state. Hence it poses
no problem for the Markov chain solving.

20 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Markov chain solving: To solve the induced Markov Chains, we use the standard
equation approach as described in [19, Chapter 11]. First, the MC is represented
in a transition matrix. Next, one has to find the states s € S” which cannot reach
any target in the MC and remove their rows and columns from the matrix. To
do so, it is usually necessary to perform an all-pairs-shortest-path algorithm like
Flyord-Warshall. However, since this requires O(|S|?) operations, and we already
have L from the VI process, we can obtain said states instead directly by checking
whether L(s) = 0. Removing states that cannot reach any target from the transition
matrix guarantees non-singularity, and thus invertability. Lastly, the part of the
matrix corresponding to S’ needs to be inverted and multiplied with the part of
the transition matrix corresponding to F, yielding the reachability probability for
every state s € S7 in the Markov chain.

In our implementation, we use the JAMA library® to perform matrix operations
like multiplications or inversions.

Strategy iteration in the case of non-optimal strategies: The local check we perform
in Line 7 gives guarantees if and only if it succeeds. So if it fails, we know nothing
about the strategies and have to perform normal SI. This means we can only fix
one of them, as solving the resulting MDP might return a different strategy for the
other player. However, it is quite likely that both strategies are good. Note that for
SI we need memoryless deterministic strategies, so using the randomized o as we
defined above is not possible. Thus it makes sense to resort to starting with 7.

B.2 Proof of Theorem 2

Theorem 2. Algorithm 2 returns the precise solution V.

Proof. The argument for correctness of solving the SG in topological order is the
same as in [24, Section 4.4].

In the case that the condition in Line 7 evaluates to false, there is nothing
to prove, because in this case the algorithm falls back to using strategy iteration
which is known to return the precise solution, see e.g. [13]. So we only have to prove
that, if the check in Line 7 evaluates to true, this implies that o and 7 are optimal
strategies and V(gU’T) is the value function of the SG.

In the following, for any SG (or MDP or Markov chain) G, we use Vg to denote
its value function. Further, G(*) and G(*7) are the MDP with Maximizer strategy
o respectively Minimizer strategy 7 fixed, and G(®7) is the Markov chain with both
strategies fixed.

Intuitively, our local check amounts to performing SI on the MDPs G(*) and
G(7). For the proof, first consider the MDP G(?). ST in this MDP starts by fixing
an arbitrary Minimizer strategy and we choose 7. Then it computes the value of
the resulting Markov chain G(®7) and checks whether Minimizer wants to switch
the strategy in any state, i.e. whether there exists an s € S such that 7(s) ¢
arg min,ea(s) Vgeo.n (8,). If Minimizer wants to switch, 7 is not optimal and the
check evaluates to false. Otherwise, 7 is an optimal strategy in the MDP G(©),
cf. [29]. Thus, we have Vge,) = Vg .

6 https://math.nist.gov/javanumerics/jama,/

https://math.nist.gov/javanumerics/jama/

Optimistic and Topological VI for SSGs 21

Dually, the check for the Maximizer strategy verifies that Vg¢.-) = Vge,n by
proving that o is an optimal strategy in the MDP G(7). Note here that, since we
use a randomized o, we have to check that every action to which ¢ assigns positive
probability is optimal, i.e. {a | 3p > 0: (s,a,p) € 0} C argmax,ca(s) Vg (s,).

Finally, we have to relate Vg, and Vg(,-) to the value on the actual game Vg.
Observe that by fixing an arbitrary Maximizer strategy, we can only decrease the
value, as it might be suboptimal, but we can never increase the value. Formally,
Vgeo.y < Vg. Dually, Vg < Vg(.-. Putting everything together, we have

Vg(a,r) = Vg(rr,-) <Vg < Vg(.,r) = Vg<o,-r).

This proves that indeed both strategies are optimal in G and Vg, is the correct
value function.

C Additional details for randomly generated models

C.1 Our algorithm for random model generation

We use Algorithm 3 to create any random stochastic game that is connected from
the initial state. After initialization, the algorithm has two phases: the forward and
the backward procedure. During initialization, we generate a random number n and
create a set of states S := [n]. Also, we assign states at random to either Maximizer
or Minimizer. In the forward procedure, we iterate over every state s € S and make
sure that a previous state s’ is connected to it by providing an action with positive
transition probability to s from s’. This guarantees that the initial state can reach
every state in the stochastic game. The backward procedure then adds arbitrary
actions to arbitrary states to enable generating every possible SG.

To generate the actions of a state, we use Algorithm 4. It receives a state-action
pair (s,a) where), sd(s,a,s’) < 1. It then increases the transition probability
of a randomly selected state s’ € S where d(s,a,s’) = 0. This is repeated until
> ses 0(8,a,8") >= 1 or there is no state s’ that is not yet reached by (s,a). In
case) cs0(s,a,8") < 1 holds but the state-action pair is reaching every state
in S, we increase the most recently increased transition probability such that the
resulting distribution is a probability distribution. If we reach 3, .5 d(s,a,s’) > 1,
we reduce the transition probability we increased most recently. After applying
Algorithm 4, (s,a) is a valid transition distribution, i.e. its probabilities sum up
to 1.

Lemma 4. Algorithm 3 creates formally correct stochastic games.

Proof. S is finite since its size is determined by a random number n € N (Line
1). Line 2 ensures that we have a partition of S into Sg and S. Next, Lines 3-
5 provide an initial state and a target. Thus, we only need to argue that Av is
truly a mapping of S — 2 and that the transition function yields a probability
distribution. When we introduce state-action pairs (Lines 9-14 and Lines 18-21),
we introduce a new action that we add to A. Also, we add the state-action pair to
Av (Lines 12 and 19). Thus, any Av is function of S — 2A.

22 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Algorithm 3 Generating random models connected from initial state

Output: Stochastic game G where the initial state is connected to any s € S

1: Create S with a random n € N
2: Partition S uniformly at random into Sp and S
3: Enumerate s € S in any random order from 0 to n-1
4: Set sp to the state with index 0
5: Set F = {sn_1}
6: fors=1—-n—-1do > Forward Procedure
7: if s does have an incoming transition then Continue (Skip iteration)
8: else
9: Pick any state s’ with index smaller than s
10: Create an action a that starts at s’
11: Assign to (s', a) a positive probability of reaching s
12: Create a valid probability distribution for (s’, a) by applying FillAction(s’, a)
13: Add a to Av(s’)
14: Add a to A
15: for s=n—1—0do > Backward Procedure
16: Pick a random number m € N > Add as many actions as possible
17: if |Av(s)| = 0 then m <+ max {m, 1} > Every state must have at least one action
18: fori=1— mdo
19: (s,a;) = FillAction(s, a;)
20: Add a; to Av(s)
21: Add a to A

Algorithm 4 FillAction(s, a)

Input: outgoing state s, action a

Output: action a that has a valid underlying transition probability distribution
1: repeat

2: Pick a random state s’ where 6(s,a,s’) =0

3: Increase §(s, a,s’) by a random number € (0, 1]

4: until either 37 . d(s,a,5') >1or Vs €S:6(s,a,s) >0

5: if 3 s d(s,a,5") > 1 then

6:

7

8:

Decrease the most recently modified 6(s, a,s’) so Y s d(s,a,s") =1

else if Y7 o d(s,a,s") <1then > Loop terminated because Vs € S : d(s,a,s") >0
Increase the most recently modified d(s, a,s") so > .sd(s,a,s) =1

return (s, a)

Next we need to prove that for every s € S and every action a € Av(s) the transi-
tion function (s, a) yields a probability distribution. In other words we need to val-
idate that (i) for every state s’ € S: §(s,a,s’) € [0,1] and (ii) >, . d(s,a,8') =1
are true.

To prove (i), note that whenever we introduce an action a to the set of enabled
actions Av(s) of a state s € S, we have §(s,a,s’) = 0 for all s’ € S. We increase
d(s,a,s’) in Line 11 of Algorithm 3 and Lines 3 and 8 of Algorithm 4. We increase
transition probabilities by numbers in [0,1]. Due to the condition in Line 4 of
Algorithm 4, §(s, a, s’) can only be increased a second time in Line 8 of Algorithm
4. However, per state-action pair (s,a) with a € Av(s) Line 8 of Algortihm 4 may
be executed only once and we increase only by a A > 0 such that d(s,a,s’) + A+
2 sres\ (s 0(8,a,8") = 1. Since every state s” € S\ {s'} was increased only once,
§(s,a,8')+A<1.

s’eS

Optimistic and Topological VI for SSGs 23

To prove (ii), note that every pair (s,a) where a € Av(s) is given to Algorithm
4. Once the loop (Lines 1-4) terminates, it either holds that (a) for every state
s €S :6(s,a,8") > 0 or that (b) > ., .gd(s,a,5") > 1. If Y7, g0(s,a,8") =1
the algorithm terminates correctly. Hence, we consider the other two cases: In case
(a) Line 8 increases the most recently added triple (s,a,s’) by a A > 0 such
that 6(s,a,s") + A+ > ies\ (53 6(s,a,8") = 1. In case (b) >, cq0(s,a,8") >
1. Due to the exit condition of the loop (Line 4), without the most recently
increased transition (s,a,s’) the sum of the probabilities must be below 1, i.e.
> sres\(s3 0(s,a,5") < 1. Thus, there is a A € (0,1),A < §(s,a,s”) such that
5(s,a,8") = A+ 3 eq\ (53 6(5,a,8") = 1. We decrease (s, a, s") by this A. In con-
clusion, every pair (s, a) that is provided to Algorithm 4 yields a valid transition
distribution where), s (s, a,s’) = 1. Thus, Algorithm 3 generates formally cor-
rect stochastic games.

To argue about the SGs that the algorithm produces, we introduce some nota-
tion. Let Gaigo be the set of SGs that Algorithm 3 can produce and Greach be the
set of all SGs where every state is reachable from the initial state. Note that every
SG that is not an element of Geach can be transformed into an SG with the same
value and optimal strategies by removing all unreachable states. Hence, we only
care about producing SGs in Gyeach-

Lemma 5. Algorithm 3 creates all SGs where every state is reachable from the
initial state, i.e. Galgo = Greach-

Proof. We first show that Gajge € Greach:

For this statement to hold, any G € Gajgo must be connected from the initial
state. Proof by induction over the indices 4 of the states along their enumeration
assigned during Algorithm 3:

Basis: ¢ = 0: sg is the initial state. The initial state can reach itself within 0
steps.

Hypothesis: Let ¢ be arbitrary but fixed with ¢ < n — 1, where n = |S|. For
every j <1 it holds that sy can reach s;.

Inductive Step: i <+ i + 1: Due to the forward procedure it holds that

ds; €S,j <i,a € Av(sj) : 6(sj,a,8;) >0

However, according to our hypothesis sg is connected to s; and thus also to s;.

Now we show that Greach € Galgo:

Pick an arbitrary but fixed stochastic game G € Gieach. Next, we show that
there is a run of our algorithm that will return a stochastic game G’ € Gajgo Where
G’ is an automorphism to G. Thus, G’ and G are the same except for the state
enumeration and the labels of the actions.

For this, we need several statements to hold at once:

. The number of states in G and G’ is equal.

. The partition of S to S and S is the same for G and G'.

. G and G’ have the same initial states and targets.

. All state-action pairs in G and G’ yield the same probability distributions in d.

=~ O N

24 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

5. Every state in G and G’ has the same actions.

We decide randomly on the number of states in Line 1 of Algorithm 3 and
partition S into Sg and S at random in Line 2 of Algorithm 3. Thus, for every
G € Greach there exists G’ € Gajgo that have the same number of states to which
there is an enumeration such that they are partitioned equally in both stochastic
games. Since the states can be arranged in any order, we pick the initial state of
G’ such that is the same as in G. All targets of G can be mapped to the singular
target of G, since they only have self-loops and behave identically to f of G’. Thus,
there exists a run where Statements 1, 2, and 3 hold.

When using Algorithm 4 to create a probability distribution for a state-action
pair (s,a), we increase transition probabilities until they sum up to 1. Thus, any
summation), s d(s,a,s’) = 1 is possible. In consequence, an action may lead
into arbitrary states, have an arbitrary number of positive transition probabilities
between 1 and |S|, and may have arbitrary probability distributions on the transi-
tions as long as they sum up to 1. So out of all runs where Statements 1, 2, and 3
hold, there also must be at least one run where statement 4 holds too.

To show that Statement 5 holds in addition, note that each G € Gyeach has a
minimal set of state-action tuples such that the initial state is connected to every
state. Taking this set, we can perform a breadth-first search from the initial state
to provide an enumeration of the states. If we iterate over the states along this
enumeration, we can reproduce each of the actions in the minimal set during the
forward process. Due to the enumeration, to each state s except for the initial state,
there is a state with a smaller index s’ such that s’ has an action a with a positive
transition probability of reaching s. Since every other transition of (', a) can lead
into arbitrary states and the probability distribution of (s, a) can be arbitrary, we
can recreate the minimal set of state-action tuples in G'.

The remaining state-action pairs of G can be added to G’ during the back-
ward process, where every state may add arbitrarily many actions with arbitrary
transition distributions.

Note that although Gajgo = Greach, in general Algorithm 3 does not sample Greach
uniformly at random. Due to the forward procedure, states with smaller indices
tend to have more actions than the states with higher ones. Additionally, creating
the transition distributions as described in Algorithm 4 favors state-action pairs to
have few transitions. If we pick the transition probabilities between (0, 1] uniformly
at random, around 83, 33% of all actions have two or three transitions with positive
probability and none with one transition.

C.2 Parameters and guidelines for model construction

We implemented a constrained version of Algorithm 3 from Appendix C.1 to ran-
domly generate models. The real-world implementation has to be constrained due
to the natural restriction that a computer cannot generate arbitrarily large stochas-
tic games and arbitrarily small transitions due to finite memory. Additional con-
straints on the real-world implementation are the pseudo-randomness while taking
decisions, as well as floating point machine precision. Moreover, we want to give
the users some control over the properties of the resulting models like the num-
ber of states or the partitioning into Minimizer and Maximizer states. If all model

Optimistic and Topological VI for SSGs 25

properties vary significantly, it is very hard to deduce why an algorithm performs
differently on two models. Thus, we provide several parameters which can be set to
restrict the randomization. Some examples of the parameters that one can control
are the number of states, number of models, smallest probability that is allowed to
occur, number of transitions of an action.

Limits and additional guideline options

Although the parameters we expose for random generation can directly influence
various structural properties of the resulting models, there are other structural
properties that are hard to influence. For example, there is no direct way to affect
the size and number of SCCs of a model, or to guarantee that every state in a
model has a certain number of actions when using Algorithm 3. We provide some
guidelines that can be followed to influence such properties.

1. RandomTree guideline. We refer to the guideline that controls how many
actions a state has as RandomTree because it creates a tree-like graph structure
where the initial state is the root. Every node of the tree has k actions and at
most k children, where k is a parameter. Every action has an assigned child
to which it has a positive transition probability. The rest of the probability
distribution of the action is assigned at random. An inner node of the tree
may have less than k children if adding & children would exceed the requested
number of states n for the model. Also, leaves are not required to have k actions.
Their actions are only introduced during the backward process and are there
to enable the generation of end components.

2. RandomSCC guideline This is a guideline that controls the SCCs of a model.
The procedure requires a minimal and maximal size boundary [a, b] for every
SCC and the total number of states in the stochastic game n. First, we cre-
ate subgames of a randomly chosen size in [a,b]. The subgames are created
by the algorithm described in Appendix C.1. We then use Tarjan’s algorithm
for strongly connected components [32] to identify the SCCs of the created
subgame. Next, we unify all the SCCs of the subgame by using the topologi-
cal enumeration Tarjan’s algorithm provides. We circularly connect the SCCs
along the enumeration, making the whole subgame an SCC. Next, we make
sure that the subgame is connected to the rest of the stochastic game by mak-
ing sure a previously created subgame has an action leading into this subgame.
We repeat this procedure until we have at least n states in the stochastic game,
resulting in a stochastic game G that is connected from the root where the user
has an easy way of controlling the number and size of the SCC in G.

D Details on model analysis

In this section, we discuss the feature distribution of the real and randomly gener-
ated models. We claim that such a feature analysis of benchmark sets is important
in order to find out biases, as well as judge why certain sets of benchmarks are
hard. We first give a few noteworthy conclusions of our analysis.

— Often large parts of the real case studies are solved by pre-computations. Hence,
instead of the size of the state space |S| we should consider the size of the
unknown part |S7|.

26

Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

In the real case studies we have, there are usually only few actions and suc-
cessors per state, few MECs and few non-trivial SCCs. Thus, to assess general
algorithm performance, we should generate models with these features, be it
by hand, randomly or by finding realistic problems with this structure.

In general, the models generated by our algorithm without using the guidelines
are hard because they form very connected models with many actions and
transitions as well as low transition probabilities. Apart from that, the models
generated do not exhibit large size, many MECs or long chains of SCCs.

We provide two figures, each analysing 16 features of a set of case studies. Fig-

ure 5 shows the feature distribution of the real case studies. We refer to this set
as REAL. Figure 6 shows the feature distribution of a randomly generated set of
models with many actions. We refer to this set as RANDOM. For our analysis we
use box plots, where for every feature distribution, the plot shows the median (or-
ange line), average (green triangle), 25 and 75 percentile (box), 10 and 90 percentile
(whiskers) and outliers (circles). In every figure, the box plots are grouped by and
coloured according to the following categories:

Green outlines are for features related to states.
Blue outlines are for features related to actions.
Cyan outlines are for features related to transitions.
Red outlines are for features related to MECs.
Orange outlines are for features related to SCCs.

For every feature we point out differences and similarities between the sets. We

also motivate why certain features are interesting and our choices of parameters
for the set RANDOM.

NumStates: Number of states in a model, given in log scale. For REAL, this has
a spread between several dozen up to a few million states. For RANDOM, we
always chose 10,000, so that the complexity of the model could not come from
its size, but the size was still non-trivial. To analyze the complexity induced by
the sheer size of a model, we used the additional handcrafted scalable model
described in Appendix E.4.

Sinks% and Unknown%: These features describe the percentage of states that
are sinks (Z) or unknown states (S). Note that all randomly generated models
have exactly one goal state. Hence, we have that Sinks% + Unknown% sums up
to (a little less than) 1. For REAL, the percentage of unknown states is almost
always less than 40% and less than 20% in half the cases. This means that most
of the model is solved by pre-computations, being either sinks or goal states. We
highlight one implication of this: an experimental analysis relating the number
of states to the performance of algorithms is flawed, since large parts of the
state space are quickly solved by pre-computations shared by all algorithms.
Thus, such an analysis should rather consider the number of unknown states.
In RANDOM, the percentage of unknown states is around 60%, i.e., typically
more of the model requires an actual computation of the solution algorithm.
MinStates%: Percentage of states belonging to Minimizer. Note that the per-
centage of Maximizer states is 1 minus this. For all sets, the average is around
50%. For REAL, the variance is higher.

Optimistic and Topological VI for SSGs 27

0.8
8 8 o o
108 0. 0.8 12
10° 0.6 06 oo 10
10 8
04 0.4 0.4
10 6
0.2 0.2 0.2 A
102 4 |
0.0 0.0 0.0 o 2 =
NumStates Sinks% Unkuown% MinStates% NumMaxActions
S 0.8 N 0ol — : =
] o ‘ o vol , T
0.6 o 10-14 [a]
61 1.8+
3
04 54 L6l
1024 L
4 144 i
2 0.2
34 1.2 1
1 0.0 21 1.0+ 1074 -
AvgNumActionsPerState ProbActions% NumMaxTransitions AvgNumTransPerAction Smallest TransProb
x10°
) 0.12 0.12 N ° -
2000 8 8 12 084
0.10 o 0.10 10d
5 0.6
1500 0.08 o 0.08 081 6
1000 006 006 067 o 0.4
0.04 0.04 o 04- N
500 o .) 02+
0.02 0.02 A 0.2+
5 4
0 o 0.00 = 0.00 = 0.0 0.0
NumMECs BiggestMEC% AvgMECY NumSCCs BiggestSCC%
X100
0.5+ o 600 4 o o 1.0+ °
12500 0.8
04- 500 N
100001 08 N
) 4001 o 0.6
034 75001 0.6
o 300 044
2 | 04-
200 2000
o o 5
0.1+ 1001 0 2500 4 0.2+ 8 02
é A A
00 = 04 = 0 - 0.0 = 00
AvgSCCY% MaxSCCDepth NumNonSingleton SmallestSCCNonSing AvgSCCNonSing%

Fig.5: REAL: Box plots for analysing the features of the real case studies. A de-
scription of how to read box plots is provided in Section 5.

— NumMaxActions, AvgNumActionsPerState, ProbActions%, NumMaxTransitions,
AvgNumTransPerAction: These features intuitively describe the “breadth” or
“branching” of the model. They are, in order: the maximum number of actions
per state occurring in the model, the average number of actions per state,
the percentage of probabilistic actions (with more than one successor state),
the maximum number of transitions occurring for a state-action pair, and the
average number of transitions occurring for a state-action pair.

For REAL, we typically have slightly less than 2 actions per state, usually no
more than 5 and never more than 13. Only a third of the actions are proba-
bilistic. Typically, we have between one and two successors, seldom more than
4 and never more than 8.

Since we wanted to explore graph structures that are not present in REAL,
for the generation of RANDOM we allowed our algorithm to create models
with more actions and transitions and higher branching. We typically have

0.00094 4

0.00092 4

Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

10° 0.36 T 0.515 ° 95
0.510 T
0.68 5 00
0.34
0.505
10 . 0.66 85
0.500
0.32
0.64 0.495 80
| 0.30 0.490 _
10 o o L 75
NumStates Sinks% Unknown% MinStates% NumMaxActions
6.88 1 - =]
o 0744 o 10.0 107
2.275 4 i
6.86 0.742 9.5]
0.740 2.270 - |
6.54 9.0 1071+ -
0.738 A i
2.265 -]
6.82 0.736 8.5
0.734 22601 i
6.80 o 8.0 L 10774
AvgNumActionsPerState ProbActions% NumMaxTransitions AvgNumTransPerAction Smallest TransProb
. 0.08 - -
5 o 0.10 o 11751 E
0.8950 1
4 o 0.08) |
0.06 1150 0.8025 -
. 06 11254
3 0.06 - H 0.8900
2 0.04 11001 0.8875 1
0.02 10754
1 0.02 0.8850 1
1050 -
0 0.00 0.00 L 0.88251 L
NumMECs BiggestMECY AvgMEC% NumSCCs BiggestSCCY%
0.00096 ° 2107 T T
1.044 8950 1 0.8950 1
2.05 1021 8925 0.8925
) - . 8900 1 0.8900
0.00090 200 100
8875 0.8875
| 98+
0.00088 195+ 0.98
8850 1 0.8850 1
0.00086 + 0.96 4
1904 8825 1 0.8825 L
AvgSCC% MaxSCCDepth NumNonSingleton SmallestSCCNonSing AvgSCCNonSing%

Fig.6: RANDOM: Box plots for analysing the features of the set of randomly gen-
erated models. A description of how to read box plots is provided in Section 5.

around 7 actions per state, but also up to 95. Three quarters of the actions are
probabilistic. We have an average of slightly more than 2 transitions per action
and a maximum of 10. The resulting models are more connected and thus often
harder to solve for the algorithms.

Smallest TransProb: The smallest transition probability occurring in the model.
In REAL, this goes from 0.5 (the largest possible non-trivial probability) to
1073. In RANDOM, we always set this to 10~%, making the models generally
hard for value iteration, so that non-trivial solution times occur.

NumMECs, BiggestMEC%, AvgMEC%, NumSCCs, BiggestSCC%, AvgSCC%:
These features are related to the important graph theoretic concepts of MEC
and SCC. We give their number (Num), the size of the biggest occurring
MEC/SCC in percentage of the state space (Biggest%) as well as the aver-
age size of MECs/SCCs. Note that we only count MECs in the unknown part
of the state space.

Optimistic and Topological VI for SSGs 29

Most of the models in REAL have very few and very small MECs, with a few
exceptions going up to around 2000 MECs. Since we often only have one MEC,
the biggest and average MEC size box plot look very similar. In contrast, in
RANDOM we usually have around 2 non-trivial MECs, but they also are small.
To analyze the impact of many or big MECs, we used the handcrafted model
MulMec. However, we can also offer guidelines to create random models with
certain numbers and sizes of MECs, analogous to the RandomSCC guideline.

For SCCs, note that the scale of the plot for the number of SCCs is multiplied
by one million. In REAL we usually have around 100,000 SCCs, with an outlier
having more than a million. The biggest SCC is often large, comprising a third
of the model on average and going up to 50% in three quarters of the cases.
Since there are many transient states (which form a singleton SCC of size 1),
the average SCC size is small. Since this does not give a lot of information, we
also give the average size of non-singleton SCCs, see below. In RANDOM, the
variance is smaller. There are around 1,000 SCCs, and the biggest SCC makes
up around 90% of the model, making it almost completely strongly connected.
This is because our random generation picks successor states randomly, and
chances are good that this induces cycles throughout most of the model. This
is why we offer the RandomSCC guideline, which allows to create models that
less connected.

— MaxSCCDepth: This is important for topological algorithms, as it is the depth
of the DAG forming the graph. Note that Example 1 only needed a chain of 20
SCCs to show the problems of topological value iteration. In REAL, the aver-
age depth is around 100 and it can go up to 600. In RANDOM, this depth is
low, because long chains of SCCs are unlikely to occur with the random genera-
tion. We analyze these chains using the handcrafted model from Appendix E.4.
Alternatively, we could use the RandomSCC guideline.

— NumNonSingleton, SmallestSCCNonSing, AvgSCCNonSing%: Since the many
singleton (i.e., trivial one state) SCCs make the features relating to all SCCs
hard to interpret, these features analyze only the non-trivial SCCs. In REAL,
in three quarters of the models there are very few non-trivial SCCs. From
the SmallestSCCNonSing (again with the axis multiplied with a million) and
AvgSCCNonSing% plot (which looks very similar to that for biggest overall
SCC) we can see that in half the models even non-trivial SCCs are small.
However, there are models where even the smallest SCC is big, indicating that
there is one big SCC with chains of transient states around it. This is also
the structure of the models from RANDOM, where the singleton smallest and
average size plot are the same as the overall biggest SCC plot.

E Additional details on the experimental evaluation

E.1 Details on the optimizations

In this appendix, we describe the results of our evaluation of the different opti-
mizations. In principle, we can enhance every VI algorithm with any combination
of them (with the exception that combining T and PT is the same as just having
PT).

30 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

— G: The Gauf-Seidel variant of VI does not perform the Bellman update on all
states at once, but rather proceeds state by state. This allows to immediately
use the new estimates of the states that were updated before and can thus
speed up the computation.

— D: Deflating is a costly operation, since computing the SECs always requires a
MEC decomposition. While this is possible in polynomial time [14], it is slow in
practice. Thus, delaying deflating and only applying it only every n steps can
speed up the computation. However, for high n, the algorithm can also waste
time waiting for the next deflation to happen. Deflating every 100 steps was
observed to be a good compromise in [18]. However, for OVI, we omitted this
optimization, as there the whole point of the verification phase is to decrease
the upper bound, and there is not point in waiting (for e.g., the lower bound
to converge).

— T: The topological variant of VI [16] first computes a partitioning of the state
space into SCCs. Instead of solving the whole SG at once, topological VI pro-
ceeds SCC by SCC, starting from those at the bottom of the topological order-
ing. This allows for using less memory at once and can speed up the computa-
tion.

— PT: The precise variant of topological VI which we introduced in Section 4.
For a description of how to read scatter plots, see Section 6.3.

For assessing the impact of the G, D and T optimizations on the algorithms’
performance, we compare the optimized versions of BVI, OVI, and SI to their
unoptimized ones, as shown in the scatter plots (Figures 7, 8 and 9). PT is analyzed
in Section 6.3.

G optimization for BVI and OVI : Figure 7 indicates that using the Gaufs-
Seidel optimization may reduce both the time required to solve a model by 1-4
times in most cases. The Gaufs-Seidel optimization is slower in some cases because
the values are computed sequentially to enable the use of the already computed
results. Also, the unoptimized version uses vector operations instead, which turn
out to be faster sometimes. Furthermore, it is possible that there are more iterations
required to solve. This is because OVI and BVI may find different ECs to deflate
depending on whether Gaufs-Seidel is used or not. In some cases, the unoptimized
version is able to find more favourable sets of ECs and thus requires less iterations.
Note that the order in which the states are updated by Gauft-Seidel VI is random.
However, changing the order of computation of the states to be a reverse topological
enumeration of the states did not yield improvements in our experiments.

Optimistic and Topological VI for SSGs 31

Limit
e
.
b
.
100s *y
P

5 i
g :
2
(7]
N
E 2
& “
8 S

10s W

&
1
ey
i
.- - « BVI/G_BVI
- |
p oVl / G_ovI
LS
it
15 AR)
1s 10s 100s Limit

Vanilla Version
Fig. 7: Scatter plot with logarithmic scale, comparing verification times of vanilla
(unoptimized) BVI, OVI and with their Gauk-Seidel variant. Below the diagonal
means with G is better, above means vanilla is better.

D optimization for BVI :

Figure 8 clearly indicates that although DBVI may sometimes solve models
faster, for the majority of our models it could not compete with BVI.

Limit

100s

Pl
*
®

Optimized Version

10s] "% =, iy

* = BVI/D_BVI

1s, bt
1s 10s 100s Limit

Vanilla Version
Fig. 8: Scatter plot with logarithmic scale, comparing verification times of vanilla
(unoptimized) BVI, OVI and SIpp with their deflating variant. Below the diagonal
means with D is better, above means vanilla is better.

T optimization for BVI, OVI and SIip :

As the scatter plot in Figure 9 shows, on both types of models, the topolog-
ical addition to SI neither increases nor decreases its performance considerably.
However, most models have very few SCCs, so the topological optimization does
not contribute a lot. The data point where SI is significantly faster is on the real
case study "dice", where every state is an SCC on its own. Obviously, this is the
best-case scenario for topological algorithms.

32 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

Adding the topological optimization to BVI often makes it significantly worse,
mainly because of the precision issues addressed, when introducing PTBVT in Sec-
tion 4. For OVI, the picture is slightly more mixed, but using the topological variant
often helps.

Limit

100s 1 5 e

Optimized Version

10sy

BVI/ T_BVI
ovi/ T ovi
s LP.SI/T.LPSI

10s 100s Limit
Vanilla Version

Fig. 9: Scatter plot with logarithmic scale, comparing verification times of vanilla
(unoptimized) BVI, OVI and SI with their topological variant. Below the diagonal
means with T is better, above means vanilla is better.

E.2 Additional scatter plot for BVI compared to WP and OVI

Figure 10 shows the scatter plots comparing BVI with WP and OVI, complementing
those in Figure 4. These two figures give all relations between the three algorithms.

T T
X
100s o0 100s
: :

o ° o

g g e

2 > = g :

I]
10s ; . 10s [V | N
s . & .
o .
- L °
.
Ty A T
BVI/ OVI o - 18 i BVI/ OVI
« BVI/WP = mjg) e« BVI/WP
1s 1s .
1s 10s 100s T 1s 10s 100s T
BVI BVI
(a) Real and handcrafted models (b) Random models

Fig. 10: BVI compared to WP and OVI.

E.3 Additional details and plots for OVI

Handcrafted models for OVI. As an extreme example where the lower bound
converges faster, consider a chain of Maximizer states, where every state has two

Optimistic and Topological VI for SSGs 33

actions: One that immediately yields a value of 0.5 and one that continues to the
next state in the chain with low chance (0.01) and self-loops with a high chance
(0.99). These kind of self loops always slow down VI algorithms, see also the haddad-
monmege model [20]. The last state in the chain has an action with value 0.49. The
lower bound of all states can immediately be set to 0.5, as all states have the first
action that guarantees this value. However, to ensure that continuing in the chain
is certainly the worse option, i.e., to have a convergent upper bound, BVI has to
wait for the information to propagate over the self-loops. In contrast, OVI quickly
knows the correct lower bound and then can verify it. Concretely, BVI cannot solve
the model within 2 minutes as soon as the chain has more than 200 states, while
OVI can deal with more than 10,000 states, see Figure 11.

As noted in Section 6.4, the dual situation where the lower bound converges

slowly, is problematic for OVI. For example, if we remove the action with the value
of 0.5 from the game above, we get a Markov chain where every state has a low
chance of progressing towards the target”. On this type of chain, OVI is consistently
around 4 times slower than BVI, as it is more time expensive to wait for the lower
bound to converge than to converge from both sides.
Number of verification phases Theorerically, in the worst case the number of
iterations for the first verification phase is £ (which is 1,000,000 in our case). If
the verification fails, £’ is halved and number of iterations in the next verification
phase doubles. Thus, it is possible that the verification phase is aborted, although
the game is almost solved. OVI will iterate unnecessary extra steps until it reaches
its new precision that verifies that OVI may indeed terminate. For large models,
it is more likely that a model is so complex that it requires multiple verification
phases. Thus, it is also more probable that the precision is halved at a point that
will lead to unnecessary iterations. In addition to that, iterations are more costly
for larger models since the state space is large.

7 Note that this is different from the completely adversarial example of[20], where every
state does not only have self-loop, but even goes back to the initial state.

34 Azeem, Evangelidis, Kfetinsky, Slivinskiy, Weininger

40
30
] ovi
£
= 20 = Bvl
10 *
0

1 2 3 4 5 [7
Solved benchmarks

Fig. 11: Measuring number of handcrafted OVI-model solved against aggregated
runtime. The legend sorts the algorithms by their aggregated runtimes in descend-
ing order. The model is always the same, but with 100, 500, 900, 1000, 5000, 9000
and 10000 states. OVI is fast on this model, while BVI without optimizations can-
not solve the model as soon as it has over 200 states. Topological optimizations
handle the model very well, since every state is an SCC.

Choice of parameters Two important parameters are the number of steps in a
verification phase and the modification of the precision after a verification phase.

If a verification phase cannot verify the upper bound, we should abort it as soon
as possible. However, it might be necessary to iterate for a long number of steps
before the decrease of the upper bound propagates to all states, since it might be
“hidden” behind some state switching its action. Thus, we may also not choose it
too small.

After a failed verification phase, we have to increase the lower bound enough
that trying to guess the next upper bound has good chances of being correct.
However, if the precision becomes too small, the VI-phase might have to run for a
very long time before another verification phase is attempted. On the other hand,
keeping the precision too similar results in lots of aborted verification phases.

Finding a good trade-off, possibly even by dynamically changing these param-
eters during a run of the algorithm, is a task we leave for future work.

E.4 Analysis of large models

To analyze how the algorithms scale on a large model with many SCCs, we hand-
crafted a model, called simple_n_m__SCC. It contains n states and m SCCs. Every
SCC forms a tree. The inner nodes have deterministic actions, leading to the next
level. The leaves have probabilistic actions, leading to the root of the current or of
the next tree, making the tree strongly connected.

Table 1 shows the number of states and SCCs (visible in the name of the
model) and the resulting verification times. We compared PTBVI with the fastest
approximate algorithm, WP, and two variants of topological strategy iteration: one
using linear programming for solving the opponent MDP (TSIpp) and one using
strategy iteration for solving the opponent MDP (TSIgy).

We see that PTBVI scales well on these models, while both variants of SI
struggle time out on models with more than 2 million states.

Optimistic and Topological VI for SSGs 35

Model name ‘PTBVI TSIrp TSIst WP
simple 50000 1 SCC 2.154 5.773 7.079 2.135
simple 50000 _5_ SCC 4.564 4.999 10.548
simple__100000_1 SCC 6.049 13.189 14.694 4.33
simple_100000_5 SCC 13.179 7.889 12.927 25.34
simple 500000 1 SCC 27.422 133.114 22.127
simple 500000 5 SCC 73.477 64.124 160.747
simple 1000000 1 SCC 53.707 274.134 53.319
simple 1000000_5 SCC | 156.327 138.902 401.318
simple 2000000 1 SCC | 103.149 134.549
simple 2000000 5 SCC | 263.625 366.236 753.834
simple 3000000 1 SCC | 165.242 227.212
simple 3000000 5 SCC | 389.154 1244.764
simple 4000000 1 SCC 190.158
simple 4000000 5 SCC | 470.012

simple 5000000 1 SCC 301.517
simple 5000000 5 SCC | 589.712 1723.37
simple 10000000 1 SCC| 581.999 804.652
simple 10000000 5 SCC|1433.221

Table 1: Performance comparison of PTBVI against TSIy p, TSIg;, WP

	Optimistic and Topological Value Iteration for Simple Stochastic Games

