Skip to main content

A Brake Assisting Function for Railway Vehicles Using Fuzzy Logic: A Comparison Study for Different Fuzzy Inference Types

  • Conference paper
  • First Online:
Book cover Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2022)

Abstract

For trains, cars and other vehicles, the quality of the user comfort level is affected significantly by the driver skill level such as agility, experience and physical condition. In order to assist the drivers, in this paper, we propose a brake assist function for railway vehicles using Fuzzy Logic. We present a comparison study for different Fuzzy Inference types (models). The proposed function provides an intelligent breaking for the train drivers considering velocity, current brake level and environment status on the railway. We evaluate four Fuzzy inference types. The simulation results show that Type-2 FLC2 can provide better brake assisting function for train drivers than other models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asprilla, A.M., Martinez, W.H., Munoz, L.E., Cortes, C.A.: Design of an embedded hardware for motor control of a high performance electric vehicle. In: Proceedings of the IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA-2017), pp. 1–5 (2017)

    Google Scholar 

  2. Balan, K., Manuel, M.P., Faied, M., Krishnan, M., Santora, M.: A fuzzy based accessibility model for disaster environment. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-2019), pp. 2304–2310 (2019)

    Google Scholar 

  3. Cena, G., Cibrario Bertolotti, I., Hu, T., Valenzano, A.: On a software-defined CAN controller for embedded systems. Comput. Stan. Interfaces 63, 43–51 (2019). https://www.sciencedirect.com/science/article/pii/S0920548918302101

  4. Chimatapu, R., Hagras, H., Kern, M., Owusu, G.: Hybrid deep learning type-2 fuzzy logic systems for explainable AI. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-2020), pp. 1–6 (2020)

    Google Scholar 

  5. Ghallabi, F., Nashashibi, F., El-Haj-Shhade, G., Mittet, M.A.: LIDAR-based lane marking detection for vehicle positioning in an HD map. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC-2018), pp. 2209–2214 (2018)

    Google Scholar 

  6. Gupta, I., Riordan, D., Sampalli, S.: Cluster-head election using fuzzy logic for wireless sensor networks. In: Proceedings of the 3rd Annual Communication Networks and Services Research Conference (CNSR-2005), pp. 255–260 (2005)

    Google Scholar 

  7. Jammeh, E.A., Fleury, M., Wagner, C., Hagras, H., Ghanbari, M.: Interval type-2 fuzzy logic congestion control for video streaming across IP networks. IEEE Trans. Fuzzy Syst. 17(5), 1123–1142 (2009)

    Article  Google Scholar 

  8. Li, T.S., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)

    Article  Google Scholar 

  9. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. In: Proceedings of the Institution of Electrical Engineers, vol. 121, pp. 1585–1588 (1974)

    Google Scholar 

  10. Nishii, D., Ikeda, M., Barolli, L.: A fuzzy-based approach for reducing transmitted data considering data difference parameter in resilient WSNs. In: Barolli, L., Natwichai, J., Enokido, T. (eds.) EIDWT 2021. LNDECT, vol. 65, pp. 48–57. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70639-5_5

    Chapter  Google Scholar 

  11. Nishii, D., Ikeda, M., Barolli, L.: A Takagi-Sugeno fuzzy-based adaptive transmission method in wireless sensor networks. In: Barolli, L. (ed.) 3PGCIC 2021. LNNS, vol. 343, pp. 279–288. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-89899-1_30

    Chapter  Google Scholar 

  12. Petrakis, E.G.M., Sotiriadis, S., Soultanopoulos, T., Renta, P.T., Buyya, R., Bessis, N.: Internet of things as a service (iTaaS): Challenges and solutions for management of sensor data on the cloud and the fog. Internet Things 3–4, 156–174 (2018)

    Article  Google Scholar 

  13. Ruan, J., Jiang, H., Li, X., Shi, Y., Chan, F.T.S., Rao, W.: A granular GA-SVM predictor for big data in agricultural cyber-physical systems. IEEE Trans. Industr. Inf. 15(12), 6510–6521 (2019)

    Article  Google Scholar 

  14. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017)

    Article  Google Scholar 

  15. Su, X., Wu, L., Shi, P.: Sensor networks with random link failures: distributed filtering for T-S fuzzy systems. IEEE Trans. Industr. Inf. 9(3), 1739–1750 (2013)

    Article  Google Scholar 

  16. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. In: IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116–132 (1985)

    Google Scholar 

  17. Wehner, P., Schwiegelshohn, F., Gohringer, D., Hubner, M.: Development of driver assistance systems using virtual hardware-in-the-loop. In: Proceedings of the International Symposium on Integrated Circuits (ISIC-2014), pp. 380–383 (2014)

    Google Scholar 

  18. Wu, D., Nie, M.: Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems 2011 (FUZZ-IEEE 2011), pp. 2131–2138 (2011)

    Google Scholar 

  19. Zadeh, L.: Fuzzy logic, neural networks, and soft computing. ACM Commun. 37, 77–84 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsuneyoshi, M., Ikeda, M., Barolli, L. (2023). A Brake Assisting Function for Railway Vehicles Using Fuzzy Logic: A Comparison Study for Different Fuzzy Inference Types. In: Barolli, L. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2022. Lecture Notes in Networks and Systems, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-031-20029-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20029-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20028-1

  • Online ISBN: 978-3-031-20029-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics