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Abstract. Few-shot class-incremental learning (FSCIL) aims to incre-
mentally fine-tune a model (trained on base classes) for a novel set of
classes using a few examples without forgetting the previous training.
Recent efforts address this problem primarily on 2D images. However,
due to the advancement of camera technology, 3D point cloud data has
become more available than ever, which warrants considering FSCIL on
3D data. This paper addresses FSCIL in the 3D domain. In addition
to well-known issues of catastrophic forgetting of past knowledge and
overfitting of few-shot data, 3D FSCIL can bring newer challenges. For
example, base classes may contain many synthetic instances in a realistic
scenario. In contrast, only a few real-scanned samples (from RGBD sen-
sors) of novel classes are available in incremental steps. Due to the data
variation from synthetic to real, FSCIL endures additional challenges,
degrading performance in later incremental steps. We attempt to solve
this problem using Microshapes (orthogonal basis vectors) by describing
any 3D objects using a pre-defined set of rules. It supports incremental
training with few-shot examples minimizing synthetic to real data vari-
ation. We propose new test protocols for 3D FSCIL using popular syn-
thetic datasets (ModelNet and ShapeNet) and 3D real-scanned datasets
(ScanObjectNN and CO3D). By comparing state-of-the-art methods, we
establish the effectiveness of our approach in the 3D domain. Code is
available at: https://github.com/townim-faisal/FSCIL-3D.

Keywords: 3D point cloud, few-shot class-incremental learning.

1 Introduction

Humans have a remarkable ability to gradually expand their knowledge while
keeping past insights intact. Similarly, natural learning systems are incremental
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Fig. 1: (Left) A realistic setup of FSCIL may consider synthetic stool, bench, and
piano as base classes and real-scanned bed, chair and sofa as novel (few-shot) classes.
One can notice that shared ‘leg’ looks (size and shape) different in base and novel
classes, which is a source of domain gap. This gap intensified when the synthetic ‘legs’
needed to generalize the real-scanned (noisy) ‘legs’. Therefore, we propose to describe
all ‘legs’ under a common description, named Microshape. Note that Microshapes are
abstract property that may not always have semantically conceivable meaning like
‘legs’. They are orthogonal vectors expressing shared semantics of any object. (Right)
High dimensional representations of 3D points are projected onto Microshapes (red,
green and blue axis) and calculated to what extent (colored bars) an object contains
those Microshapes, which construct a semantic description of the given object.

in nature, where new knowledge is continually learned over time while preserv-
ing existing knowledge [16]. Therefore, it is important to design systems that
have the ability to learn incrementally when exposed to novel data. The above
task becomes more challenging in realistic scenarios, where only a few samples
of novel classes are available for training. This restriction makes incremental
learning further difficult due to two reasons: a) overfitting of novel classes with
few training samples and b) catastrophic forgetting of the previous knowledge.
This problem setting is known as Few-shot class incremental learning (FSCIL)
in the literature [1,2,3,18]. While incremental learning for image data has been
studied to a certain extent, its extension to 3D data remains unexplored. To our
knowledge, this is the first work that aims to tackle FSCIL on 3D point clouds.

FSCIL methods usually train a base model initially using abundantly avail-
able base class instances. Then, new data samples of few-shot incremental tasks
are added over time to train the network. During incremental training, models
typically tend to overfit few-shot data and forget previously trained class knowl-
edge. Existing works on FSCIL have addressed the latter issue using a small
memory module that contains few examples of the previous tasks [37] (during
learning with few-shot examples of novel classes) and the former issue by pro-
totypical descriptions of class representation [50]. More recent works [9,8] advo-
cated the benefit of using language prototype instead of vision/feature prototype.
Inspired by past works, we design our FSCIL method based on a memory module,
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and link vision and language information in an end-to-end manner. But, FSCIL
on 3D entail novel challenges in addition to overfitting and forgetting. Assume a
scenario where a robot with 3D sensors and incremental learning capability is ex-
ploring a real environment. The robot is already well-trained with many instances
of base classes during its construction. Because of the abundant availability, one
can consider using synthetic point cloud instances to train the robot. However,
the robot can only obtain a few samples of real-world scanned data for incremen-
tal stages. It is a challenge for the robot trained on base classes (with synthetic
data) to gather knowledge of incremental classes with newly scanned real-world
data. Previous works [38] showed that synthetic data-based training and real-
world data-based testing leads to a significant performance gap because of the
variability of feature distribution (domain gap) of objects (see Fig. 1). Similarly,
the transition from the synthetic data dependant base task to real-world data
dependant incremental tasks makes feature-prototype alignments cumbersome
during the incremental steps, eventually magnifying forgetting and overfitting
issues. As a result, the models experience a drastic drop in performance in the
subsequent incremental steps. This paper attempts to address this issue using a
set of Microshape descriptions obtained from base classes instances.

Our goal is to represent synthetic and real objects in a way that helps to align
3D point cloud features with language prototype of classes. This representation
should be robust to noisy real-scanned objects, so that object features describe
a meaningful set of attributes. To this end, based on many base class instances,
we calculate a set of Microshape descriptions (vectors orthogonal to each other)
working as a building block for any 3D shape. Each Microshape describes a
particular aspect of a 3D shape that might be shared across different objects. We
project a high dimensional representation of 3D points onto each Microshape and
find to what extent each Microshape is present in the given object. Aggregating
(average pool) the strength of all Microshape presented in a given shape, we
create a single feature vector describing that 3D shape. Representing all class
objects under a common set of Microshapes, the overall object representation
becomes relatively more noise-tolerant, minimizes the domain gap from synthetic
to real data, and better aligns features to prototypes. Also, such representation
can be equally useful for related problem like 3D recognition and dynamic few-
shot learning. Moreover, we have proposed new experimental testbeds for testing
FSCIL on 3D point cloud objects based on two 3D synthetic datasets, ModelNet
[43] and ShapeNet [4], and two 3D real world-scanned datasets , ScanObjectNN
[38] and Common Objects in 3D (CO3D) [30] . We benchmark popular FSCIL
methods on this new setup and show the superiority of our proposed Microshape
based method over the existing works.

In summary, the main contributions of our paper are as follow: (a) To the
best of our knowledge, we are the first to report few-shot class incremental learn-
ing results for 3D point cloud objects. Moreover, we propose a novel and realistic
problem setup for 3D objects where base classes are originated from synthetic
data, and later few-shot (novel) classes obtained from real-world scanned ob-
jects are incrementally added over time (in future tasks). The motivation is that
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synthetic 3D point cloud objects may not be available for rare class instances,
whereas few real-world scanned data may be readily available. (b) We propose
a new backbone for feature extraction from 3D point cloud objects that can
describe both synthetic and real objects based on a common set of descriptions,
called Microshapes. It helps to minimize the domain gap between synthetic and
real objects retaining old class knowledge. (c) We propose experimental testbeds
for 3D class-incremental learning based on two 3D synthetic datasets, and two
3D real-scanned datasets. We also perform extensive experiments using existing
and proposed methods by benchmarking performances on the proposed setups.

2 Related work

3D point cloud object recognition: Thanks to recent advent of 3D sensors
[15,32,45], many works have been proposed to classify 3D point cloud objects di-
rectly [26,27,20,44,25,28,41,17]. Qi et al. [26] proposed Pointnet, as the pioneer
work, to process 3D point cloud with multi-layer perceptron (MLP) networks.
This approach ignores local structures of the input data. Later methods are
developed to handle this limitation [27,20,44,25,28,41,17]. [27] introduced Point-
Net++ to take advantages of local features by extracting features hierarchically.
[20,44,25,28,41,17] proposed several convolution strategies to extract local infor-
mation. [41] introduced PointConv to define convolution operation as locating a
Monte Carlo estimation of the hidden continuous 3D convolution with respect to
an important sampling strategy. [28] introduced graph convolution on spherical
points, which are projected from input point clouds. Some other works [40,39,47]
consider each point cloud as a graph vertex to learn features in spatial or spec-
tral domains. [40] proposed DGCNN to construct a graph in feature space and
update it dynamically using MLP for each edge. [47] suggested a method to
construct the graph using k-nearest neighbors from a point cloud to capture the
local structure and classify the point cloud. As the points in 3D point clouds
represent positional characteristics, [48] proposed to employ self-attention into
a 3D point cloud recognition network. [22] suggested replacing the explicit self-
attention process with a mix of spatial transformer and multi-view convolutional
networks. To provide permutation invariance, Guo et al. [12] presented offset-
attention with an implicit Laplace operator and normalizing refinement. In this
paper, we propose a novel permutation invariant feature extraction process.
Incremental learning: Incremental learning methods are separated into three
categories, task-incremental [5,31,24], domain-incremental [46,33], and class-
incremental [29,3,13,42] learning. Here, we are interested in the class-incremental
learning. Rebuffi et al. [29] used a memory bank called “episodic memory”, of
the old classes. For novel classes, the nearest-neighbor classifiers are incremen-
tally accommodated. Castro et al. [3] employed a knowledge distillation cost
function to store information of the previously seen classes and a classifica-
tion cost function to learn the novel classes. Hou et al. [13] introduced a novel
method for learning a unified classifier that reduces the imbalance between old
and novel classes. Wu et al. [42] fine-tuned the bias in the model’s output with
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the help of a linear model. They proposed a class-incremental learning method
working on the low data regime. Simon et al. [34] presented a knowledge dis-
tillation loss using geodesic flow to consider gradual change among incremental
tasks. Liu et al. [19] introduced Adaptive Aggregation Networks to aggregate
two feature outputs from two residual blocks at each residual level achieving
a better stability-plasticity trade-off. Zhu et al. [50] proposed a non-exemplar-
based method consisting of prototype augmentation and self-supervision to avoid
memory limitations and task-level overfitting.
Few-shot class-incremental learning: FSCIL problem setting was proposed
by Tao et al. [37]. They proposed a neural gas network to minimize the forget-
ting issue by learning and preserving the topology of the feature from different
classes. Chen et al. [6] suggested a non-parametric method to squeeze knowledge
of the old tasks in a small quantized vector space. They also consider less forget-
ting regularization, intra-class variation, and calibration of quantized vectors to
minimize the catastrophic forgetting. After that, [21] introduced a method that
selects a few parameters of the model for learning novel classes to reduce the
overfitting issue. Also, by freezing the important parameters in the model, they
prevent catastrophic forgetting. [8] employed class semantic information from
text space with a distillation technique to mitigate the impact of catastrophic
forgetting. Additionally, they utilize an attention mechanism to reduce the over-
fitting issue on novel tasks, where only a tiny amount of training samples are
available for each class. [9] proposed a method that creates multiple subspaces
based on the training data distribution, where each subspace is created based on
one specific part of the training distribution, which ends to unique subspaces.
The preceding approaches were only explored on 2D image data, whereas our
method investigates FSCIL in 3D point cloud data.

3 Few-shot Class-incremental Learning for 3D

Problem formulation. FSCIL models learn novel classes with a small amount
of training samples over time in a variety of (incremental) tasks. Each task
contains novel classes which have not been observed by the model beforehand.
Assume a sequence of T tasks, H = {h1, h2, ..., hT }, where Yt is the set of
classes in the task ht, and Yi ∩ Yj = ∅. In addition, a set of d-dimensional
semantic prototype for each class of all tasks are assigned as St. That is, each
task can be represented with a tuple ht = {X t

i ,y
t
i, s

t
i}

nt

i=1 , where, X t
i = {xt

i}li=1

denotes a 3D point cloud object with coordinates xt
i ∈ R3. Further, yt

i ∈ Yt

and sti ∈ St are the label of the point cloud and the corresponding semantic
embedding feature, respectively. In the proposed FSCIL setting, h1 is the base
task (t = 1) where the model is trained on a large scale synthetic 3D dataset.
For t > 1, the training data are sampled from real world 3D point clouds, and
only consist of few instances, i.e., nt ≪ n1. The model is trained sequentially
over the tasks t = 1, . . . , T . However, during t-th task, the model sees X t, yt

and {S1,S2, ...,St}. At inference, the trained model on the current task ht must
classify test samples of current and old tasks i.e., {h1, h2, ..., ht}.
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Fig. 2: Overall architecture. Microshape Generation: All training samples of the
base task are used to calculate Microshapes. To this end, the base training set {X 1

i }n1
i=1

are fed into F (:, θ∗) in order to extract features for all points {F1
i }n1

i=1. Next, we apply
K-means to findm centersC ∈ Rq×m of the point cloud features. Ultimately, we employ
SVD to form Microshape matrix P ∈ Rq×u. Backbone: Our proposed backbone for
generating features of point cloud input is presented. To be more specific, given an
instance from 3D point cloud data Xi, we map it into a higher dimensional space using
F (:, θ). After that, we calculate the inner product between all points and Microshape
basis ⟨ fi,pk⟩, where fi,pk ∈ Rq. At the end, we obtain the feature embedding zi ∈ Rd

after Avg. pooling and a projection W ∈ Rd×u module. F (:, θ) and W are trainable at
the first incremental step but remain fixed in later steps. Semantic Unit: Semantic
prototypes, sj of all novel and base classes are generated by a language model, P . At
the end, a pair of point cloud features and semantic prototype of classes are provided
into the relation module, which calculates a class label based on the similarity score.

3.1 Model Overview

To solve the FSCIL problem on the 2D domain, we need to design an algorithm
that can address the catastrophic forgetting of old classes and the overfitting
issue on novel classes [37]. Likewise, we require to follow the same procedure
to develop an FSCIL model for 3D point cloud data. In this paper, we use
the exemplar approach [1,3,2,29,13], which is an established method in the lit-
erature, to address the forgetting issue. To this end, for old tasks, we save a
sample, chosen randomly for each class in a tiny memory M. Additionally, we
employ semantic embedding features in our proposed baseline model to tackle
the overfitting issue. Such semantics have been used recently [9,8] for the FSCIL
in the 2D domain. Furthermore, incremental learning from synthetic (base task)
to real-world scanned 3D point cloud data (novel task), enlarges forgetting and
overfitting issues. Therefore, the model performance drops drastically in subse-
quent increment steps. To address this problem, we propose a novel method,
Microshape, which is shown in Fig. 2. In this method, all training samples of the
base task {X 1

i }
n1
i=1 are projected into a higher dimension space by F (:, θ∗), which
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is a pretained model on the base task by a cross-entropy loss and consist of a few
MLP layers, leading to {F1

i }
n1
i=1. Next, we calculate m class centers C ∈ Rq×m

by K-means algorithm. At the end, Singular Value Decomposition (SVD) is used
to choose the most important Microshapes P ∈ Rq×u, where u < m. The details
of the Microshape generation algorithm are explained in Sec. 3.2. After this step,
we train our proposed architecture for 3D point cloud data, shown in Fig. 2, with
the help of Microshapes for base and novel tasks. In the point cloud pipeline,
there are two kinds of classes: novel and old. It is important to mention that the
old class samples are from the tiny memory M. In the text pipeline, there is
one representation per class for old and novel classes. While training the base-
line model, we forward a 3D point cloud sample, Xi, into the projection module
F (:, θ) to extract point cloud features Fi = {fi}ni=1, where fi ∈ Rq. Then, we
find the inner product ⟨ , ⟩ between all point cloud features fi and Microshape
pk ∈ Rq. After that, we use average pooling for each Microshape to form a fea-
ture vector representation ei ∈ Ru of the point cloud input Xi. Next, we map the
feature vector ei into semantic embedding space by W ∈ Rd×u, which is a fully
connected layer, to form zi ∈ Rd . In the text domain, all current and previous
class labels are fed into a semantic embedding module P , which can generate a
feature embedding sj ∈ Rd for each class. Ultimately, we forward zi and sj in
the relation network [35] R, consist of a few fully connected layers, which gives
a prediction given input Xi. In the end, we use a binary cross-entropy loss to
train the model. It is important to mention that F (:, θ) and W are trained only
on the base task and kept frozen for the incremental tasks. While the relation
module R is fine-tuned for all incremental tasks.

3.2 Microshapes

Incremental learning faces newer challenges, from 2D images to 3D point cloud
objects. First, it is more difficult to obtain noise-free real-world 3D data recon-
structed from RGB-D scan than natural 2D images. 3D objects are susceptible
to partial observations, occlusions, reconstruction errors, and cluttered back-
grounds. An effect of the noise-free version of 3D (synthetic) and real-world
scanned objects is shown in Fig 1 (left). Second, it is realistic to assume that 3D
(synthetic) objects are relatively abundant for base classes but scarce for novel
classes. A practical incremental learning setup should consider synthetic objects
for training base classes (1st incremental step) and real-scanned objects for the
rest of the incremental steps containing few-shot classes. The 3D-feature and
language-prototype alignment learned using base instances could not generalize
well for real-scanned data of novel classes. It increases the domain gap between
base and novel classes. Now, we formally present the following hypothesis.
Hypothesis 1. Every 3D shape can be adequately represented as a particular
combination of smaller entities. These entities are common across various 3D
shapes, while the combinations might vary.
Based on the above hypothesis, we strive to mitigate the domain gap between
synthetic and real 3D point cloud data by proposing a novel feature extraction
method, called Microshapes. In the proposed method, the common properties of
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samples are selected to form a feature representation which is robust to domain
shift between synthetic and real data. The assumption is that there are many
similar points among different point cloud objects that can form as a cluster and
can be termed as Microshape. After that, we extract feature representation of
all samples based on Microshapes.
Microshape generation. Let {X 1

i }
n1
i=1 be the set of 3D samples used to train

the model in the base task h1. We forward {X 1
i }

nt
i=1 through the backbone F and

extract M features {fi}Mi=1, where fi ∈ Rq, M = l × n1, and l is the number of
points in a point cloud. For the backbone, we use a pre-trained PointNet (trained
using {X 1

i }
nt
i=1), after removing the pooling and classification layers. Then, we

obtain m cluster centers by applying K-means on the set {fi}Mi=1. Let us denote
the cluster centers by C ∈ Rq×m. Our intention is to define a vector space
spanned by the column vectors of C which then can be used to represent novel
3D point clouds as a vector in this space. However, the column vectors ofC is not
necessarily a basis since they might not be linearly independent. On the other
hand, the number of cluster centers m is a hand picked hyperparameter, which
might not be optimal. Therefore, we use Singular Value Decomposition (SVD)
to choose a set of basis vectors that approximately spans C. We decompose
the matrix consisting of samples within a cluster as C = UDV⊤. Then, the u
leading left singular vectors U form an orthogonal basis which we define by P,
i.e, Rq×u ∋ P = [p1, ...,pu] ; P⊤P = In (see Fig. 2).
Definition 1. We define each column vector of P as a Microshape.
Role of SVD. Since the Microshapes are mutually orthogonal, they contain
minimal mutual information, which allows us to encode maximum amount of
total information within them. In comparison, the raw cluster centers obtained
using k-means might be linearly dependant, representing duplicate information.
Choosing orthogonal basis vectors based on the 95% of energy of singular values
allows to find the number of Microshapes required to describe a dataset in a
principled manner. Further, since the number of cluster centers is a hand picked
parameter, they can result in either redundant or insufficient information encod-
ing. In contrast, using SVD allows us eliminate the effect of this hyperparameter.
Microshape feature extraction. To form a feature vector that describes a
particular 3D shape, we use these Microshapes. Consider a point cloud Xi =
{xi1, ...,xil}. We project it into a higher dimensional space using F , which gives
Fi = {fi1, ..., fil}. Next, for each Microshape, we calculate the average similarity
value to create the feature vector,

ei =
1

l

l∑
b=1

[fib · p1, fib · p2, . . . , fib · pu] , zi = ReLU(W.ei), (1)

where, ei ∈ Ru. Note that ei is a permutation invariant representation, since it
is calculated using all the projected points fi’s of the original point cloud, and
is independent of the point ordering. An FC layer (W) converts ei to zi ∈ Rd.
Next, we describe our training pipeline utilizing the obtained zi of each objects.
Benefit of Mircoshape features. FSCIL allows only a few examples of real-
scanned objected during incremental stages. Inherent noise/occlusion/clutter
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background presented in 3D models results in overfitting to unnecessary informa-
tion the incremental learning steps. In this context, Microshpae based feature
representation has benefits over general features such as PointNet representa-
tions. Below, we list several key benefits of Mircoshape features: (a) Reduced
impact of noise: Microshapes allows the model to describe any object based on
common entities. As explained earlier, traditional backbone (such as Pointnet)
features can represent redundant information. In contrast, Microshapes only try
to estimate to what extent these pre-defined properties are present in a given
input and helps to discard unnecessary information. Such an approach is ben-
eficial to describe novel objects, especially in cross-domain (synthetic to real)
situations. (b) Aligning with the prototypes: We use language prototypes that
contain semantic regularities such that similar concepts like (table, chair, etc.)
are located in nearby positions in a semantic space. By describing objects based
on their similarity to pre-defined Microshapes, features can describe different
semantics/attributes of a given object. As language prototypes and 3D features
are based on object semantics rather than low-level (CNN) features, aligning
them becomes an easier task for the relation network. (c) Microshapes as fea-
ture prototypes: For any few-shot learning problem, Microshapes can serve the
role of creating feature prototypes (instead of language prototypes used in this
paper). One can consider the average of Microshape-based features of all avail-
able instances belonging to any class, as a class prototype. This could be useful
to describe fine-grained objects (e.g., China/Asian Dragon, Armadillo) for which
language prototypes are less reliable. In the experiments, we deal with common
objects where language prototypes work better than feature prototypes.

3.3 Training pipeline

First, we train the backbone F on the base task h1, with a large number of
synthetic 3D samples. For the novel tasks, ht>1, the backbone F is kept frozen.
The semantic class backbone P , which is a pretrained model, e.g BERT [10]
and w2v [23], is kept frozen during the entire training stage. Additionally, for
each old class, we randomly select a training sample which is stored on a tiny
memory M. Let us define the feature vector obtained using Eq. 1 for the ith

point cloud of the tth task as zti. To train the proposed model for a task ht, at
first, we generate the features zti’s using Eq. 1 for the nt training samples of the
current task ht. Then, the features zti and semantic class embedding sj of the
tasks h1, . . . , ht are forwarded into a relation module R which provides a score
between [0, 1], representing the similarity between them. In other words, for each
training sample, we generate a score against each of the classes in both the novel
and previous tasks as, rtij = γ ◦ R ◦ (zti ⊕ sj), j ∈ Ytl where, Ytl =

⋃t
i=1 Yi, ⊕

is the concatenation operator, R is the relation module, and γ is the sigmoid
function. Finally, for each feature rij , and the corresponding ground truth yi,
we employ a binary cross entropy cost function to train the model as,

L = − 1

|Ytl||S|
∑
j∈Ytl

∑
yi∈S

(
⊮(yi=j)log(rij) + (1− ⊮(yi=j))log(1− rij)

)
(2)
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Table 1: Summary of our experimental setups.

Experiment Setups
# Base # Novel

# Tasks
#Train #Test #Test

Classes Classes in Base in Base in Novel

ModelNet40 20 20 5 7438 1958 510
ShapeNet 25 30 7 36791 9356 893
CO3D 25 25 6 12493 1325 407

ModelNet40 → ScanObjectNN 26 11 4 4999 1496 475
ShapeNet → ScanObjectNN 44 15 4 22797 5845 581

ShapeNet → CO3D 39 50 11 26287 6604 1732

where S is the set of true labels in the current task and the memory M.
Inference. During inference, given the trained model an unlabeled sample X c,
c ∈ Ytl, the prediction of the label is calculated by y∗ = argmax

j∈Ytl

(
R ◦ (zc ⊕ sj)

)
,

where zc is the feature calculated using the microshapes for the sample X c.

4 Experiments

Datasets.We experiment on two 3D synthetic datasets, (ModelNet [43], ShapeNet
[4]) and two 3D real-scanned datasets (ScanObjectNN [38] and CO3D [30]).
Setups. We propose two categories of experiments for 3D incremental learning:
within- and cross-dataset experiments. Within dataset experiments are done on
both synthetic and real datasets individually where the base and incremental
classes come from the same dataset. For cross-dataset experiments, base and in-
cremental classes come from synthetic and real-world scanned datasets, respec-
tively. In Table 1, we summarize three within and three cross-dataset experimen-
tal setups proposed in this paper. We utilize the class distribution of ModelNet,
ShapeNet, and CO3D datasets to select base and incremental few-shot classes
for within dataset experiments. First, we sort all classes in descending order
based on instance frequency. Then top 50% of total classes (having many avail-
able instances) are chosen as base classes, and the rest (having relatively fewer
available examples) are added incrementally in our experiments. The motivation
is that rare categories are the realistic candidate for novel (few-shot) classes. In
the ModelNet40 experiment, there is one base task with 20 classes and four in-
cremental tasks with another 20 classes. ShapeNet and CO3D experiments have
25 base classes, whereas incremental classes are 30 and 25, respectively, divided
into 6 and 4 tasks. Among cross-dataset experimental setups, we choose base
classes from a synthetic dataset and later add incremental classes from a real-
world scanned dataset. For ModelNet40 → ScanObjectNN experiment, we follow
the selection of base and incremental (novel) classes from [7], and it has total
4 tasks. ShapeNet → ScanObjectNN has four tasks where 44 non-overlapping
ShapeNet and 15 ScanObjectNN classes are used as the base and incremental
classes, respectively. ShapeNet → CO3D experiment has a sequence of 11 tasks
with 44 non-overlapped classes from ShapeNet as base classes and 50 classes
from CO3D as incremental classes. This setup is the most challenging and re-
alistic among all experiments because of its vast number of tasks, classes, and
object instances. Unless mentioned explicitly, we use randomly selected five 3D
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Table 2: Overall FSCIL results for within dataset experiments
ModelNet

Method 20 25 30 35 40 ∆ ↓
FT 89.8 9.7 4.3 3.3 3.0 96.7
Joint 89.8 88.2 87.0 83.5 80.5 10.4

LwF [18] 89.8 36.0 9.1 3.6 3.1 96.0
IL2M [1] 89.8 65.5 58.4 52.3 53.6 40.3
ScaIL [2] 89.8 66.8 64.5 58.7 56.5 37.1
EEIL [3] 89.8 75.4 67.2 60.1 55.6 38.1
FACT [49] 90.4 81.3 77.1 73.5 65.0 28.1

Sem-aware [8] 91.3 82.2 74.3 70.0 64.7 29.1
Ours 93.6 83.1 78.2 75.8 67.1 28.3

CO3D

25 30 35 40 45 50 ∆ ↓
76.7 11.2 3.6 3.2 1.8 0.8 99.0
76.7 69.4 64.8 62.7 60.7 59.8 22.0

76.7 14.7 4.7 3.5 2.3 1.0 98.7
76.7 31.5 27.7 18.1 27.1 21.9 71.4
76.7 39.5 34.1 24.1 30.1 27.5 64.1
76.7 61.4 52.4 42.8 39.5 32.8 57.2
77.9 67.1 59.7 54.8 50.2 46.7 40.0
76.8 66.9 59.2 53.6 49.1 42.9 44.1
78.5 67.3 60.1 56.1 51.4 47.2 39.9

ShapeNet

25 30 35 40 45 50 55 ∆ ↓
87.0 25.7 6.8 1.3 0.9 0.6 0.4 99.5
87.0 85.2 84.3 83.0 82.5 82.2 81.3 6.6

87.0 60.8 33.5 15.9 3.8 3.1 1.8 97.9
87.0 58.6 45.7 40.7 50.1 49.4 49.3 43.3
87.0 56.6 51.8 44.3 50.3 46.3 45.4 47.8
87.0 77.7 73.2 69.3 66.4 65.9 65.8 22.4
87.5 75.3 71.4 69.9 67.5 65.7 62.5 28.6
87.2 74.9 68.1 69.0 68.1 66.9 63.8 26.8
87.683.281.579.076.873.572.617.1

models as few-shot samples/class in all FSCIL setups and allow one exemplar
3D model/class (randomly chosen) as the memory of previous tasks. For syn-
thetic and real-scanned object classes, we use synthetic and real-scanned data
as few-shot or exemplar data, respectively. See the supplementary material for
more details about the setups.
Semantic embedding. We use 300-dim. word2vec [23] as semantic represen-
tation for each classes of datasets. The word2vec is produced from word vectors
trained in an unsupervised manner on an unannotated text corpus, Wikipidia.
Validation strategy. We make a validation strategy for within dataset experi-
ments. We randomly divide the set of base classes into val-base and val-novel. We
choose 60% classes from base classes as val-base classes and the rest as val-novel
classes to find the number of centroids for generating Microshapes. We find the
number of centroids, m = 1024 performing across experimental setup.
Implementation details. In all experiments and compared approaches, we use
PointNet [26] as a base feature extractor to build the centroids for microshapes.
We use the farthest 1024 points from 3D point cloud objects as input for all sam-
ples. We train the base feature extractor for 100 epochs using Adam optimizer
with a learning rate of 0.0001. For microshape formulation, we use k-means clus-
tering algorithms to initialize centroids. We randomly shift and scale points in
the input point cloud during base and incremental class training with randomly
dropping out points. During the training of all base classes, we employ the Adam
optimizer with a learning rate of 0.0001 and batch sizes of 64. For novel classes,
we choose the batch size of 16 and the learning rate of 0.00005. The feature
vector size from backbone is 300 dimensional, similar to the dimension of the
semantic prototypes. In the relation network, we utilize three fully connected
layers of (600,300,1) using LeakyReLU activations, except the output layer uses
Sigmoid activation. We use the PyTorch framework to perform our experiments.
Evaluation metrics. We calculate the accuracy after each incremental step
by combining both base and novel classes. Finally, as suggested in [36], we cal-

culate the relative accuracy dropping rate, ∆ = |accT−acc0|
acc0

× 100, where, accT
and acc0 represent the last and first incremental task’s accuracy, respectively. ∆
summarizes the overall evaluation of methods. Lower relative accuracy indicates
a better performance. We report the mean accuracy after ten different runs with
random initialization.
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Table 3: Overall results for cross dataset experiments
ShapeNet → CO3D

Method 39 44 49 54 59 64 69 74 79 84 89 ∆ ↓
FT 81.0 20.2 2.3 1.7 0.8 1.0 1.0 1.3 0.9 0.5 1.6 98.0
Joint 81.0 79.5 78.3 75.2 75.1 74.8 72.3 71.3 70.0 68.8 67.3 16.9

LwF [18] 81.0 57.4 19.3 2.3 1.0 0.9 0.8 1.3 1.1 0.8 1.9 97.7
IL2M [1] 81.0 45.6 36.8 35.1 31.8 33.3 34.0 31.5 30.6 32.3 30.0 63.0
ScaIL [2] 81.0 50.1 45.7 39.1 39.0 37.9 38.0 36.0 33.7 33.0 35.2 56.5
EEIL [3] 81.0 75.2 69.3 63.2 60.5 57.9 53.0 51.9 51.3 47.8 47.6 41.2
FACT [49] 81.4 76.0 70.3 68.1 65.8 63.5 63.0 60.1 58.2 57.5 55.9 31.3

Sem-aware [8] 80.6 69.5 66.5 62.9 63.2 63.0 61.2 58.3 58.1 57.2 55.2 31.6
Ours 82.677.973.972.767.766.265.463.460.658.157.130.9

ModelNet → ScanObjectNN

26 30 34 37 ∆ ↓
88.4 6.4 6.0 1.9 97.9
88.4 79.7 74.0 71.2 19.5

88.4 35.8 5.8 2.5 97.2
88.4 58.2 52.9 52.0 41.2
88.4 56.5 55.9 52.9 40.2
88.4 70.2 61.0 56.8 35.7
89.1 72.5 68.3 63.5 28.7
88.5 73.9 67.7 64.2 27.5
89.3 73.2 68.4 65.1 27.1

ShapeNet → ScanObjectNN

44 49 54 59 ∆ ↓
81.4 38.7 4.0 0.9 98.9
81.4 82.5 79.8 78.7 3.3

81.4 47.9 14.0 5.9 92.8
81.4 53.2 43.9 45.8 43.7
81.4 49.0 46.7 40.0 50.9
81.4 74.5 69.8 63.4 22.1
82.3 74.6 69.9 66.8 18.8
81.3 70.6 65.2 62.9 22.6
82.5 74.8 71.2 67.1 18.7

Table 4: Ablation study on using Microshapes and semantic prototypes.
ShapeNet → CO3D

MicroshapePrototype 39 44 49 54 59 64 69 74 79 84 89 ∆ ↓
No Feature 79.4 70.5 68.1 65.5 62.9 60.7 59.1 57.6 56.2 54.3 51.8 34.8
Yes Feature 80.4 71.9 70.2 66.1 64.6 62.5 60.6 58.4 57.7 55.0 53.4 33.6
No Language 80.6 75.9 66.3 66.1 66.0 63.9 62.8 60.0 56.5 54.1 53.6 33.5
Yes Language 82.6 77.9 73.9 72.7 67.7 66.2 65.4 63.4 60.6 58.1 57.1 30.9

ShapeNet

25 30 35 40 45 50 55 ∆ ↓
87.4 79.1 76.9 72.9 59.9 67.1 57.0 34.8
87.5 75.6 76.3 66 66.6 63.5 62.0 29.1
87.3 79.4 76.8 72.8 68.6 66.1 63.7 27.0
87.6 83.2 81.5 79.0 76.8 73.5 72.6 17.1

4.1 Main results

Compared methods. We compare our method with the following approaches.
(1) Fine-tuning (FT): It is vanilla fine-tuning wherein each incremental task,
the model is initialized with the previous task’s weight and only uses a few
samples from incremental classes. Note no exemplar is used in this method. (2)
Joint: All incremental classes are jointly trained using all samples belonging to
those classes. FT and Joint are considered as lower and upper bound results,
respectively. (3) State-of-the-art methods, e.g., IL2M [1], ScaIL [2], EEIL [3],
LwF [18], FACT [49], and Sem-aware [8]. These methods originally reported
results on 2D datasets. We replace CNN features with PointNet features and
use their official implementation to produce results for 3D.

Analysis. We present the comparative results for within and cross dataset ex-
periments in Table 2 and 3, respectively. Our observations are as follows: (1) All
methods perform poorly in general in cross dataset experiments in comparison to
within dataset case. This is due to the noisy data presented in 3D real datasets.
(2) FT gets the lowest performance among all experimental setups because of
catastrophic forgetting that occurred during training due to not utilizing any
memory sample. In contrast, Joint achieves the best results because it uses all
samples and trains all few-shot classes jointly at a time. This upper bound setup
is not FSCIL. (3) Other state-of-the-art approaches (IL2M, ScaIL, EEIL, LwF,
FACT, and Sem-aware) could not perform well in most of the experimental se-
tups. IL2M [1] and ScaIL [2] propose a special training mechanism for 2D image
examples. LwF [18] and EEIL [3] both apply knowledge distillation in loss but
EEIL uses exemplar on the top of [18]. We use exemplar without any knowl-
edge distillation. Interestingly, FACT [49] and Sem-aware [8] address few-shot
class incremental learning in particular. Among them, Sem-aware [8] successfully
applies class-semantic embedding information during training. In general, past
approaches are designed aiming at 2D image data where challenges of 3D data are
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Table 5: Impact of (Left) loss, SVD, freezing and (Right) number of centroids.

Criteria 39 44 49 54 59 64 69 74 79 84 89 ∆ ↓
No freezing 82.3 75.8 69.4 65.1 62.7 61.5 58.3 57.3 57.9 52.2 50.7 38.4
No SVD 82.0 76.7 72.5 69.7 67.3 64.5 61.7 63.0 61.7 55.2 54.6 33.4
Lmse 82.4 77.6 73.1 71.0 67.5 66.1 62.5 61.1 60.3 56.4 55.2 33.0
Lcross 82.6 77.9 73.9 72.7 67.7 66.2 65.4 63.4 60.6 58.1 57.1 30.9

# 39 44 49 54 59 64 69 74 79 84 89 ∆ ↓
256 81.6 77.1 71.2 60.2 57.8 55.9 53.1 52.7 50.8 46.6 44.8 45.1
512 82.0 77.4 70.4 60.5 58.9 56.5 53.5 54.1 52.7 47.6 47.8 41.7
1024 82.6 77.9 73.9 72.7 67.7 66.2 65.4 63.4 60.6 58.1 57.1 30.9
2048 82.7 78 73.7 72.3 67.8 65.4 64.9 63.9 60.8 58.4 57.3 30.7
4096 82.3 77.2 72.9 72.0 67.1 66.1 64.8 63.0 60.8 57.9 57.0 30.7

not addressed. (4) Our approach beats state-of-the-art methods on within and
across dataset setups. We achieve superior results in each incremental task and
relative accuracies. This success originates from Microshape descriptions and
their ability to align with semantic prototypes, minimizing domain gaps. (5)
Moreover, one can notice for all experimental setups, the performance of exist-
ing methods on base classes (1st incremental stages) are similar because of using
the same PointNet features. Our approach beats them consistently. This success
comes from Microshape based feature extraction. In addition, unlike other meth-
ods, our method gets benefited from language prototype and relation network.
(6) Shapenet → CO3D setup has the longest sequence of tasks, arguably the
most complicated of all setups. Other competing methods perform poorly in this
particular setup. Our method outperforms the second best method, FACT, by
up to 1.2% accuracy in the final task, with a relative performance drop rate of
30.9%, which is 0.4% lower than FACT’s result.

4.2 Ablation studies

Effect of Microshape. In Table 4, we discuss the effect of using Microshapes
and (language or Microshape feature-based) prototype vectors discussed in Sec.
3.2. For no Microshape case, we use PointNet-like backbone features instead
of Microshape-based features. We report results for different combinations of
features and prototypes. One can notice that using Microshape or language pro-
totypes individually outperforms no Microshape case. The reason is the inclusion
of semantic description, transferring knowledge from base to novel classes. Also,
we work on common object classes where rich language semantics are available.
It could be a reason why language prototypes work better than feature proto-
types. Finally, utilizing both Microshape features and language prototypes yields
the best results aligning with our final recommendation.

Impact of freezing, SVD and loss. In Table 5 (Left), We ablate our pro-
posed method in terms of freezing, SVD, and loss. The performance gets reduced
while keeping the full network trainable (no freezing) during all incremental
steps. Training the full network using few-shot data during few-shot incremen-
tal steps promotes overfitting, which reduces performance. Not using the SVD
step also degrades the performance because without SVD microshapes contain
redundant information and do not guarantee orthogonality of microshapes. SVD
step assembles the microshapes mutually exclusive and orthogonal to each other.
Unlike the suggestion of [35] regarding RelationNet architecture, we notice that
the cross-entropy loss (Lcross) in Eq. 2 performs better than MSE loss (Lmse). A



14 T. Chowdhury et al.

possible reason could be we are using RelationNet for classification, not directly
to compare the relation among features and language prototypes.
Hyperparameter sensitivity. In Table 5 (Right), we perform experiments
varying numbers of centroids (of k-means clustering) on ShapeNet → CO3D
setting. We find that a low amount of centroids (256 and 512) performs poorly
in our proposed approach. However, employing 1024 (and above) centroids, the
last task’s accuracy and relative performance become stable. Increasing centroids
up to 2048 or 4096 could not significantly differ in performance. The reason might
be that applying SVD to select important centroids removes duplicate centroids,
resulting in similar results for the higher number of centroids.

4.3 Beyond FSCIL

Table 6: Dynamic few-shot learning

Microshape Prototype 1-shot 5-shot

No Feature 39.90±0.71 51.65±0.35
Yes Feature 44.41±1.05 64.54±0.71
Yes Language 72.23±0.52 72.53±0.68

In Table 6, we experiment on dy-
namic few-shot learning (DFSL), pro-
posed by [11], for ModelNet → ScanOb-
jectNN setup. DFSL is equivalent to FS-
CIL with only two sequences of tasks in-
stead of various sequences in FSCIL. Note
that traditionally DFSL is investigated on
2D images, but here we show results on 3D
DFSL. The base classes, consisting of 26
classes, are chosen from ModelNet, but disjoint classes of the ScanObjectNN
dataset, 11 classes, are used as novel classes. In each episode, the support set is
built by selecting 1 or 5 examples of the novel classes, representing a 1-shot or
5-shot scenario. The query set consists of instances of the base and novel tasks.
After averaging over 2000 randomly produced episodes from the test set, we
evaluate few-shot classification accuracy. It has been demonstrated that utiliz-
ing more few-shot samples increases accuracy. Nevertheless, our approach (using
Microshape and language prototype) can sufficiently address the DFSL problem.

5 Conclusions

This paper investigates FSCIL in the 3D object domain. It proposes a practical
experimental setup where the base and incremental classes include synthetic and
real-scanned objects, respectively. The proposed setup exhibits domain gaps re-
lated to class semantics and data distribution. To minimize the domain gap, we
propose a solution to describe any 3D object with a common set of Microshapes.
Each Microshape describes different aspects of 3D objects shared across base
and novel classes. It helps to extract relevant features from synthetic and real-
scanned objects uniquely that better aligns with class semantics. We propose
new experimental protocols based on both within and cross-dataset experiments
on synthetic and real object datasets. Comparing state-of-the-art methods, we
show the superiority of our approach in the proposed setting.
Acknowledgement: This work was supported by North South University Con-
ference Travel and Research Grants 2020–2021 (Grant ID: CTRG-20/SEPS/04).
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Abstract. This supplementary material provides additional details in
support of the contribution presented in the main paper.

• Section 1: Architecture Details (additional discussion in support of
Section 3.1 of the main paper).

• Section 2: K-Means Visualization (additional discussion in support
of Section 3.2 of the main paper).

• Section 3: Details of Experimental Setup (additional discussion in
support of Section 4 of the main paper).

• Section 4: 3D Object Recognition (additional discussion in support
of Section 4.3 of the main paper).

1 Architecture Details

Here, we provide more details on the backbone network, F and the relation
module, R.
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Fig. 2: Detailed architecture for Relation module R. ‘b’ means batch size and rij is the
relation score.

Fig. 3: tSNE visualization for points in different 3D point cloud objects

Backbone network. A mini transformation network T1 [14] takes raw input
point clouds of n points, and the output passes into a shared multi-layer percep-
tron network of output size 64. This output matrix passes into another feature
transformation network T2, and the transformed output matrix then passes into
a shared multi-layer perceptron network with layer output sizes 64, 128, 1024.
This extracted features of n points, fi is forwarded with Microshape basis, pk

in a inner product function, ⟨ fi,pk⟩. Then, we calculate the average similarity
vector from the output with average pooling. The similarity vector is passed into
a fully connected layer (of 300 dimensions), generating the features zi. Here, all
layers include ReLU and batch normalization.

Relation Module architecture. The input of relation module is generated by
a concatenation function C(zi, sj), that takes feature of point cloud object, zi and
the semantic embedding of the task sj . This generated input is passed into three
fully-connected layers (300,600,1). Except for the output layer, which is Sigmoid
and generates relation scores, rij , all fully-connected layers are associated with
LeakyReLU.
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2 K-Means Visualization

We plot a tSNE visualization for all points in 10000 random different 3D point
cloud objects in Fig. 3. We notice that some clusters have been formed from
where we calculated the Microshapes.

3 Details of Experimental Setup

We experiment on two synthetic datasets i.e. ModelNet40 [43], ShapeNet [4]
and three real-scanned dataset i.e. ScanObjectNN [38], Common Objects in 3D
(CO3D) [30] with our proposed two different experimental setups.

3.1 Within-dataset Experiment

We design within-dataset experimental setups by ordering all classes in descend-
ing order for a dataset based on sample frequency. It assists us in distinguishing
between base and novel classes since base classes have more instances than novel
classes. Rare objects have fewer samples in the actual world. So, following this
order, we create a realistic experimental setting. Therefore, all within-dataset
experiments follow long-tail distribution, shown in Fig. 4. The base and incre-
mental classes are treated as the head and tail classes of this data distribution,
respectively.
(1) ModelNet40: It comprises 12,311 3D point cloud objects from 40 categories.
We select 20 classes as base classes with 7438 training instances and 1958 test
instances. The rest of the 20 classes are used for four incremental tasks consisting
of 510 test instances.
(2) ShapeNet: It has 50604 shapes from 55 categories. We select 25 classes as
base classes with the topmost training instances and a total of 36791 training
and 9356 test samples. Then we choose the rest of the 30 classes as few-shot
incremental classes with 887 test instances.
(3) CO3D: It is composed of 50 MS-COCO types of 3D point clouds. We choose
25 base classes, with 12493 training and 1325 test instances. The remaining 25
classes with 407 test instances are utilized for incremental training.

3.2 Cross-dataset Experiment

For cross-dataset experiments, we choose synthetic dataset as base class and
real-scanned dataset as novel class. Table 1 shows the detailed data distribution
for three experimental setups.
(1) ModelNet40 → ScanObjectNN: We follow the selection of classes from [7].
Here, we select 26 base classes from ModelNet40. On the other hand, ScanOb-
jectNN has 15 classes with 2902 3D point cloud objects, but we choose non-
overlapped 11 classes from ScanObjectNN for incremental tasks as novel classes.
(2) ShapeNet → ScanObjectNN: We select 44 disjoint classes from ShapeNet
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(b) ShapeNet
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(c) CO3D
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Fig. 4: Data distribution for within-dataset experiments by sorting all classes in de-
scending order based on instance frequency. The plot clearly shows that all three setups
follow a long-tail distribution. In the experimental setup of (b) ShapeNet, some long
bars have been clipped for better visualization.
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Table 1: Details of cross-dataset experimental setup. Task 1 represents the base class,
whereas the rest of the tasks represent the novel class

(a) ShapeNet → CO3D

Dataset Task Name of class

ShapeNet 1 airplane, trash bin, basket, bathtub, bed,
birdhouse, bookshelf, bus, cabinet,
camera, can, cap, clock, dishwasher,
display, faucet, file cabinet, guitar,

helmet, jar, knife, lamp, loudspeaker,
mailbox, microphone, mug, piano, pillow,
pistol, flowerpot, printer, rifle, rocket,
stove, table, tower, train, vessel, washer

CO3D

2 apple, backpack, ball, banana, baseballbat
3 baseballglove, bench, bicycle, book, bottle
4 bowl, broccoli, cake, car, carrot
5 cellphone, chair, couch, cup, donut
6 frisbee, hairdryer, handbag, hotdog,

hydrant
7 keyboard, kite, laptop, microwave,

motorcycle
8 mouse, orange, parking meter, pizza,

plant
9 remote, sandwich, skateboard, stopsign,

suitcase
10 teddybear, toaster, toilet, toybus,

toyplane
11 toytruck, tv, umbrella, vase, wineglass

(b) ShapeNet → ScanObjectNN

Dataset Task Name of class

ShapeNet 1 airplane, basket, bathtub, bench, bicycle, birdhouse,
bottle, bowl, bus, camera, can, cap, car, clock,

keyboard, dishwasher, earphone, faucet, file cabinet,
guitar, helmet, jar, knife, lamp, laptop, loudspeaker,

microphone, microwaves, motorbike, mug, piano, pistol,
flowerpot, printer, remote, rifle, rocket, skateboard,
stove, telephone, tower, train, watercraft, washer

ScanObjectNN
2 bag, bin, box, cabinet, chair
3 desk, display, door, shelf, table
4 bed, pillow, sink, sofa, toilet

(c) ModelNet → ScanObjectNN

Dataset Task Name of class

ModelNet 1 airplane, bathtub, bottle, bowl, car, cone, cup, curtain,
flower pot, glass box, guitar, keyboard, lamp, laptop,
mantel, night stand, person, piano, plant, radio, range

hood, stairs, tent, tv stand, vase

ScanObjectNN
2 cabinet, chair, desk, display
3 door, shelf, table, bed
4 sink, sofa, toilet

as base classes. For base model training, there are 22318 training and 5845 test
instances from ShapeNet. Also, from ScanObjectNN, we select all 15 classes for
few-shot incremental model training with 581 test instances.
(3) ShapeNet → CO3D: Base classes are selected from Shapenet, while for few-
shot incremental steps, the classes are chosen from CO3D. This setup represents
the most realistic scenario. We select non-overlapped 39 classes from Shapenet
for base classes. Also, CO3D has 50 classes with 16557 training and 1732 test
instances. Here, we choose all 50 classes for few-shot incremental tasks.

Table 2: 3D recognition on common objects of ModelNet40 (synthetic training) and
ScanObjectNN (real-scanned testing)

Method Accuracy

Baseline (without Microshape) 44.25
Ours (with Microshape) 46.34

4 3D Object Recognition

Microshape based 3D point description can benefit many problems beyond FS-
CIL.In Table 2, we perform 3D object recognition experiment on 11 common
objects of ModelNet40 and ScanObjectNN. Here, the model is trained on the
common (synthetic) objects of ModelNet40 and evaluated on the same (real-
scanned) objects from ScanObjectNN. There is a clear domain gap from the
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without microshape with microshape

door (real)

door (synth)

sofa (real)

sofa (synth)

Fig. 5: Effect of using Microshape. Only two classes, ‘door’ and ‘sofa’, are used for
visualization. Synthetic and real instances form different clusters on the left because of
the domain gap. Microshape-based feature minimizes this gap by mixing both instances
in the same cluster

data distribution of training (synthetic) and testing (real-scanned) instances. We
attempt to reduce this gap using our Microshape based backbone and relation
network (see Fig. 5). Our approach combining of Microshape and relation net-
work with language prototype outperforms the baseline (without Microshape).
It is possible because our method helped reducing the domain gap of training
and testing data.
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