
Synthesis of Parametric Hybrid Automata
from Time Series

Miriam Garćıa Soto1[0000−0003−2936−5719],
Thomas A. Henzinger2[0000−0002−2985−7724], and

Christian Schilling3[0000−0003−3658−1065]

1 Complutense University of Madrid, Spain
miriamgs@ucm.es

2 IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

3 Aalborg University, Aalborg, Denmark
christianms@cs.aau.dk

Abstract. We propose an algorithmic approach for synthesizing linear
hybrid automata from time-series data. Unlike existing approaches, our
approach provides a whole family of models with the same discrete struc-
ture but different dynamics. Each model in the family is guaranteed to
capture the input data up to a precision error ε, in the following sense:
For each time series, the model contains an execution that is ε-close to
the data points. Our construction allows to effectively choose a model
from this family with minimal precision error ε. We demonstrate the
algorithm’s efficiency and its ability to find precise models in two case
studies.

Keywords: Synthesis · Hybrid Automata · Time Series.

1 Introduction

Mathematical models are ubiquitous across all sciences [11], from systems biol-
ogy [23] to epidemiology [43] to cyber-physical systems [25]. The construction of
such models is a central challenge in science [38]. One main benefit of mathemati-
cal models is the clearly defined semantics, which make these models amenable to
automatic analysis (such as simulation [9,22] and verification [6,34,1]). Another
main benefit that is usually desired is interpretability for high-level reasoning.

Hybrid automata [2,17] are a prominent class of interpretable models with
mixed continuous and discrete behavior. They are particularly suitable in biolog-
ical domains [39,27], where systems typically evolve continuously but are subject
to internal and external events, and in cyber-physical domains [21], where phys-
ical entities interact with digital devices. In a nutshell, the evolution of a hybrid
automaton follows a differential equation associated with one of several locations
(or modes), until a discrete event leads to a different location.

In this paper we address the problem of synthesizing a linear hybrid automa-
ton (LHA) [2] from a set of time series. The informal goal of model synthesis is

ar
X

iv
:2

20
8.

06
38

3v
1

 [
cs

.F
L

]
 1

3
Ju

l 2
02

2

2 M. Garćıa Soto et al.

that the model captures the data well. What it means to “capture well” is diffi-
cult to formalize. Here we adopt the recent notion of ε-capturing from Garćıa et
al. [13,12], which requires that, for each time series in the input data, the LHA
must expose an execution that stays ε-close to all data points (see Fig. 2 for
an illustration). In [13,12], the value of ε is fixed in the problem input. Here we
consider ε a parameter, which we associate with a family of parametric models:
LHA whose continuous dynamics are not fixed yet. Each possible fixation of the
continuous dynamics corresponds to an instantiated LHA. All instantiated LHA
associated with a concrete value of ε have the property that they ε-capture the
data. We can then effectively search for an ε-capturing LHA with the minimal
value of ε, whose behavior intuitively best resembles the data.

Our algorithm consists of two phases. In the first phase we synthesize the
discrete structure of the LHA by fixing the set of locations and mapping data
points in the time series to the locations. We propose an algorithm to obtain this
mapping based on clustering. In the second phase we construct the parameter
space, which is a polyhedron that associates ε to all possible instantiated LHA
(i.e., fixations of continuous dynamics) that ε-capture the data. We select a
concrete LHA by minimizing the value of ε, for which we solve a linear program.

We evaluate the algorithm in two case studies. In the first case study we
investigate the scalability in terms of the different input parameters; we can
synthesize a seven-dimensional model with 15 locations from 12,000 data points
in 15 minutes, which shows that the algorithm is applicable in practice. In the
second case study we use the algorithm to synthesize a model for a biological
system (regulation of a cell cycle) in less than half a minute.

Related work. Synthesizing models is known to different communities as sys-
tem identification, process mining, or model learning. Models that are akin to
hybrid automata have been studied extensively in control theory; while the
main aim in control theory is to find a controller for a system, which is out-
side the scope of the present paper, there is still a large body of works on system
identification [33,14]. Many of these approaches focus on input-output models,
such as autoregressive exogenous (ARX) models and in particular the switched
(SARX) [16,32] and piecewise (PWARX) [8,37,30,19,5] versions, and focus on
single-input single-output (SISO) systems, but there are also works on multiple-
input multiple-output (MIMO) systems [18,42,3]. SARX and PWARX models
can be seen as restricted linear hybrid automata where the locations form a
state-space partition and the switching behavior is deterministic. This allows to
reduce the synthesis problem to a parameter-optimization problem. The second
phase of our algorithm also uses a reduction to parameter optimization, but the
parameter space is different and our model class is more general.

In computer science, several approaches learn hybrid automata from input-
output traces or time series. Similar to our approach, the works in [29,4] first use
clustering to learn the discrete structure, but they employ different techniques,
such as Angluin’s algorithm for learning a finite automaton, and do not pro-
vide minimality guarantees for the result. Other approaches construct automata
whose discrete structure is acyclic [31] respectively cyclic [15], or a deterministic

Synthesis of Parametric Hybrid Automata from Time Series 3

model with urgent transitions [24]. The work in [40] exhaustively constructs all
possible models for optimizing a cost function, while in our approach the enumer-
ation is only symbolic and we choose a model by solving a linear program, which
scales favorably. A recent work shows that timed automata can be effectively
learned from traces with a genetic algorithm [41]; learning timed automata has
orthogonal challenges: they form a subclass of LHA where all variables are clocks
with constant rate 1 and hence no continuous dynamics need to be learned, but
the discrete dynamics are more complex than in this work. The work in [44]
provides a framework for identifying deterministic models with affine dynamics
from input-output traces, while we identify nondeterministic models. Our works
in [13,12] proposed the notion of ε-capturing that we adopt here; those works
synthesize a model from single traces online, but the algorithms are not scalable
for offline usage of realistic dimension and size.

Outline. In Section 2 we fix the terminology. In Section 3 we formalize the
synthesis problem and describe our solution on a high level. The low-level de-
scriptions of the two phases of the algorithm follow in Section 4 and Section 5.
We evaluate the algorithm in Section 6 and conclude in Section 7.

2 Terminology

Euclidean sets. We write x for points (x1, . . . , xn) in Rn and consider the infinity
norm ‖x‖ = maxxi |xi|. The ball of radius ε ∈ R≥0 around a point x ∈ Rn is
Bε(x) = {y ∈ Rn : ‖x − y‖ ≤ ε}. The ε-bloating of X ⊆ Rn is X ⊕ Bε(0) =
{x + y : x ∈ X , ‖y‖ ≤ ε}. A polyhedron over Rn is a finite intersection of
constraints aTx ≤ b where a ∈ Rn and b ∈ R. Let Pn be the set of all n-
dimensional polyhedra. An interval is written [a, b] = {x : a ≤ x ≤ b} ⊆ R.

Functions. Given a function f : A → B, let dom(f) ⊆ A denote its domain.
Let f �D denote the restriction of f to set D ⊆ dom(f). A continuous func-
tion f : [0, T] → Rn is a piecewise-linear (PWL) function with k pieces if
there exists a triple (I,M,x0) where I is a k-tuple of consecutive time inter-
vals [t0, t1], [t1, t2], . . . , [tk−1, tk] with [0, T] =

⋃
1≤i≤k[ti−1, ti], M is a k-tuple

of slope vectors mi ∈ Rn, and x0 ∈ Rn is the initial state f(t0) = x0, such
that each f �[ti−1,ti] is a solution of the differential equation ẋ(t) = mi, for all
i = 1, . . . , k. We refer to the line segments f�[ti−1,ti] as the pieces of f . A time-
series s : D → Rn maps time points t from a finite set D ⊆ R≥0 to data points
s(t). There is a one-to-one correspondence between PWL functions and time
series: A PWL function f over I = ([t0, t1], [t1, t2], . . . , [tk−1, tk]) induces a time
series as the restriction s = f�D to time points D = {t0, t1, . . . , tk}, and s induces
f as the piecewise-linear interpolation of the data points. Thus we may refer to,
e.g., the pieces of a time series. The distance between a PWL function f and a
time series s with dom(f�dom(s)) = dom(s) is d(f, s) = maxt∈dom(s) ‖f(t)− s(t)‖.

4 M. Garćıa Soto et al.

Linear hybrid automata. An n-dimensional linear hybrid automaton (LHA) [2,17]
is a tuple H = (Loc,E,Flow, Inv,Grd), where 1) Loc is the finite set of locations,
2) E ⊆ Loc × Loc is the transition relation, 3) Flow : Loc → Rn is the flow
function, 4) Inv : Loc→ Pn is the invariant function, and 5) Grd : E→ Pn is the
guard function. Our LHA model does not have assignments along the transitions
and is also called switched linear system [26]. We also consider partially defined
hybrid automata without flows, invariants, or guards assigned. This discrete
structure Hd = (Loc,E) only consists of locations and transitions.

The semantics of LHA are described by the set of executions. A state of an
LHA is a pair (`,x) of a location ` ∈ Loc and a point x ∈ Inv(`) in the invariant.
An execution σ of an LHA evolves continuously according to the flow function
in each location. The execution starts in some state (`1,x1) and the continuous
evolution follows the constant differential equation ẋ = Flow(`1) while satisfying
the invariant Inv(`1) for some dwell time δ ∈ R≥0. The execution can instanta-
neously switch locations, from a state (`1,x2) to another state (`2,x2), if there
is a transition (`1, `2) ∈ E and the guard Grd(`1, `2) contains x2. The projection
of an execution σ to the second component is a PWL function, which we denote
by σπ. We use the following compact notation for executions, where δi ∈ R≥0
(for i ≥ 1) denotes the duration of a dwell action and jmp denotes a switch:

σ ≡ (`1,x1)
δ1−→ (`1,x2)

jmp−−→ (`2,x2)
δ2−→ (`2,x3)

jmp−−→ (`3,x3) · · ·

3 Synthesis of ε-close linear hybrid automata

In this section we formalize the synthesis problem that we address in this paper
and give a high-level overview of our approach to solve it. Given a time series,
we want to construct an LHA that captures the data up to a given precision.
We first formalize the notion of capturing.

Definition 1 (ε-capturing [13]). Given a time series s and a value ε ∈ R≥0,
we say that an LHA H ε-captures s if there exists an execution σ of H such that
d(σπ, s) ≤ ε. We also say that s and σπ (resp. s and σ) are ε-close.

Our goal is to construct an LHA that ε-captures several time series.

Problem 1 (ε-close synthesis [13]). Given a finite set of time series S and a value
ε ∈ R≥0, construct an LHA H that ε-captures each s in S.

As we observed in [13], it is straightforward to find a solution to the problem
even for ε = 0 by simply introducing a fresh location for each piece of the time
series. Such a model does not aggregate nor generalize the information in the
data and is hence of little use. To obtain a reasonable model, one needs to add
another bound to the problem, e.g., by fixing the discrete structure.

We address this observation in a two-phase algorithm. In the first phase we
fix the discrete structure Hd of the LHA, where we try to reuse the locations
for multiple time series (or pieces therein). In the second phase we instantiate
the model for the smallest possible value of ε under the given discrete structure.

Synthesis of Parametric Hybrid Automata from Time Series 5

ON
ẋ = −0.5x+ 40

x ≤ 75

OFF
ẋ = −0.5x+ 30

x ≥ 65

x ≥ 74.5

x ≤ 65.5 0 1 2 3 4 5

66

68

70

72

74

Fig. 1. Left: A hybrid automaton. Right: Two time series (triangle markers) obtained
from sampling two executions of the automaton, and induced PWL functions.

Thus in this paper we consider a synthesis problem where we do not fix the value
of ε and rather find a sufficiently small value for ε automatically.

Problem 2 (ε-minimal synthesis). Given a finite set of time series S and a dis-
crete structure Hd, find the minimal value ε ∈ R≥0 and an instantiation H of
Hd such that H ε-captures each s in S.

3.1 Synthesis algorithm

In the next two sections we describe our algorithm to solve the above synthesis
problem, but first we give a high-level overview of the algorithm. Our algorithm
computes a parametric family of LHA that all ε-capture the given data. The
LHA share the same discrete structure but differ in the continuous dynamics.
Since ε itself is a parameter of that construction, we can then choose an LHA
with a minimal value for ε (which is not necessarily unique) from that family.

Our goal is that the final LHA has an ε-close execution for each time series.
To simplify the theoretical presentation, we will use the following conceptual
view on our algorithm. Instead of synthesizing an LHA directly, we synthesize
ε-close executions. These executions then induce an LHA.

As mentioned, our algorithm proceeds in two phases. In the first phase we
fix the discrete structure of the executions (and thus of the resulting LHA). In
the second phase we construct the space of continuous dynamics to be assigned
to the locations, depending on the value ε. For LHA, this space is a polyhedron,
which we call the flow polyhedron. We then choose concrete continuous dynamics
from the flow polyhedron to instantiate concrete executions (and thus an LHA).
We explain each step of the algorithm using the following running example.

Example 1 (running example). We consider two time series in one dimension:

t1 = (0.00, 0.76, 1.59, 2.32, 3.15, 3.79, 5.00)
d1 = (68.91, 72.41, 75.00, 70.44, 66.90, 65.00, 71.81)

t2 = (0.0, 0.75, 1.61, 2.33, 3.16, 3.76, 5.00)
d2 = (68.16, 71.85, 74.70, 70.22, 66.75, 65.00, 71.92)

We obtained the time series from two random trajectories of a hybrid automaton
modeling a simple thermostat controller, all given in Fig. 1. Note that the orig-
inal continuous dynamics are described by an affine differential equation, which
cannot be expressed with an LHA. (We round all numbers to two digits, which
explains small inconsistencies over the course of this running example.) /

6 M. Garćıa Soto et al.

4 Synthesis algorithm, Phase 1: Discrete structure

In this section we describe Phase 1 of the synthesis algorithm. The input is a
finite set of time series. The output is a mapping from each piece of the time
series (resp. the induced PWL functions) to a symbolic location (i.e., a location
label). Together with the order of the pieces in the time series, as we explain
below, this mapping already fixes the discrete structure Hd of the LHA.

4.1 Simplification of the time series

In the first step of our algorithm, we preprocess the time series by removing some
data points for better stability of the second step (we explain this connection
later). Note that for Phase 2 we again use the original time series, so correctness
is not affected. The goal is to merge consecutive pieces in the time series with
similar slopes, i.e., such that the linear interpolation is a good approximation.
In our implementation we use a variant of the Ramer-Douglas-Peucker algo-
rithm [36,7] where we consider time as another dimension. We shortly recall this
algorithm but refer to the literature for details. Following a divide-and-conquer
scheme, the algorithm starts with only the first and last point of the time series,
connects them with a line segment, finds the point x with the largest distance
from the line segment, and, unless this distance is small enough, repeats the
process recursively for the corresponding two parts before and after x.

4.2 Assignment of symbolic locations

The goal of the first phase is to determine the discrete structure Hd of the
resulting LHA. For each time series with p pieces we synthesize a corresponding
symbolic execution of the prospective LHA. These are executions that do not yet
contain information about the continuous state, but the discrete state is already
determined, i.e., we fix the sequence of visited locations `1, . . . , `p together with
the points in time when the execution switches to a new location. (Here we
restrict ourselves to switching in synchrony with the time series.) Thus each
symbolic execution consists of a (timed) sequence of symbolic locations. It is
easy to see that, by ignoring time, these sequences induce the discrete structure
Hd of an LHA: the set of locations is the union of all locations occurring in
the sequences, and there is a transition for each consecutive pair of locations.
Formally, for a symbolic execution associated with a time series with p pieces,
the discrete structure Hd = (Loc,E) is given by Loc = {`1, . . . , `p} and E =
{(`i, `i+1) : i = 1, . . . , p−1}, and the generalization to sets of symbolic executions
consists of the union of these locations and transitions.

Given a time series with p pieces and a set of symbolic locations {`1, . . . , `λ},
a symbolic execution as described above is merely a mapping from the pieces
to location labels, which we call M : {1, . . . , p} → {1, . . . , λ}. Our algorithm
is parametric in the concrete way to obtain this mapping. Typically we are
interested in finding an LHA with a small number of locations. Thus the implicit
requirement for the mapping is to share locations for multiple pieces.

Synthesis of Parametric Hybrid Automata from Time Series 7

Algorithm 1 Assignment of a symbolic location to each piece of a set of time
series. Line 1 is optional and can be implemented with the identity. Line 2 can
be implemented with k-means, which can also provide a good value for λ (= k)
if not specified in the input (as described in Sect. 4.2).

Input: A set of time series S = {s1, . . . , sr} and optionally a number of locations λ
Output: A mapping from the pieces to symbolic locations and a number of locations
1: S ′ := simplify(S) {see Sect. 4.1}
2: M, λ := assign location labels to pieces(S ′, λ) {see Sect. 4.2}
3: return M, λ

In our implementation we obtain the mapping using a variant of the k-means
clustering algorithm [28]. The input to the clustering algorithm are the slopes of
the PWL functions induced by the time series. The k-means algorithm requires
to specify upfront the number of clusters k, which corresponds to the number of
locations in our setting. If the intended number of locations is already known in
advance, this algorithm can be used directly. Otherwise, to find a good value of k
automatically, we use a common refinement loop by starting with some value for
k (e.g., k = 1) and then increasing k until the clustering error (which is defined
as the sum of the squared Euclidean distance of each point to its associated
cluster center) does not decrease substantially anymore.

The k-means algorithm is sensitive to the initial choice of the cluster centers.
The preprocessing step proposed in Sect. 4.1 increases the stability in this regard.
As initial candidates for the cluster centers we choose the first k slopes induced
by the simplified time series. This choice results in candidates that are sufficiently
different in practice and thus k-means yields more robust clusters.

We summarize the main steps of Phase 1 in Algorithm 1.

Example 2 (cont’d). The input to the clustering algorithm are the slope values
of the two time series. In the table below we list the clustering cost for different
numbers of clusters k, together with the relative improvement compared to k−1:

clusters (k) 1 2 3 4 5 6 7 8

cost 259.76 17.07 11.80 2.46 0.78 0.09 0.04 0.01

rel. [%] – 0.93 0.31 0.79 0.68 0.89 0.60 0.61

The table suggests that good values for k are 2, 4, or 6. To obtain a small
model, here we settle for k = 2 locations. The associated (one-dimensional)
cluster centers (representing slopes) are 4.53 and −4.46. For both time series,
the assigned clusters are (1, 1, 2, 2, 2, 1), corresponding to the symbolic location
`1 for the pieces 1, 2, 6 and symbolic location `2 for the other three pieces. /

5 Synthesis algorithm, Phase 2: Continuous dynamics

In this section we describe Phase 2 of the synthesis algorithm. The input is a
finite set of time series together with a discrete structureHd obtained in Phase 1,

8 M. Garćıa Soto et al.

which is represented by the mapping M assigning a symbolic location to each
piece of the time series. The output is an LHA H and a value for ε such that H
ε-captures the time series. As mentioned before, we describe how to obtain an
ε-close corresponding execution for each time series.

5.1 Construction of the flow polyhedron

In the first step, we construct the flow polyhedron P , which represents the set
of all possible continuous dynamics such that the corresponding executions are
ε-close to the time series. Here ε itself is a dimension of P . For technical reasons,
we construct a new flow polyhedron for each time series.

Assume that we have n-dimensional data in the form of r time series and we
want to synthesize an LHA with λ locations. Say that we consider a time series
with p pieces. Then P is a polyhedron with λn + rn + 1 dimensions. The first
λn dimensions represent the location slopes. The next rn dimensions represent

the coordinates of the initial states x
(j)
0 of the j-th execution. (These x

(j)
0 are

auxiliary dimensions which we are not interested in.) The last dimension is ε.
Next we describe the constraints of P . These constraints express that the

distance between the time series and the execution is less than ε (and thus the
execution ε-captures the time series). We need to express the symbolic value of
the execution, xk, at each time point tk of the time series. Let qk be the k-th
data point of the time series, starting at k = 0. For each data point we have
2n constraints (i.e., 2n(p + 1) constraints in total) to express the requirement
xk ∈ Bε(qk). In n = 1 dimension, for each k we express the requirement with
the two constraints xk − ε ≤ qk and xk + ε ≥ qk. In n > 1 dimensions we have
such constraints in each dimension.

It remains to explain how to express the term xk. For k = 0 we represent x0

with the dedicated variables x
(·)
0 . For k > 0 we rewrite xk using the following

identity: xk = x0 +
∑k
j=1(tj− tj−1)m(j). The time points tj are known constants

and the m(j) are the slope variables for the j-th piece (recall that we have
associated the pieces with locations in advance).

Below we formalize the flow polyhedron for r = 1 time series.

Definition 2. Given a time series s with p pieces and an associated mapping
M : {1, . . . , p} → {1, . . . , λ}, the flow polyhedron Ps is defined as

{(m1, . . . ,mλ,x0, ε) ∈ Rλn+n × R≥0 | x0 ∈ Bε(s(t0)),

x0 + (t1 − t0)mM(1) ∈ Bε(s(t1)),

x0 + (t1 − t0)mM(1) + (t2 − t1)mM(2) ∈ Bε(s(t2)),

...

x0 + (t1 − t0)mM(1) + . . .+ (tp − tp−1)mM(p) ∈ Bε(s(tp))}.

Example 3 (cont’d). Our example has n = 1 dimension, λ = 2 locations, and r =

2 time series. The flow polyhedron consists of five variables (m1,m2, x
(1)
0 , x

(2)
0 , ε).

Synthesis of Parametric Hybrid Automata from Time Series 9

Here m1 and m2 represent the slopes of the two locations, x
(1)
0 and x

(2)
0 represent

the initial state of the first resp. second execution, and ε represents the allowed
distance between the time series and the executions. Below we show the 14
constraints for the first execution:

x
(1)
0 − ε ≤ 68.91

0.76m1 + x
(1)
0 − ε ≤ 72.41

1.59m1 + x
(1)
0 − ε ≤ 75.00

1.59m1 + 0.72m2 + x
(1)
0 − ε ≤ 70.44

1.59m1 + 1.55m2 + x
(1)
0 − ε ≤ 66.90

1.59m1 + 2.20m2 + x
(1)
0 − ε ≤ 65.00

2.80m1 + 2.20m2 + x
(1)
0 − ε ≤ 71.81

− x(1)0 − ε ≤ −68.91

−0.76m1 − x(1)0 − ε ≤ −72.41

−1.59m1 − x(1)0 − ε ≤ −75.00

−1.59m1 − 0.72m2 − x(1)0 − ε ≤ −70.44

−1.59m1 − 1.55m2 − x(1)0 − ε ≤ −66.90

−1.59m1 − 2.20m2 − x(1)0 − ε ≤ −65.00

−2.80m1 − 2.20m2 − x(1)0 − ε ≤ −71.81 /

Note that, for multiple time series, each flow polyhedron only constrains n

dimensions of the rn dimensions reserved for the initial states x
(·)
0 . The need for

the separate dimensions will become clear when we aggregate the different flow
polyhedra in the next step. Any feasible point inside the polyhedron P represents
a concrete execution in an LHA that ε-captures the time series. We formalize
this statement after defining the corresponding LHA in the next step.

5.2 The common solution space

In the first phase we implicitly fixed the discrete evolution of the executions,
which also induced the discrete structure of the LHA we want to synthesize. In
the previous step we obtained the flow polyhedra Ps, one for each time series
s. In the next steps we combine these results to obtain concrete executions by
assigning the continuous states. The concrete executions also induce the final
LHA, i.e., we assign continuous dynamics, invariants, and guards.

Since we want to obtain one LHA to ε-capture all time series, we need to
find compatible values for the dynamics and ε. For that purpose we can just
intersect all flow polyhedra. Let PH =

⋂
s∈S Ps be the polyhedron resulting

from this intersection. Note that, since we used disjoint dimensions for the x
(·)
0

for different executions, the initial states are not shared in PH. (We note that
intersecting polyhedra in constraint representation is a constant-time operation.)

5.3 Choice of minimizing parameters

Now we have to choose any feasible point p in PH. We argue that the most
interesting points are those that minimize ε, since they correspond to executions
that are closest to the original data. (In applications where further constraints
should be considered, other choices are possible.) Minimizing a polyhedron in the
dimension of ε means to solve the corresponding linear program with objective
function ε, which is efficient in practice. We remark that PH is bounded in the
dimension of ε from below by 0, so this minimization always returns a proper

solution p = (m1, . . . ,mλ,x
(1)
0 , . . . ,x

(r)
0 , ε). The point p contains a number for

10 M. Garćıa Soto et al.

Algorithm 2 Synthesis algorithm.

Input: A set of time series S = {s1, . . . , sr}, a number of locations λ, and a mapping
from the pieces of each time series to symbolic locations M

Output: An LHA H and a minimal value ε such that H ε-captures all elements of S
1: for s ∈ S do
2: Ps := flow polyhedron(s,M, λ) {see Sect. 5.1}
3: end for
4: PH :=

⋂r
s∈S Ps {see Sect. 5.2}

5: slopes, ε := choose minimizing point(PH) {see Sect. 5.3}
6: H := construct automaton(S,M, slopes, ε) {see Sect. 5.4}
7: return H, ε

each dimension. The first λn numbers are the slope values for the locations, in

the order they have been specified. The next rn numbers are the values of x
(·)
0

for the different executions (note again that we do not need these numbers). The
last number is the corresponding value for ε.

5.4 Construction of the final LHA

Next we describe, for a given time series si over time instants t0, t1, . . . , tp, the
execution that is induced by the above point p. Let m1, . . . ,mλ be the slopes
taken from the point and M be the mapping from the pieces of si to the asso-
ciated location (e.g., `M(1) is the location for the first piece, with slope mM(1))
obtained in Algorithm 1. The execution is a PWL function whose pieces have
the same duration as the pieces of si. As defined before, the execution starts at

x0 = x
(i)
0 and the end point of the k-th piece is xk = x0+

∑p
j=1(tj−tj−1)mM(j).

(`M(1),x0)
t1−t0−−−→ (`M(1),x0 + (t1 − t0)mM(1))

jmp−−→ (`M(2),x0 + (t1 − t0)mM(1))

t2−t1−−−→ (`M(2),x0 + (t1 − t0)mM(1) + (t2 − t1)mM(2))
...

tp−tp−1−−−−−→ (`M(p),x0 +

p∑
j=1

(tj − tj−1)mM(j))

We have not yet described the invariants and guards of the resulting LHA.
We say that a data point in the time series is associated with a location if the
preceding or the succeeding piece in the time series is assigned that location in
the mapping from Algorithm 1. Similarly, a data point is associated with the
transition (`i, `j) if the preceding piece is associated with `i and the succeeding
piece is associated with `j . A sufficient condition for our construction to be cor-
rect is: define the invariant of each location as the ε-bloated convex hull around
all data points associated with it, and define the guard of each transition as the
ε-bloated union around all data points associated with it. In our implementation

Synthesis of Parametric Hybrid Automata from Time Series 11

0 1 2 3 4 5

65.0

67.5

70.0

72.5

75.0

ON
ẋ = 4.31

x ∈ [63.76, 76.24]

OFF
ẋ = −4.27

x ∈ [63.76, 76.24]

x ∈ [73.46, 76.24]

x ∈ [63.76, 66.24]

Fig. 2. Left: The first time series (triangle markers) inside an ε-tube (green) and the
corresponding induced execution (red), for two locations. Right: The synthesized LHA.

we use the ε-bloated interval hull in both cases. That is, we take the smallest
box around all data points as defined above and then extend the box in each
direction by ε. We summarize the main steps of Phase 2 in Algorithm 2.

Example 4 (cont’d). We intersect the two flow polyhedra and minimize the re-
sulting polyhedron in the dimension of ε to receive the following point: m1 =

4.31,m2 = −4.27, x
(1)
0 = 67.90, x

(2)
0 = 67.63, ε = 1.24. Thus we have synthesized

the following execution for the first time series: (`1, 67.90)
0.76−−→ (`1, 71.18)

jmp−−→
(`1, 71.18)

0.84−−→ (`1, 74.80)
jmp−−→ (`2, 74.80)

0.72−−→ (`2, 71.72)
jmp−−→ (`2, 71.72)

0.83−−→
(`2, 68.18)

jmp−−→ (`2, 68.18)
0.64−−→ (`2, 65.44)

jmp−−→ (`2, 65.44)
1.21−−→ (`1, 70.66). The

execution and the final LHA are depicted in Fig. 2. /

5.5 Correctness

We show that the algorithm produces an LHA that ε-captures the given data.

Lemma 1. For every time series s that is input to Algorithm 2, the induced
execution ε-captures s, where ε is obtained in Line 5.

Proof. The constraints of the flow polyhedron Ps corresponding to s enforce that
the induced execution is ε-close to all data points of s. This even holds for any
point in Ps. Since the concrete choice of the point in Line 5 is taken from PH,
which is a subset of Ps, the claim follows.

Theorem 1. The LHA H synthesized in Algorithm 2 ε-captures all time series,
where ε is obtained in Line 5. Furthermore, Algorithm 2 solves Problem 2 in
polynomial time.

Proof. Lemma 1 ensures that the induced executions ε-capture the time series.
It remains to show that these induced executions belong to H. This holds by
construction of H; we only sketch the main arguments. Each execution follows
the slopes of the associated locations. For each location switch there exists a
transition inH. The executions always stay in ε-proximity to the data points, and
hence they stay inside the invariants at all times. Similarly, since the executions
change the location at time points of the data, the guards are satisfied. The
solution to Problem 2 follows from the minimization of ε in Line 5. For the
polynomial complexity, observe that the flow polyhedron’s size is polynomial in
the input and that the minimization can be implemented polynomially [20].

12 M. Garćıa Soto et al.

0 1 2 3 4 5

66

68

70

72

74

0 1 2 3 4 5

66

68

70

72

74

Fig. 3. The first time series (triangle markers) from Fig. 2 inside other ε-tubes (green)
and the corresponding induced executions (red). Left: The result obtained for four
locations (ε = 0.38). Right: The result obtained for six locations (ε = 0.15).

We remark that the number of locations λ and the sequence of locations
obtained from Algorithm 1 influence the quality of the LHA resp. the size of ε
but not the validity of the theorem (correctness of Algorithm 2). If these inputs
are unsuitably chosen, the algorithm just returns a larger value for ε.

Example 5 (cont’d). Fig. 3 shows the synthesized executions and corresponding
values of ε for the first time series with λ = 4 and λ = 6 locations. /

6 Evaluation

In this section we describe our implementation and present experimental results.
Our implementation in the Julia programming language is available at https:
//github.com/HySynth/HySynthParametric. To generate time series, we imple-
mented a simulator of hybrid automata based on the ODE toolbox Differential-
Equations.jl [35]. For polyhedral computations we use LazySets.jl [10].

We evaluate our algorithm in two case studies. In the first case study we in-
vestigate the scalability. In the second case study we synthesize an LHA model on
data obtained from a model of a biological system. We note that all experiments
are fully automatic with no human involved in the annotation or modeling.

Scalability. In the first case study we measure the scalability of the algorithm in
four different input dimensions: the data dimension n, the number of time series
r, the number of data points per time series p, and the number of locations in
the final automaton λ. Here we do not use the preprocessing from Section 4.1
for better comparability between different runs. The majority (> 90%) of the
run time is spent in solving the linear program (Line 5 in Algorithm 2).

To obtain the time series, we instantiate a parametric version of the thermo-
stat model (our running example) with n independent thermostats running in
parallel. We obtain r random simulations of time duration T = 40, which are rep-
resented as time series, and then choose the first p data points from them. Since
we fix λ, we pass it to Algorithm 1, which then skips the refinement procedure
for k-means clustering in Line 2 and directly uses λ clusters.

We consider the following combination of parameters: n ∈ {1, 3, 5, 7}, r ∈
{1, 20, 40, 60}, p ∈ {50, 100, 150, 200}, and λ ∈ {1, 5, 10, 15}. To examine the

https://github.com/HySynth/HySynthParametric
https://github.com/HySynth/HySynthParametric

Synthesis of Parametric Hybrid Automata from Time Series 13

1 3 5 7
0

200

400

600

800 r = 1, p = 50, λ = 1
r = 20, p = 100, λ = 5
r = 40, p = 150, λ = 10
r = 60, p = 200, λ = 15

1 20 40 60
0

200

400

600

800 n = 1, p = 50, λ = 1
n = 3, p = 100, λ = 5
n = 5, p = 150, λ = 10
n = 7, p = 200, λ = 15

50 100 150 200
0

200

400

600

800 n = 1, r = 1, λ = 1
n = 3, r = 20, λ = 5
n = 5, r = 40, λ = 10
n = 7, r = 60, λ = 15

1 5 10 15
0

200

400

600

800

n = 1, r = 1, p = 50
n = 3, r = 20, p = 100
n = 5, r = 40, p = 150
n = 7, r = 60, p = 200

Fig. 4. Scalability in four different algorithm parameters. Each parameter varies be-
tween four values. In each of the four plots we vary one parameter and fix the remaining
three. Each plot shows four graphs with indices i = 1, . . . , 4, where for graph i we fix
the parameters to their i-th value (which are also given in the legend).

scalability in these four dimensions, we fix three parameters and plot the run
time for varying only one of the parameters in Figure 4.

From the results we observe that the input parameters n and r have the main
influence on the complexity of the problem (the corresponding graphs have the
steepest growth). The parameter p is less influential, and the parameter λ has
almost no influence (the corresponding graphs barely grow and are not even
monotonic). While λ influences the dimension of the flow polyhedron P , the
different constraints are weakly coupled in these additional dimensions and thus
the linear program is not substantially harder to solve.

In practice, when the data comes from experiments, the problem dimension
n is fixed, and so is p if the data points are obtained from periodic measure-
ments of fixed duration. Increasing r corresponds to additional experimental
runs. The parameter λ can be freely chosen, but since a major benefit of hybrid
automata is that they are interpretable models, we argue that λ should not be
too large. Hence we believe that the algorithm is efficient enough to be used for
real applications. We substantiate this claim in the next case study.

Regulation of a cell cycle. We consider the hybrid-automaton model of the
regulation of a mammalian cell cycle from [39]. The cell cycle is modeled in nine
phases. The model has one location for each phase, affine differential equations
(ẋ = Ax+b), and assignments associated with some transitions. There are three
main dimensions (CycA, CycB, and CycE), one secondary dimension for the
mass of the cell, and time as auxiliary dimension for time-triggered transitions.

We run our synthesis algorithm on 20 time series obtained from random sim-
ulations of the model proposed in [39]. In total these time series consist of 3,557
data points. Before passing them to the algorithm, we project out the time vari-

14 M. Garćıa Soto et al.

0 10 20 30
0

20

40

60

80

0 10 20 30

0

10

20

30

Fig. 5. The first two variables of the cell-cycle regulation with the ε-tube induced by
the first time series (ε = 3.15, green), the corresponding induced execution (red), and
three random simulations of the synthesized model (orange).

able. Hence our model cannot reason about time-dependent behavior. We used
the refinement process for choosing the number of locations (λ) automatically.
After 26 seconds we obtain an LHA with nine locations and a precision value
ε = 3.15. In Figure 5 we show the ε-tube around the first time series together
with three random simulations of the synthesized LHA. The ε-tube looks rea-
sonably tight for the CycA dimension but wider for the CycB dimension, which
is because the value of ε is the same in all dimensions, but the plot scales differ.

7 Conclusion

We have presented a synthesis algorithm to obtain a linear hybrid automaton
from a set of time series. The algorithm uses two independent phases. In the first
phase it constructs the discrete structure of the automaton. In the second phase
it constructs the parameter space of all possible solutions and then selects an
automaton by solving a linear program. The automaton is guaranteed to contain
executions that are ε-close to the time series, where ε is minimal for the discrete
structure chosen in the first phase. The algorithm is polynomial and scales to
thousands of data points, but it also works with scarce data.

We see several directions for future work. The choice of the discrete structure
in the first phase is important. We have proposed a heuristic implementation
based on clustering that does not take the number of transitions into account.
Reducing that number can remove unwanted behavior in the resulting model.

By minimizing ε we only minimize the maximum deviation of the executions
from the data points. One can encourage the solver to find executions that stay
close to the data points (the middle of the ε-tube in the plots). This can be
encoded in the linear program by associating a cost to the sum of the deviation.

A more challenging extension is to use other classes of dynamics such as
affine differential equations. The (exponential) solutions for such systems still
have a closed form. Thus, instead of a linear program, we can solve a general
optimization problem as in [12]. The difficult part is how to select the appropriate
symbolic dynamics for the different parts of the time series.

Finally, in this paper we have only considered the automatic aspects of the
algorithm. However, we believe that truly useful modeling ultimately requires
interaction with a human in the loop. The separation of concerns – first finding

Synthesis of Parametric Hybrid Automata from Time Series 15

a suitable discrete structure and formulating a parametric solution for finding
suitable continuous dynamics – allows scientists to incorporate domain knowl-
edge, e.g., by adding further modeling constraints beyond ε-capturing. A key
question is how to refine the model if the results are not accepted.

Acknowledgements

This work was supported in part by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement
no. 847635, by the ERC-2020-AdG 101020093, by DIREC - Digital Research
Centre Denmark, and by the Villum Investigator Grant S4OS.

References

1. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Annual Review of Control, Robotics, and Autonomous Systems 4 (2020).
https://doi.org/10.1146/annurev-control-071420-081941

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Hybrid
Systems. LNCS, vol. 736, pp. 209–229. Springer (1992). https://doi.org/10.1007/
3-540-57318-6 30

3. Bako, L., Vidal, R.: Algebraic identification of MIMO SARX models. In:
HSCC. LNCS, vol. 4981, pp. 43–57. Springer (2008). https://doi.org/10.1007/
978-3-540-78929-1 4

4. Bartocci, E., Deshmukh, J., Gigler, F., Mateis, C., Nickovic, D., Qin, X.: Min-
ing shape expressions from positive examples. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 39(11), 3809–3820 (2020). https://doi.org/10.1109/TCAD.
2020.3012240

5. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to
piecewise affine system identification. IEEE Trans. Automat. Contr. 50(10), 1567–
1580 (2005). https://doi.org/10.1109/TAC.2005.856667

6. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

7. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica 10(2), 112–
122 (1973). https://doi.org/10.3138/FM57-6770-U75U-7727

8. Ferrari-Trecate, G., Muselli, M.: Single-linkage clustering for optimal classification
in piecewise affine regression. In: ADHS. IFAC Proceedings Volumes, vol. 36, pp.
33–38. Elsevier (2003). https://doi.org/10.1016/S1474-6670(17)36403-0

9. Fishwick, P.A.: Handbook of dynamic system modeling. CRC Press (2007)
10. Forets, M., Schilling, C.: LazySets.jl: Scalable symbolic-numeric set computations.

Proceedings of the JuliaCon Conferences 1(1), 11 (2021). https://doi.org/10.
21105/jcon.00097

11. Frigg, R., Hartmann, S.: Models in science. In: The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University (2020)

12. Garćıa Soto, M., Henzinger, T.A., Schilling, C.: Synthesis of hybrid automata with
affine dynamics from time-series data. In: HSCC. pp. 2:1–2:11. ACM (2021). https:
//doi.org/10.1145/3447928.3456704

https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-540-78929-1_4
https://doi.org/10.1007/978-3-540-78929-1_4
https://doi.org/10.1007/978-3-540-78929-1_4
https://doi.org/10.1007/978-3-540-78929-1_4
https://doi.org/10.1109/TCAD.2020.3012240
https://doi.org/10.1109/TCAD.2020.3012240
https://doi.org/10.1109/TCAD.2020.3012240
https://doi.org/10.1109/TCAD.2020.3012240
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1016/S1474-6670(17)36403-0
https://doi.org/10.1016/S1474-6670(17)36403-0
https://doi.org/10.21105/jcon.00097
https://doi.org/10.21105/jcon.00097
https://doi.org/10.21105/jcon.00097
https://doi.org/10.21105/jcon.00097
https://doi.org/10.1145/3447928.3456704
https://doi.org/10.1145/3447928.3456704
https://doi.org/10.1145/3447928.3456704
https://doi.org/10.1145/3447928.3456704

16 M. Garćıa Soto et al.

13. Garćıa Soto, M., Henzinger, T.A., Schilling, C., Zeleznik, L.: Membership-based
synthesis of linear hybrid automata. In: CAV. LNCS, vol. 11561, pp. 297–314.
Springer (2019). https://doi.org/10.1007/978-3-030-25540-4 16

14. Garulli, A., Paoletti, S., Vicino, A.: A survey on switched and piecewise affine
system identification. IFAC Proceedings Volumes 45(16), 344–355 (2012). https:
//doi.org/10.3182/20120711-3-BE-2027.00332

15. Grosu, R., Mitra, S., Ye, P., Entcheva, E., Ramakrishnan, I.V., Smolka,
S.A.: Learning cycle-linear hybrid automata for excitable cells. In: HSCC.
LNCS, vol. 4416, pp. 245–258. Springer (2007). https://doi.org/10.1007/
978-3-540-71493-4 21

16. Hashambhoy, Y., Vidal, R.: Recursive identification of switched ARX models with
unknown number of models and unknown orders. In: CDC. pp. 6115–6121 (2005).
https://doi.org/10.1109/CDC.2005.1583140

17. Henzinger, T.A.: The Theory of Hybrid Automata, pp. 265–292. Springer (2000).
https://doi.org/10.1007/978-3-642-59615-5 13

18. Huang, K., Wagner, A., Ma, Y.: Identification of hybrid linear time-invariant sys-
tems via subspace embedding and segmentation (SES). In: CDC. pp. 3227–3234.
IEEE (2004). https://doi.org/10.1109/CDC.2004.1428971

19. Juloski, A.L., Weiland, S., Heemels, W.P.M.H.: A Bayesian approach to iden-
tification of hybrid systems. Trans. Autom. Control. 50(10), 1520–1533 (2005).
https://doi.org/10.1109/TAC.2005.856649

20. Khachiyan, L.G.: A polynomial algorithm in linear programming. In: Doklady
Akademii Nauk. vol. 244, pp. 1093–1096. Russian Academy of Sciences (1979)

21. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: A survey. IEEE Syst. J. 9(2), 350–365 (2015). https://doi.org/10.1109/
JSYST.2014.2322503, https://doi.org/10.1109/JSYST.2014.2322503

22. Klee, H., Raimondi, A.: Simulation of dynamic systems with Matlab and Simulink.
J. Artif. Soc. Soc. Simul. 11(2) (2008), http://jasss.soc.surrey.ac.uk/11/2/reviews/
raimondi.html

23. Klipp, E., Liebermeister, W., Wierling, C., Kowald, A.: Systems biology: a text-
book. John Wiley & Sons (2016)

24. Lamrani, I., Banerjee, A., Gupta, S.K.S.: HyMn: Mining linear hybrid automata
from input output traces of cyber-physical systems. In: ICPS. pp. 264–269. IEEE
(2018). https://doi.org/10.1109/ICPHYS.2018.8387670

25. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical sys-
tems approach. Mit Press (2017)

26. Liberzon, D.: Switching in Systems and Control. Birkhäuser Boston (2003). https:
//doi.org/10.1007/978-1-4612-0017-8

27. Liu, L., Bockmayr, A.: Formalizing metabolic-regulatory networks by hybrid
automata. Acta Biotheoretica 68(1), 73—85 (2020). https://doi.org/10.1007/
s10441-019-09354-y

28. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–136 (1982). https://doi.org/10.1109/TIT.1982.1056489

29. Medhat, R., Ramesh, S., Bonakdarpour, B., Fischmeister, S.: A framework for
mining hybrid automata from input/output traces. In: EMSOFT. pp. 177–186.
IEEE (2015). https://doi.org/10.1109/EMSOFT.2015.7318273

30. Nakada, H., Takaba, K., Katayama, T.: Identification of piecewise affine systems
based on statistical clustering technique. Autom. 41(5), 905–913 (2005). https:
//doi.org/10.1016/j.automatica.2004.12.005

https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.3182/20120711-3-BE-2027.00332
https://doi.org/10.3182/20120711-3-BE-2027.00332
https://doi.org/10.3182/20120711-3-BE-2027.00332
https://doi.org/10.3182/20120711-3-BE-2027.00332
https://doi.org/10.1007/978-3-540-71493-4_21
https://doi.org/10.1007/978-3-540-71493-4_21
https://doi.org/10.1007/978-3-540-71493-4_21
https://doi.org/10.1007/978-3-540-71493-4_21
https://doi.org/10.1109/CDC.2005.1583140
https://doi.org/10.1109/CDC.2005.1583140
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1109/CDC.2004.1428971
https://doi.org/10.1109/CDC.2004.1428971
https://doi.org/10.1109/TAC.2005.856649
https://doi.org/10.1109/TAC.2005.856649
https://doi.org/10.1109/JSYST.2014.2322503
https://doi.org/10.1109/JSYST.2014.2322503
https://doi.org/10.1109/JSYST.2014.2322503
https://doi.org/10.1109/JSYST.2014.2322503
https://doi.org/10.1109/JSYST.2014.2322503
http://jasss.soc.surrey.ac.uk/11/2/reviews/raimondi.html
http://jasss.soc.surrey.ac.uk/11/2/reviews/raimondi.html
https://doi.org/10.1109/ICPHYS.2018.8387670
https://doi.org/10.1109/ICPHYS.2018.8387670
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1007/s10441-019-09354-y
https://doi.org/10.1007/s10441-019-09354-y
https://doi.org/10.1007/s10441-019-09354-y
https://doi.org/10.1007/s10441-019-09354-y
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/EMSOFT.2015.7318273
https://doi.org/10.1109/EMSOFT.2015.7318273
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005

Synthesis of Parametric Hybrid Automata from Time Series 17

31. Niggemann, O., Stein, B., Vodencarevic, A., Maier, A., Kleine Büning, H.: Learning
behavior models for hybrid timed systems. In: AAAI. AAAI Press (2012), http:
//www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993

32. Ozay, N.: An exact and efficient algorithm for segmentation of ARX models. In:
ACC. pp. 38–41. IEEE (2016). https://doi.org/10.1109/ACC.2016.7524888

33. Paoletti, S., Juloski, A.L., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid
systems: A tutorial. Eur. J. Control 13(2-3), 242–260 (2007). https://doi.org/10.
3166/ejc.13.242-260

34. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018). https:
//doi.org/10.1007/978-3-319-63588-0

35. Rackauckas, C., Nie, Q.: DifferentialEquations.jl - a performant and feature-rich
ecosystem for solving differential equations in Julia. Journal of Open Research
Software 5(1) (2017)

36. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves.
Comput. Graph. Image Process. 1(3), 244–256 (1972). https://doi.org/10.1016/
S0146-664X(72)80017-0

37. Roll, J., Bemporad, A., Ljung, L.: Identification of piecewise affine systems
via mixed-integer programming. Autom. 40(1), 37–50 (2004). https://doi.org/10.
1016/j.automatica.2003.08.006

38. Silvert, W.: Modelling as a discipline. Int. J. General Systems 30(3), 261–282
(2001). https://doi.org/10.1080/03081070108960709

39. Singhania, R., Sramkoski, R.M., Jacobberger, J.W., Tyson, J.J.: A hybrid model
of mammalian cell cycle regulation. PLoS Comput. Biol. 7(2) (2011). https://doi.
org/10.1371/journal.pcbi.1001077

40. Summerville, A., Osborn, J.C., Mateas, M.: CHARDA: causal hybrid automata
recovery via dynamic analysis. In: IJCAI. pp. 2800–2806. ijcai.org (2017). https:
//doi.org/10.24963/ijcai.2017/390

41. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn - learn-
ing timed automata from tests. In: FORMATS. LNCS, vol. 11750, pp. 216–235.
Springer (2019). https://doi.org/10.1007/978-3-030-29662-9 13

42. Verdult, V., Verhaegen, M.: Subspace identification of piecewise linear systems. In:
CDC. pp. 3838–3843. IEEE (2004). https://doi.org/10.1109/CDC.2004.1429336

43. Vynnycky, E., White, R.: An introduction to infectious disease modelling. OUP
Oxford (2010)

44. Yang, X., Beg, O.A., Kenigsberg, M., Johnson, T.T.: A framework for identification
and validation of affine hybrid automata from input-output traces. ACM Trans.
Cyber-Phys. Syst. 6(2) (2022). https://doi.org/10.1145/3470455

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
https://doi.org/10.1109/ACC.2016.7524888
https://doi.org/10.1109/ACC.2016.7524888
https://doi.org/10.3166/ejc.13.242-260
https://doi.org/10.3166/ejc.13.242-260
https://doi.org/10.3166/ejc.13.242-260
https://doi.org/10.3166/ejc.13.242-260
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/j.automatica.2003.08.006
https://doi.org/10.1016/j.automatica.2003.08.006
https://doi.org/10.1016/j.automatica.2003.08.006
https://doi.org/10.1016/j.automatica.2003.08.006
https://doi.org/10.1080/03081070108960709
https://doi.org/10.1080/03081070108960709
https://doi.org/10.1371/journal.pcbi.1001077
https://doi.org/10.1371/journal.pcbi.1001077
https://doi.org/10.1371/journal.pcbi.1001077
https://doi.org/10.1371/journal.pcbi.1001077
https://doi.org/10.24963/ijcai.2017/390
https://doi.org/10.24963/ijcai.2017/390
https://doi.org/10.24963/ijcai.2017/390
https://doi.org/10.24963/ijcai.2017/390
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1109/CDC.2004.1429336
https://doi.org/10.1109/CDC.2004.1429336
https://doi.org/10.1145/3470455
https://doi.org/10.1145/3470455

	Synthesis of Parametric Hybrid Automata from Time Series

