
CLOSE: Curriculum Learning On the Sharing
Extent Towards Better One-shot NAS

Zixuan Zhou13⋆, Xuefei Ning12∗, Yi Cai1, Jiashu Han1,
Yiping Deng2, Yuhan Dong3, Huazhong Yang1, and Yu Wang1†

1 Department of Electronic Engineering, Tsinghua University
∗zhouzx21@mails.tsinghua.edu.cn, ∗foxdoraame@gmail.com,

†yu-wang@tsinghua.edu.cn
2 Huawei TCS Lab

3 Tsinghua Shenzhen International Graduate School

Abstract. One-shot Neural Architecture Search (NAS) has been widely
used to discover architectures due to its efficiency. However, previous
studies reveal that one-shot performance estimations of architectures
might not be well correlated with their performances in stand-alone
training because of the excessive sharing of operation parameters (i.e.,
large sharing extent) between architectures. Thus, recent methods con-
struct even more over-parameterized supernets to reduce the sharing
extent. But these improved methods introduce a large number of ex-
tra parameters and thus cause an undesirable trade-off between the
training costs and the ranking quality. To alleviate the above issues,
we propose to apply Curriculum Learning On Sharing Extent (CLOSE)
to train the supernet both efficiently and effectively. Specifically, we
train the supernet with a large sharing extent (an easier curriculum)
at the beginning and gradually decrease the sharing extent of the su-
pernet (a harder curriculum). To support this training strategy, we de-
sign a novel supernet (CLOSENet) that decouples the parameters from
operations to realize a flexible sharing scheme and adjustable sharing
extent. Extensive experiments demonstrate that CLOSE can obtain a
better ranking quality across different computational budget constraints
than other one-shot supernets, and is able to discover superior architec-
tures when combined with various search strategies. Code is available at
https://github.com/walkerning/aw_nas.

Keywords: Neural Architecture Search (NAS), One-shot Estimation,
Parameter Sharing, Curriculum Learning, Graph-Based Encoding

1 Introduction

Neural Architecture Search (NAS) [40] has achieved great success in automati-
cally designing deep neural networks (DNN) in the past few years. However, tra-
ditional NAS methods are extremely time-consuming for discovering the optimal

⋆ Equal contribution.

ar
X

iv
:2

20
7.

07
86

8v
1

 [
cs

.C
V

]
 1

6
Ju

l 2
02

2

https://github.com/walkerning/aw_nas

2 Z. Zhou, X. Ning et al.

architectures, since each architecture sampled in the search process needs to be
trained from scratch separately. To alleviate the severe problem of search ineffi-
ciency, one-shot NAS proposes to share operation parameters among candidate
architectures in a “supernet” and train this supernet to evaluate all sampled
candidate architectures [4,23,1,18], which reduces the overall search cost from
thousands of GPU days to only a few GPU hours.

Despite its efficiency, previous studies reveal that one-shot NAS suffers from
the poor ranking correlation between one-shot estimations and stand-alone es-
timations, which leads to unfair comparisons between the candidate architec-
tures [19,35,36,20]. Ning et al. [20] give some insights on the failure of one-shot
estimations. They conclude that one of the main causes of the poor ranking
quality is the large sharing extent of the supernet. Several recent studies
try to improve one-shot NAS by addressing the large sharing extent issue. Zhao
et al. [38] confirm the negative impact of co-adaption of parameters in one su-
pernet. Thus, they split the whole search space into several smaller ones, and
train a supernet for each subspace. Su et al. [30] reveal that only one copy of
parameters is hard to be maintained for massive architectures. Therefore, they
duplicate each parameter of the supernet into several copies, train and then es-
timate with all the duplicates. However, these improved methods introduce a
large number of parameters, which barricades the supernet training. As a result,
they have to make a trade-off between the training costs and the ranking quality.

In this paper, we propose to adopt the Curriculum Learning On Sharing
Extent (CLOSE) to train the one-shot supernet efficiently and effectively. The
underlying intuition behind our method is that training with a large sharing
extent can efficiently bootstrap the supernet, since the number of parameters
to be optimized is much smaller. While in the later training stage, using a su-
pernet with a smaller sharing extent (i.e., a more over-parameterized supernet)
can improve the saturating ranking quality. Thus, CLOSE uses a relatively
large sharing extent in the early training stage of the supernet, then gradually
decreases the supernet sharing extent. To support this training strategy, we de-
sign a new supernet with an adjustable sharing extent, namely CLOSENet, of
which the sharing extent can be flexibly adjusted in the training process. The
difference between CLOSENet and the vanilla supernet is that, the construction
of vanilla supernets presets the sharing scheme between any architecture pairs,
i.e., designates which parameter is shared by which operations in different archi-
tectures. In contrast, CLOSENet could flexibly adjust the sharing scheme and
extent between architecture pairs, during the training process.

In summary, the contributions of our work are as follows:

1. We propose to apply Curriculum Learning On Sharing Extent (CLOSE) to
efficiently and effectively train the one-shot supernet. Specifically, we use a
larger sharing extent in the early stages to accelerate the training process,
and gradually switch to smaller ones to boost the saturating performances.

2. To fit the CLOSE strategy, we design a novel supernet (CLOSENet) with an
adjustable sharing extent. Different from the vanilla supernet with an unad-

CLOSE 3

justable sharing scheme and sharing extent, CLOSENet can flexibly adapt
its sharing scheme and sharing extent during the training process.

3. Extensive experiments on four NAS benchmarks show that CLOSE can
achieve a better ranking quality under any computational budgets. When
searching for the optimal architectures, CLOSE enables one-shot NAS to
find superior architectures compared to existing one-shot NAS methods.

2 Related Work

2.1 One-shot Neural Architecture Search (NAS)

Neural Architecture Search (NAS) is proposed to find optimal architectures au-
tomatically. However, the vanilla sample-based NAS methods [40] are extremely
time-consuming. To make it more efficient, Pham et al. [23] propose the param-
eter sharing technique by constructing an over-parameterized network, namely
supernet, to share parameters among the candidate architectures. Based on the
parameter sharing technique, various one-shot NAS methods are proposed to
efficiently search for optimal architectures by only training “one” supernet. Ben-
der et al. [1] propose to directly train the whole supernet with a path-dropout
strategy. Liu et al. [18] develop a differentiable search strategy and use it in
conjunction with the parameter sharing technique. Guo et al. [10] propose to
separate the stages of supernet training and architecture search.

2.2 Weakness and Improvement of One-shot NAS

Despite its high efficiency, one-shot NAS suffers from the poor ranking correla-
tion between the architecture performances using one-shot training and stand-
alone training. Sciuto et al. [35] discover that the parameter-sharing rankings do
not correlate with stand-alone rankings by conducting a series of experiments in a
toy search space. Zela et al. [36] confirm the poor ranking quality in a much larger
NAS-Bench-1shot1 search space. Luo et al. [19] make a further investigation of
the one-shot NAS, and attribute the poor ranking quality to the insufficient and
imbalanced training, and the coupling of training and search phases. Ning et
al. [20] provide comprehensive evaluations on multiple NAS benchmarks, and
conclude three perspectives to improve the ranking quality of the one-shot NAS,
i.e., reducing the temporal variance, sampling bias or parameter sharing extent.

Recent studies adopt the direction of sharing extent reduction to improve
the one-shot NAS. Ning et al. [20] prune the search space to reduce the number
of candidate architectures, and reveal the improvement of the ranking quality in
the pruned search space. But the ranking quality in the overall search space is
not improved. Zhao et al. [38] propose Few-shot NAS to split the whole search
space into several subspaces, and train a single supernet for each subspace. Su et
al. [30] propose K-shot NAS to duplicate each parameter of the supernet into sev-
eral copies, and estimate architectures’ performances with all of them. However,
these two methods reduce sharing extent with even more over-parameterized
supernets, which brings extra computational costs.

4 Z. Zhou, X. Ning et al.

2.3 Curriculum Learning

Bengio et al. [2] first propose curriculum learning (CL) strategy based on the
learning process of humans and animals in the real world. The basic idea of
the CL strategy is to guide models to learn from easier data (tasks) to harder
data (tasks). In the past few years, many studies have successfully applied CL
strategy in various applications [8,14,24,31,27,7,9], and demonstrated that CL
can improve the models’ generalization capacity and convergence speed. Besides
common CL methods that adjust the data, there exist CL methods that con-
duct curriculum learning on the model capacity. Karras et al. [15] propose to
progressively increase the model capacity of the GAN to speed up and stabilize
the training. Soviany et al. [29] propose a general CL framework at the model
level that adjusts the curriculum by gradually increasing the model capacity.

2.4 NAS Benchmarks

NAS benchmarks enable researchers to reproduce the NAS experiments easily
and compare different NAS methods fairly. NAS-Bench-201 [6] constructs a cell-
based NAS search space containing 15625 architectures and provides their com-
plete training information. NAS-Bench-301 [28] uses a surrogate model to predict
the performances of approximately 1018 architectures in a more generic search
space, with the stand-alone performance of 60k landmark architectures. Differ-
ent from NAS-Bench-201 and NAS-Bench-301 that focus on topological search
spaces, NDS [25] provides benchmarks on two non-topological search spaces (e.g.,
ResNet [11] and ResNeXt [32]).

3 Method

3.1 Motivation and Preliminary Experiments

In one-shot NAS, many operations in different architectures share the same
parameter, while their desired parameters are not necessarily the same. The
excessive sharing of parameters, i.e., the large sharing extent, has been widely
regarded as the most important factor causing the unsatisfying performance
estimation [3,37,20,38,30]. The most recent studies [38,30] improve the ranking
quality by reducing the sharing extent. But their methods cause an inevitable
trade-off between the training cost and ranking quality at the same time.

Supernets with larger sharing extents (i.e., more parameters) are easier to
train in the early training stage. We verify this statement with an experiment
on two popular cell-based NAS benchmarks. We construct two supernets with
different sharing extents: Supernet-1 (a cell shown in top-left of Fig. 1) is a
vanilla supernet adopted by many one-shot NAS methods (e.g., DARTS [18]),
in which the compound edges in one cell use different copies of parameters.
While Supernet-2 (a cell shown in the bottom-left of Fig. 1) shares only one
copy of parameters for all the compound edges in each cell, which leads to a
much larger sharing extent than Supernet-1. For example, the parameters of

CLOSE 5

Conv
5x5

Max
Pooling

0

2 4
Conv
1x1

Avg
Pooling

1 3

5

Conv
3x3

Conv
3x3

Conv
3x3

Conv
5x5

Max
Pooling

0
Conv
1x1

Avg
Pooling

Conv
3x3

Conv
3x3

Conv
3x3

Conv
3x3

1

2

3

4

5

Supernet-1: Supernet with vanilla sharing extent

Supernet-2: Supernet with larger sharing extent

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

Ke
nd

al
l's

 T
au

Supernet-1 on NAS-Bench-201
Supernet-2 on NAS-Bench-201
Supernet-1 on NAS-Bench-301
Supernet-2 on NAS-Bench-301

Fig. 1: Comparison of supernets with small and large sharing extent. The left part
shows a cell-architecture that uses Supernet-1 (top) and Supernet-2 (bottom).
The right part shows the Kendall’s Tau of Supernet-1 and Supernet-2 throughout
the training process on NAS-Bench-201 and NAS-Bench-301.

conv3×3 in edge (1,3) and (2,4) are different when using Supernet-1, but the
same when using Supernet-2. We train them to convergence and use Kendall’s
Tau (see Sec. 4.1 for definition), to evaluate the ranking correlation between the
estimated performances by the supernets and the groud-truth performances.

Fig. 1 (right) shows that, on one hand, using a smaller sharing extent (more
parameters, larger supernet capacity) can alleviate the undesired coadaptation
between architectures, and has the potential to achieve higher saturating perfor-
mances. The Kendall’s Tau of Supernet-2 is slightly worse than that of Supernet-
1 when the supernets are relatively well-trained (epoch 800 to 1000). On the
other hand, training the supernet with higher sharing extent than the vanilla
one (fewer parameters, smaller supernet capacity) greatly accelerates the train-
ing process of parameters, and help the supernet obtain a good ranking quality
faster. In the early stage of the training process (epoch 0 to 600), Supernet-2
has a much higher Kendall’s Tau than Supernet-1.

Based on the above results and analysis, a natural idea to achieve a win-
win scenario of supernet training efficiency and high ranking quality
is to adapt the sharing extent during the supernet training process.
We can draw parallels between this idea and the CL methods on model capac-
ity [15,29] (see Sec. 2.3), as they all progressively increase the capacity of the
model or supernet to achieve training speedup and better performances in the
mean time. Based on the above idea, we propose to employ Curriculum Learning
On the Sharing Extent (CLOSE) of the supernet. And to enable the adaption
of the sharing extent during the training process, we design a novel supernet,
CLOSENet, whose sharing extent can be easily adjusted.

In the following, we first demonstrate the construction of CLOSENet in
Sec. 3.2. Then, in Sec. 3.3, we describe CLOSE with some necessary training
techniques to achieve the best ranking quality.

6 Z. Zhou, X. Ning et al.

3.2 CLOSENet: A Supernet with An Adjustable Sharing Extent

The design of CLOSENet is illustrated in Fig. 2. The key idea behind CLOSENet
is to decouple the parameters from operations to enable flexible sharing scheme
and adjustable sharing extent. Specifically, we design the GLobal Operation
Weight (GLOW) Block to store the parameters, and design a GATE module for
assigning the proper GLOW block to each operation.

Conv
1x1

Conv
5x5

Avg
Pooling

Node Embeddings

…

…

…
E𝑖

E𝑗

E𝑖

E𝑗

Arch Embedder MLP

GATE: Assign GLOW block to each operation

𝑐-th element

Conv
1x1

…

GLOW1

Conv
3x3

Conv
5x5

Conv
1x1

…

GLOWc
Conv
3x3

Conv
5x5

… …
Conv
1x1

…

GLOWK

Conv
3x3

Conv
5x5

Assign 𝑐-th GLOW block to the

Conv3x3 on edge (𝑖, 𝑗)

Conv
3x3Max

Pooling

… …w.o. parameter

… …

Image (Input) Feature (Output)

[0 0 0 … 1 … 0 0]

GLOW Block: Store parameters

NN Forward

0

1 2

𝑁

𝑗𝑖

𝑖

0

1 2

𝑗

𝑁

Conv
3x3

Fig. 2: CLOSENet contains GLOW blocks to store the parameters of candidate
operations, and the GATE module to assign GLOW blocks to operations.

For a better understanding, we take the generic cell-based topological search
space as an example. We will show in the appendix that CLOSENet can also
adapt to other types of search spaces, such as ResNet-like search spaces.

Generic Cell-based Topological Search Space. In cell-based search space,
a complete architecture is stacked by a cell-architecture for multiple times (e.g.,
15 times on NAS-Bench-201). A cell-architecture can be represented as a directed
acyclic graph (DAG). Each node xi represents a feature map, while each edge
o(i,j) represents an operation that transforms xi to xj with the corresponding

CLOSE 7

parameters. For each node j, the feature xj is defined as:

xj =
∑
i<j

o(i,j)(xi,W (i,j)), (1)

where o(x,W) denotes that the operation o transforms the feature x with the
parameters from W .

GLobal Operation Weight (GLOW) Block. The function of GLOW blocks
is to store the parameters of candidate operations, as shown in Fig. 2 (middle).
In the forward pass (as shown in the bottom of Fig. 2), the GLOW blocks are
assigned to each operation via the GATE module (will be introduced in the
following), and each operation can use the parameters from its assigned block
to process the input feature map.

Specifically, we denote Gi as the i-th GLOW block, and c(i,j) as the index of
the assigned block for the operation in edge (i, j). Then, the computation of the
feature xj in Eq. 1 can be rewritten as:

xj =
∑
i<j

o(i,j)(xi, Gc(i,j)) (2)

GATE Module. We design a GATE module for assigning GLOW blocks to
operations. The GATE module consists of an architecture embedder and a MLP
module, as shown in Fig. 2 (top). We construct a GCN-based architecture em-
bedder [21], and use it to compute the node embeddings in the architecture.
Then, we concatenate the embeddings of the input and output nodes of each
operation and feed it into the MLP to get the assignment of the GLOW block.

Specifically, we denote Ei as the embedding of node i, and K as the number
of GLOW blocks. For a cell-architecture a with N nodes, we first obtain the
node embeddings by the architecture embedder as Eq. 3, and then calculate the
probability distribution in edge (i, j) as Eq. 4 and Eq. 5.

[E1, E2, E3, ..., EN] = ArchEmb(a) (3)

[λ
(i,j)
1 , λ

(i,j)
2 , λ

(i,j)
3 , ..., λ

(i,j)
K] = MLP(concat(Ei, Ej)) (4)

Pr(c(i,j) = k) =
exp(λ

(i,j)
k)∑K

k′=1 exp(λ
(i,j)
k′)

(5)

To allow the back-propagation of gradients, we apply the reparameterization
trick on Eq. 2 and Eq. 5, and rewrite the computation of xj as:

xj =
∑
i<j

K∑
k=1

h
(i,j)
k o(i,j)(xi, Gk), (6)

8 Z. Zhou, X. Ning et al.

h(i,j) = argmax
k

(λ
(i,j)
k + gk), (7)

where h(i,j) is a one-hot vector of dimension K, and gk are i.i.d samples from
Gumbel(0, 1). To make Eq. 7 differentiable, we relax the argmax function to a
softmax function as:

ĥ
(i,j)
k =

exp((λ
(i,j)
k + gk)/τ)∑K

k′=1 exp((λ
(i,j)
k′ + gk′)/τ)

, (8)

where τ is the Gumbel-Softmax temperature. We use Eq. 7 in the forward pass,
and use Eq. 8 in the backward pass to allow gradient propagation.

Adjustment of Sharing Extent Denote E(i,j) as the set of cell-architectures
that contain the edge from node i to node j. For edge (i, j), we define its sharing
extent s(i,j) as the average number of architectures that share one GLOW block
in CLOSENet. The sharing extent of the supernet s equals the sum of sharing
extent of all the edges:

s =
∑
i,j

s(i,j) =
∑
i,j

|E(i,j)|
K

=

∑
i,j |E(i,j)|

K
. (9)

Therefore, we can naturally adjust the sharing extent of CLOSENet by adding
or reducing the GLOW blocks. CLOSENet with more GLOW blocks (larger K)
has a smaller sharing extent and vice versa.

Strengths Compared to Vanilla Supernets The vanilla supernet and its
variants (e.g., K-shot and Few-shot supernets [30,38]) preset the sharing scheme
and extent by attaching a fixed set of parameters to each operation. On the
contrary, CLOSENet decouples the parameters from the operations and enables
the dynamic decision of sharing scheme based on a graph-based encoding
of architecture operations. Specifically, the vanilla supernet shares parameters
according to the position specified by the node indexes, i.e., the operations in the
same “position” share the same parameters across different architectures. This
sharing scheme is not flexible and can be suboptimal in some cases. For example,
as shown in Fig. 3(upper), the 1 × 1 convolutions on the 0-2 edge share the
same parameters between the two architectures, while they should have vastly
different optimal parameters. Intuitively, if two operations in two architectures
have similar data processing functionality, it might be more reasonable to share
their parameters. The design of CLOSENet matches this intuition: The GATE
module learns to pick the right GLOW block for each operation based on the
graph-based encoding of all operations and topology in the cell architecture.
Instead of presetting the sharing scheme according to the position information,
CLOSENet takes a more flexible and reasonable way to dynamically determine
which block each operation should use, and thereby designates which operations

CLOSE 9

Conv
5x5

Skip
Connect

0
Conv
1x1 Conv

3x3

Conv
3x31

2

3

4

5

Conv
5x5

Conv
5x5

0

Conv
1x1

Conv
3x3

Conv
3x31

2

3

4

5

Conv
5x5

Skip
Connect

Should have the flexibility to assign different Params to Ops
with vastly different functionalities (thus different optimal Params)

Conv
5x5

Max
Pooling

0

2 4
Conv
1x1

Avg
Pooling

1 3

5

Conv
3x3

Conv
3x3 Avg

Pooling

0

2
Conv
1x1

1 3

5

Conv
1x1

Avg
Pooling

Conv
1x1

Conv
5x5

Should share Params for Ops with similar or equivalent functionalities across architectures

4

Fig. 3: Two examples that show the strengths of CLOSENet. The sharing scheme
of the vanilla supernet, i.e., sharing parameters between operations with the
same position indexes, is improper in these two cases. In contrast, CLOSENet
designates a more proper sharing pattern between operations according to their
graph-based encoding given by GATE.

in different architectures should share their parameters. For example, as shown in
Fig. 3(bottom), since the two 1×1 convolutions are equivalent in two isomorphic
architectures despite having different position indexes, it is reasonable for them
to share parameters. The vanilla supernet uses different parameters for these
two convolutions, while CLOSENet assigns the same GLOW block for them.

Moreover, this decoupling enables us to flexibly adjust the sharing extent
by changing K in Eq. 9. Thus, CLOSENet enables us to apply our curriculum
learning-like training strategy. In summary, both the dynamic sharing scheme
and the adjustable sharing extent make CLOSENet a more powerful supernet.

3.3 CLOSE: Curriculum Learning On Sharing Extent

We borrow the idea of curriculum learning to design a novel supernet training
strategy CLOSE. Specifically, we initialize the CLOSENet with only one GLOW
block at the beginning. This large sharing extent helps us to train the supernet
much faster. Then, we gradually add GLOW blocks at preset epochs to reduce
the sharing extent. In this way, CLOSE not only accelerates the supernet train-
ing, but also improves the saturating ranking quality of the supernet.

When switching the curriculum (i.e., increasing the sharing extent), we add
a new GLOW block into CLOSENet and a corresponding MLP output unit to
the GATE module. How to initialize the newly added parameters is critical to
the performance of CLOSENet. Additionally, the regular schedule for the learn-

10 Z. Zhou, X. Ning et al.

ing rate does not fit for CLOSE (see below). Correspondingly, we propose two
techniques, the Weight Inherited Technique and the Schedule Restart Technique.

Conv
1x1

…

GLOWK

Conv
3x3

Conv
5x5

Conv
1x1

…

GLOWK

Conv
3x3

Conv
5x5

Conv
1x1

…

GLOWK+1

Conv
3x3

Conv
5x5

Stage K Stage K+1

[𝜆1, 𝜆2, 𝜆3, … , 𝜆𝐾] [𝜆1, 𝜆2, 𝜆3, … , 𝜆𝐾 , 𝜆𝐾+1]

Random

Initialization

Conv
1x1

…

GLOWK

Conv
3x3

Conv
5x5

[𝜆1, 𝜆2, 𝜆3, … , 𝜆𝐾 , 𝜆𝐾+1]

Conv
1x1

…

GLOWK+1

Conv
3x3

Conv
5x5

Weights

Inherit

Fig. 4: WIT for GLOW blocks (top) and the MLP output units (bottom).

Weight Inherit Technique (WIT). Instead of randomly initializing the new
GLOW block and MLP output unit, we make their weights inherit from those
of previous GLOW blocks and MLP output units, as shown in Fig. 4. This helps
with the more efficient training of the new GLOW block and MLP unit.

Schedule Restart Technique (SRT). In the training process, the learning
rate is reduced gradually to approach the optimal solution. That is to say, it will
become quite small after many epochs. However, following this schedule, CLOSE
might fail to jump out of the local optimal solution of the preceding curriculum.
To overcome this problem, we propose to restart the learning rate and schedule
at preset epochs. With SRT, CLOSE can quickly reach the new optimal solution
after switching to a new curriculum.

4 Experiments

4.1 Evaluation of Ranking Quality

We evaluate our method on four NAS search spaces, including NAS-Bench-
201 [6], NAS-Bench-301 [28], NDS ResNet [25] and NDS ResNeXt-A [25]. The
training configurations are shown in the appendix. Following previous stud-
ies [20,21], we use two evaluation criteria as follows:

– Kendall’s Tau (KD): The relative difference of the number of concordant
pairs and discordant pairs, which reflects the overall ranking correlation.

– Precision@topK (P@topK): The proportion of true top-K architectures in
the top-K architectures according to the one-shot estimations, which reflects
the ability of identifying the top-performing architectures.

CLOSE 11

Comparison with Vanilla One-Shot Baselines We compare CLOSENet
with vanilla supernets on four NAS benchmarks. As shown in Fig. 5, CLOSENet
achieves a higher KD and P@top5% on all the NAS benchmarks. Moreover, we
can see that throughout the training process, CLOSENet consistently achieves
higher ranking quality, which implies CLOSENet’s superiority to the vanilla
supernet under any budget for supernet training.

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8 NAS-Bench-201

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5
NAS-Bench-301

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

NDS ResNet

Vanilla Kendall's Tau
CLOSE Kendall's Tau
Vanilla P@top5%
CLOSE P@top5%

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

NDS ResNeXt-A

Fig. 5: Comparison of different criteria with the vanilla one-shot supernet on four
NAS benchmarks. X-axis: Training epochs. Y-axis: Evaluation criteria.

Comparison with Improved One-Shot Methods Fig. 6 compares CLOSE
with previous work on improving NAS evaluation strategy, including EPEE [20],
AngleNet [13], K-shot NAS [30] and Few-shot NAS [38]. Results show that
CLOSE reaches SOTA KDs on all the three datasets of NAS-Bench-201.

5 10 15 20 25 30
GPU Hours

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ke
nd

al
l's

 T
au

 (o
n

CI
FA

R-
10

)

EPEE
AngleNet
K-shot NAS
Few-shot NAS
CLOSE

Method
Kendall’s Tau

C-100 IN-16

EPEE 0.5600 0.5400

AngleNet 0.6040 0.5445

K-shot NAS 0.6122 0.5633

CLOSE 0.6693 0.6632

Fig. 6: Comparison with previous improved methods on NAS-Bench-201 for three
datasets, i.e. CIFAR-10, CIFAR-100 (C-10) and ImageNet-16 (IN-16).

12 Z. Zhou, X. Ning et al.

4.2 Evaluation of Search Performance

We combine CLOSE with various search strategies, including DARTS [18], SNAS [33]
and CARS [34], to evaluate whether it improves the search performance.

Results We run DARTS and SNAS search with CLOSE on NAS-Bench-301
and show the derived architecture accuracy in Fig. 7. We can see that CLOSE
benefits the search process significantly. In particular, it can alleviate the collapse
issue of DARTS caused by the improper preference of parameter-free operations
(i.e., skip connect) in early training stages [16,12], as it provides a less biased
estimation (see Appendix 1.1).

0 10 20 30 40 50
92.0

92.5

93.0

93.5

94.0

DARTS

CLOSE
Vanilla

0 10 20 30 40 50
92.0

92.5

93.0

93.5

94.0

94.5 SNAS

CLOSE
Vanilla

Fig. 7: Evaluation of CLOSE with two search strategies in the NAS-Bench-301
search space. X-axis: Training epochs. Y-axis: Test accuracy.

We run CARS with CLOSE in the DARTS search space and Tab. 1 shows the
performances of the discovered architecture. As can be seen, CLOSE achieves
a competitive test error of 2.72% in CIFAR-10. And when transferred to the
ImageNet, the found architecture achieves a low test error of 24.7%.

4.3 Ablation Studies

Effect of Number of Curriculums. We conduct an ablation study on the
number of curriculums in two different types of search spaces, NAS-Bench-301
(a topological search space) and NDS ResNet (a non-topological search space).
Results in Fig. 8 show that, in most cases, using more curriculums can improve
the ranking quality of CLOSE.

Effect of WIT and SRT. Tab. 2 demonstrates the effect of WIT and SRT
adopted by CLOSE on NAS-Bench-301 and NDS ResNet. Results show that
these two techniques are both necessary for the ranking quality of CLOSE.

Effect of GATE Module. We compare the ranking quality of using the GATE
module with randomly assigning GLOW blocks to operations. Results in Tab. 3
reveal that our learnable GATE module plays an essential role in CLOSENet.

CLOSE 13

Method
CIFAR-10 ImageNet

Top-1 Error Param Search Cost Top-1 Error Param
(%) (M) (GPU days) (%) (M)

NASNet-A [41] 2.65 3.3 2000 26.0 5.3
AmoebaNet-B [26] 2.55 2.8 3150 26.0 5.3

PNAS [17] 3.41 5.1 225 25.8 5.1

ENAS [23] 2.89 4.6 0.5 - -
DARTS [18] 2.76 3.3 1.5 26.9 4.9
SNAS [33] 2.85 2.8 1.5 27.3 4.3

BayesNAS [39] 2.81 3.4 0.2 26.5 3.9
GDAS [5] 2.82 2.5 0.17 27.5 4.4

CLOSE (Ours) 2.72 ± 0.04 4.1 0.6 24.7 4.8

Table 1: Comparison of architecture performances on CIFAR-10 and ImageNet.

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5
NAS-Bench-301

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

NDS ResNet

Num=3 Kendall's Tau
Num=4 Kendall's Tau
Num=5 Kendall's Tau
Num=3 P@top5%
Num=4 P@top5%
Num=5 P@top5%

Fig. 8: The ranking quality of CLOSE with different numbers of curriculums.
X-axis: Training epochs. Y-axis: Values of criteria.

WIT SRT
NAS-Bench-301 NDS ResNet

KD P@top5% KD P@top5%

0.1104 0.1145 0.6339 0.5387
✓ 0.1047 0.1122 0.6550 0.5520

✓ 0.2004 0.1610 0.6448 0.5280
✓ ✓ 0.5168 0.3470 0.6786 0.5667

Table 2: The ranking quality of CLOSE w./w.o. the proposed techniques.

Effect of Gradually Adding GLOW Blocks. To show the benefit of grad-
ually adding GLOW blocks, we conduct two contrast experiments. In the first
experiment, we keep a fixed number of GLOW blocks in the training process.
Results in Tab. 4 demonstrate CLOSE performs better than fixing the sharing
extent. In the second experiment, we gradually add blocks and stop after adding
a certain number of blocks. Results in Tab. 5 show that the final ranking quality
at 1000 epoch will degrade if GLOW blocks are not sufficiently added.

14 Z. Zhou, X. Ning et al.

GATE
NAS-Bench-201 NAS-Bench-301

KD P@top5% KD P@top5%

w/o. 0.3627 0.2014 0.2236 0.1924
w. 0.7622 0.5387 0.5168 0.3470

Table 3: The ranking quality of CLOSE w./w.o. the GATE module

Benchmark
Fixed number of blocks

CLOSE
2 3 4 5

NB201 0.7320 0.7247 0.7073 - 0.7622
NB301 0.4533 0.3427 0.3301 0.3106 0.5168

Table 4: The ranking quality of supernets that use a fixed number of blocks

Benchmark
Number of added blocks in total

1 2 3 4 5

NB201 0.7050 0.7072 0.7502 0.7622 -
NB301 0.3990 0.4500 0.4641 0.4879 0.5168

Table 5: The ranking quality of supernets that add fewer number of blocks.

5 Conclusions

This work borrows the idea of curriculum learning and proposes a novel train-
ing strategy CLOSE to train the NAS supernet both efficiently and effectively.
Specifically, CLOSE adopts a curriculum learning-like schedule on the param-
eter sharing extent of supernets. To support this strategy, we design a novel
one-shot supernet, namely CLOSENet, of which the sharing extent can be flex-
ibly adjusted and the sharing scheme is decided based on a graph-based en-
coding. Extensive experiments demonstrate that equipped with CLOSENet, our
proposed method CLOSE reaches a SOTA ranking quality on four NAS bench-
marks. When searching in large search spaces, CLOSE can help to discover
architectures with superior performances.

Acknowledgments

This work was supported by National Natural Science Foundation of China
(No. U19B2019, 61832007), National Key Research and Development Program
of China (No. 2019YFF0301500), Tsinghua EE Xilinx AI Research Fund, Beijing
National Research Center for Information Science and Technology (BNRist), and
Beijing Innovation Center for Future Chips.

CLOSE 15

References

1. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and
simplifying one-shot architecture search. In: International Conference on Machine
Learning (ICML). pp. 550–559. PMLR (2018)

2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: In-
ternational Conference on Machine Learning (ICML). pp. 41–48 (2009)

3. Benyahia, Y., Yu, K., Smires, K.B., Jaggi, M., Davison, A.C., Salzmann, M.,
Musat, C.: Overcoming multi-model forgetting. In: International Conference on
Machine Learning (ICML). pp. 594–603. PMLR (2019)

4. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Smash: one-shot model architecture
search through hypernetworks. In: International Conference on Learning Repre-
sentations (ICLR) (2018)

5. Dong, X., Yang, Y.: Searching for a robust neural architecture in four gpu hours.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
1761–1770 (2019)

6. Dong, X., Yang, Y.: Nas-bench-201: Extending the scope of reproducible neu-
ral architecture search. In: International Conference on Learning Representations
(ICLR) (2020)

7. Gong, C., Yang, J., Tao, D.: Multi-modal curriculum learning over graphs. ACM
Transactions on Intelligent Systems and Technology (TIST) 10(4), 1–25 (2019)

8. Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott, M.R., Huang, D.:
Curriculumnet: Weakly supervised learning from large-scale web images. In: Eu-
ropean Conference on Computer Vision (ECCV). pp. 135–150 (2018)

9. Guo, Y., Chen, Y., Zheng, Y., Zhao, P., Chen, J., Huang, J., Tan, M.: Breaking
the curse of space explosion: Towards efficient nas with curriculum search. In:
International Conference on Machine Learning (ICML). pp. 3822–3831. PMLR
(2020)

10. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-
shot neural architecture search with uniform sampling. In: European Conference
on Computer Vision (ECCV). pp. 544–560. Springer (2020)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
770–778 (2016)

12. Hong, W., Li, G., Zhang, W., Tang, R., Wang, Y., Li, Z., Yu, Y.: Dropnas: Grouped
operation dropout for differentiable architecture search. In: International Joint
Conference on Artificial Intelligence (IJCAI). pp. 2326–2332 (2020)

13. Hu, Y., Liang, Y., Guo, Z., Wan, R., Zhang, X., Wei, Y., Gu, Q., Sun, J.: Angle-
based search space shrinking for neural architecture search. In: European Confer-
ence on Computer Vision (ECCV). pp. 119–134. Springer (2020)

14. Jiang, L., Meng, D., Mitamura, T., Hauptmann, A.G.: Easy samples first: Self-
paced reranking for zero-example multimedia search. In: ACM International Mul-
timedia Conference (MM). pp. 547–556 (2014)

15. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: International Conference on Learning
Representations (ICLR). OpenReview.net (2018)

16. Liang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, K., Li, Z.: Darts+:
Improved differentiable architecture search with early stopping. arXiv preprint
arXiv:1909.06035 (2019)

http://arxiv.org/abs/1909.06035

16 Z. Zhou, X. Ning et al.

17. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: European
Conference on Computer Vision (ECCV). pp. 19–34 (2018)

18. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. In: In-
ternational Conference on Learning Representations (ICLR) (2019)

19. Luo, R., Qin, T., Chen, E.: Understanding and improving one-shot neural archi-
tecture optimization. CoRR abs/1909.10815 (2019)

20. Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H., Wang, Y.: Evaluating
efficient performance estimators of neural architectures. In: Annual Conference on
Neural Information Processing Systems (NIPS) (2021)

21. Ning, X., Zheng, Y., Zhao, T., Wang, Y., Yang, H.: A generic graph-based neural
architecture encoding scheme for predictor-based nas. In: European Conference on
Computer Vision (ECCV). pp. 189–204. Springer (2020)

22. Niu, S., Wu, J., Zhang, Y., Guo, Y., Zhao, P., Huang, J., Tan, M.: Disturbance-
immune weight sharing for neural architecture search. Neural Networks 144, 553–
564 (2021)

23. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture
search via parameters sharing. In: International Conference on Machine Learning
(ICML). pp. 4095–4104. PMLR (2018)

24. Platanios, E.A., Stretcu, O., Neubig, G., Póczos, B., Mitchell, T.: Competence-
based curriculum learning for neural machine translation. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). pp. 1162–1172 (2019)

25. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network
design spaces. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 10428–10436 (2020)

26. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: AAAI Conference on Artificial Intelligence. vol. 33,
pp. 4780–4789 (2019)

27. Ren, Z., Dong, D., Li, H., Chen, C.: Self-paced prioritized curriculum learning
with coverage penalty in deep reinforcement learning. IEEE transactions on neural
networks and learning systems 29(6), 2216–2226 (2018)

28. Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., Hutter, F.: Nas-bench-
301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777 (2020)

29. Soviany, P., Ionescu, R.T., Rota, P., Sebe, N.: Curriculum learning: A survey.
International Journal of Computer Vision (IJCV) pp. 1–40 (2022)

30. Su, X., You, S., Zheng, M., Wang, F., Qian, C., Zhang, C., Xu, C.: K-shot nas:
Learnable weight-sharing for nas with k-shot supernets. In: International Confer-
ence on Machine Learning (ICML). pp. 9880–9890. PMLR (2021)

31. Tay, Y., Wang, S., Luu, A.T., Fu, J., Phan, M.C., Yuan, X., Rao, J., Hui, S.C.,
Zhang, A.: Simple and effective curriculum pointer-generator networks for reading
comprehension over long narratives. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. pp. 4922–4931 (2019)

32. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 1492–1500 (2017)

33. Xie, S., Zheng, H., Liu, C., Lin, L.: Snas: stochastic neural architecture search. In:
International Conference on Learning Representations (ICLR) (2019)

http://arxiv.org/abs/2008.09777

CLOSE 17

34. Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu, C.: Cars:
Continuous evolution for efficient neural architecture search. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 1829–1838 (2020)

35. Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search
phase of neural architecture search. In: International Conference on Learning Rep-
resentations (ICLR) (2020)

36. Zela, A., Siems, J., Hutter, F.: Nas-bench-1shot1: Benchmarking and dissecting
one-shot neural architecture search. In: International Conference on Learning Rep-
resentations (ICLR) (2019)

37. Zhang, M., Li, H., Pan, S., Chang, X., Su, S.: Overcoming multi-model forgetting
in one-shot nas with diversity maximization. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 7809–7818 (2020)

38. Zhao, Y., Wang, L., Tian, Y., Fonseca, R., Guo, T.: Few-shot neural architecture
search. In: International Conference on Machine Learning (ICML). pp. 12707–
12718. PMLR (2021)

39. Zhou, H., Yang, M., Wang, J., Pan, W.: Bayesnas: A bayesian approach for neural
architecture search. In: International Conference on Machine Learning (ICML).
pp. 7603–7613. PMLR (2019)

40. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
International Conference on Learning Representations (ICLR) (2017)

41. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). pp. 8697–8710 (2018)

18 Z. Zhou, X. Ning et al.

A Additional Discussions on CLOSE and CLOSENet

A.1 Insights into the Improvements by Increasing Sharing Extent

Sec. 3.1 of the main paper shows that Supernet-2 (with larger sharing extent)
significantly outperforms Supernet-1 (with vanilla sharing extent) in the early
training stages. This observation is a bit counter-intuitive, since the previous
studies have shown that a large sharing extent would aggravate the parame-
ter coupling and multi-model forgetting phenomenon [3,37,22,20]. Therefore, it
might be confusing where these improvements come from. To further understand
our observation, we conduct a deeper inspection into the estimation results of
the Supernet-1 and Supernet-2, and find out that there are two reasons under-
lying the observation.

First, a larger parameter sharing extent accelerates the training pro-
cess of the supernet. This is due to the reduced number of the supernet’s
parameters. Previous studies reveal that a longer training can improve the rank-
ing quality, yet brings extra computational costs [19,20]. In our case, the highly-
shared supernet (Supernet-2) can achieve the same training performance under
a smaller computational budget, thus improve the ranking quality.

Second, a large parameter sharing extent alleviates the well-known
under-estimation phenomenon of larger architectures in vanilla one-
shot estimations [19,20]. Following the visualization technique of a recent
study [20], we divide the candidate architectures into five groups based on their
complexities, and obtain the average ranking difference of architectures in each
group. The ranking difference (RD) of an architecture is defined as the difference
of its true ranking and its estimated ranking by supernets. A negative RD indi-
cates the under-estimation of an architecture. As shown in Fig. A1, the average
RDs of the largest architectures in the top 20% (80% and 100% on the X-axis)
in Supernet-2 are closer to zero than that in Supernet-1 on both NAS-Bench-
201 and NAS-Bench-301. This indicates the alleviation of the under-estimation
phenomenon of larger architectures.

A.2 More Discussion on Using The GATE Module for The
Dynamic Decision of Sharing Scheme

The “Strengths compared to Vanilla Supernets” section and Fig. 3 of the main
paper have discussed how the dynamic decision of sharing scheme between ar-
chitectures in CLOSENet can facilitate a more proper parameter sharing scheme
between architectures. For example, recall that the two 1×1 convolutions in Fig.
3 (bottom) are equivalent in two isomorphic architectures despite having differ-
ent positions. And the vanilla supernet uses different parameters for these two
convolutions, while CLOSENet gives out a more proper sharing scheme to share
the same GLOW block for them.

CLOSE 19

20% 40% 60% 80% 100%

0.2

0.0

0.2

Ep
oc

h
10

0

NAS-Bench-201

Supernet-1
Supernet-2

20% 40% 60% 80% 100%
0.2

0.1

0.0

0.1

Ep
oc

h
20

0

20% 40% 60% 80% 100%
0.1

0.0

0.1

Ep
oc

h
30

0
20% 40% 60% 80% 100%

0.10

0.05

0.00

0.05
NAS-Bench-301

20% 40% 60% 80% 100%
0.10

0.05

0.00

0.05

20% 40% 60% 80% 100%
0.10

0.05

0.00

0.05

Fig.A1: Evaluation of the under-estimation phenomenon on NAS-Bench-201 and
NAS-Bench-301. X-axis: Complexity groups. Y-axis: Average RD.

This strength comes from the dynamic decision design of the sharing scheme,
and also partly from the GCN-based architecture embedder [21] adopted in our
GATE module. As this architecture embedder conducts permutation-invariant
aggregations on the graph, it can naturally map the counterpart nodes in isomor-
phic architectures to the same node embeddings. Therefore, for the equivalent
operations (i.e., the operations between the counterpart nodes) in two architec-
tures, the MLP in the GATE module takes the same embeddings as input, and
thus give out the same assignment.

The GCN-based architecture embedder adopted by CLOSENet, GATES [21],
mimics the actual data processing to model the NN architecture. Corresponding
to the computation flow of the cell-architecture in Sec. 3.2 of the main paper,
the embedding of node j (denoted as Ej in Eq. 3 of the main paper) is defined
as:

Ej =
∑
i<j

σ(OpEmb(o(i,j))Wo)⊙ EiWx, (A10)

where σ is a sigmoid function, OpEmb(o) gives out the embedding of this type of
operation, and Wo and Wx denote two different linear transformation matrices.
The embedding of the input node is randomly initialized.

20 Z. Zhou, X. Ning et al.

A.3 CLOSENet in Non-topological Search Spaces

In non-topological search spaces (e.g., ResNet-like search space [25]), the compu-
tation blocks (i.e., operations) are put in sequential order, which is different from
the topological structure in the generic search spaces. Therefore, we replace the
normal GATE module with a simple but effective strategy that assigns each
GLOW block to some consecutive operations in an interval. This assign-
ment strategy comes from the intuition that the consecutive operations in the
architectures have similar data processing functionality. Based on our analysis
in Sec. 3.2 of the main paper, it is more reasonable to share the parameters of
these operations. Since each operation has only one assigned block at the same
time, the assignment intervals of the GLOW blocks are nonoverlapping.

When adding a new GLOW block, we propose to choose an existing block and
divide its assignment interval down the middle. Then we assign the operations
in one of the divided intervals to the new block. In this way, we can naturally
apply the WIT to the new block to inherit the weights from the chosen one.

Fig. 5 in Sec. 4.1 of the main paper demonstrates that CLOSE consistently
achieves higher ranking quality across the training process on the two non-
topological search spaces (i.e., NDS ResNet and NDS ResNeXt-A).

A.4 Implementation of CLOSE

Alg. 1 shows the pipeline of using CLOSE to train CLOSENet. Specifically,
we construct CLOSENet with one GLOW block at the beginning. Then, we
gradually add blocks to reduce the sharing extent at the preset epochs. WIT
is applied to initialize the parameters of the new block and MLP unit. In each
training iteration, we randomly sample an architecture to update the parameters
of CLOSENet, including GLOW blocks and the GATE module, through the
Eq. 3 to Eq. 8 introduced in Sec. 3.2 of the main paper. SRT is applied to
restart the learning rate when it becomes too small.

B Detailed Configurations

B.1 Supernet Training

In our experiments, we use the same training configurations for vanilla one-shot
supernets and CLOSENet. In detail, we train supernets via a SGD optimizer
with momentum 0.9 and weight decay 5e-4 . The learning rate is set to 0.05
initially and decayed by 0.5 each time the supernet accuracy stops to increase
for 30 epochs. In the training process, the dropout rate is set to 0.1, and the
gradient norm is clipped to be less than 5. The batch size is set to 512. For each
batch of examples, we randomly sample one architecture to update supernets’
parameters. Besides, we set the training epochs of all supernets to 1000 epochs.

CLOSE 21

Algorithm 1 The Training Process of CLOSE on CLOSENet

Input:
D: Training data; T : Training epochs; A: Architecture search space;
SCL: The set of switch points (epochs) of sharing extent
SLR: The set of restart points (epochs) of learning rate

Training Process:
1: Construct a randomly initialized CLOSENet NA with one GLOW block
2: for t = 1, · · · , T do
3: if t ∈ SCL then
4: Adding a new GLOW block in NA

5: Using WIT to initialize the new block and GATE module
6: end if
7: if t ∈ SLR then
8: Using SRT to restart the learning rate and schedule
9: end if
10: for i = 1, · · · , I do
11: Randomly sample an architecture a ∈ A
12: Sample a batch of training data from D
13: Update parameters in NA with Eq. 3 ∼ Eq. 8
14: end for
15: end for
Output: The well-trained CLOSENet NA

B.2 Architecture Search

We adopt CARS [34], an improved evolutionary approach, to search the optimal
architectures in DARTS search space. The search process contains the supernet
training stage and the architecture search stage. We set the total epochs to
400, and set the population size to 100. We first train the supernet for 100
epochs to warm up the parameters. Then, in the supernet training stage, we
train the supernet for 5 epochs during one evolution iteration. In each mutation
step during the architecture search stage, random mutation, random crossover
and random sampling are conducted with a probability of 0.25, 0.25, and 0.5,
respectively, following CARS [34]. Fig. A2 shows the discovered architectures.

B.3 Training of the Discovered Architectures

On CIFAR-10, we stack the discovered architectures 20 times to construct the
network, and set its initial channel number to 36. The network is trained for 600
epochs with batch size 128. We use a SGD optimizer with momentum 0.9 and
weight decay 3e-4. The learning rate is decayed from 0.05 to 0.001 following a
cosine schedule. The dropout rate is set to 0.1, and the gradient norm is clipped
to be less than 5. Besides, the cutout augmentation with length 16, the path
dropout of probability 0.2 and the auxiliary towers with weight 0.4 are used.

When transferring the discovered architectures to ImageNet, we stack 14 cells
to construct the network, and set its initial channel number to 48. The network

22 Z. Zhou, X. Ning et al.

c_{k-2}
0dil_conv_5x5

1

sep_conv_3x3

c_{k-1}

skip_connect

dil_conv_3x3

2sep_conv_5x5

3
sep_conv_5x5

avg_pool_3x3

c_{k}

sep_conv_5x5

(a) Normal Cell

c_{k-2}

0

max_pool_3x3 1

c_{k-1}

dil_conv_3x3

2sep_conv_3x3
3skip_connect

sep_conv_3x3

dil_conv_5x5 c_{k}

sep_conv_5x5

max_pool_3x3

(b) Reduction Cell

Fig.A2: The discovered cell architectures by CLOSE.

is trained for 300 epochs with batch size 256. The weight decay is set to 3e-5,
and the learning rate is decayed from 0.1 to 0 following a cosine schedule. The
path dropout technique is not used.

C Additional Experiments

C.1 Investigation of The GATE Module

In this section, we conduct an experiment to further investigate the effectiveness
and robustness of the GATE module in CLOSENet. Specifically, we randomly
sample four pairs of architectures on NAS-Bench-301, where two of them have a
big structure difference (labeled as 1 and 2), and the other two pairs (labeled as
3 and 4) have a similar structure. Fig. A3 shows the four pairs of architectures.
We use a well-trained GATE module to obtain their assignment distribution
following the Eq. 4 of the main paper. Then we calculate the KL divergence of
the distribution between all the 3× 3 convolutions in each pair of architectures
and make a summation, which can reflect their assignment similarity. The results
of these four pairs are 4.9847 ± 0.0121, 3.2797 ± 0.0385, 0.4680 ± 0.0091 and
0.0003±0.0001. The stability of the KL divergence across different random seeds
shows the robustness of GATE. Meanwhile, the larger KL divergence of pair 1
and 2 also demonstrates the GATE module can give out a proper assignment of
blocks.

CLOSE 23

Arch Pair 2Arch Pair 1

Arch Pair 4Arch Pair 3

Very different in structure
KL divergence: 4.9847 ± 0.0121

Quite different in structure
KL divergence: 3.2797 ± 0.0385

Quite Similar in structure
KL divergence: 0.4680 ± 0.0091

Very Similar in structure
KL divergence: 0.0003 ± 0.0001

Fig.A3: The four pairs of the architectures we sample to investigate the GATE
module on NAS-Bench-301. We demonstrate the normal cells of the architectures
here. Architectures in Arch Pair 1 and Arch Pair 2 are different in structure,
while architectures in Arch Pair 3 and Arch Pair 4 are similar.

C.2 Effectiveness of The WIT Technique

The results shown in Sec. 4.3 of the main paper demonstrate that WIT plays
an important role in CLOSE. Here we provide a visualization to reveal its ne-
cessity more clearly. Fig. A4 shows that right after the curriculum (i.e., sharing
extent) switch, randomly initializing the parameters of the new GLOW block
and MLP unit significantly damages the ranking quality. On the contrary, WIT
helps CLOSE to retain the high ranking quality.

C.3 A Simplified Version of CLOSE: CLOSE-S

In this section, we provide a simplified version of CLOSE (namely CLOSE-
S). Based on the analysis in Sec. 3.1 of the main paper, we simply use the
two sharing extents of Supernet-1 and Supernet-2 in two stages of the training
process. Specifically, in the first stage (0 to 400 epoch), CLOSENet shares only
one copy of parameters on all the edges in each cell-architecture. While in the
second stage (400 to 1000 epoch), CLOSENet enables the operations on different
edges to share different copies of parameters. The WIT and SRT are also adopted
when switching the sharing scheme and extent at 400 epoch. In this way, we
can easily apply CLOSE-S to train CLOSENet without the help of the GATE
module, since the assignments of GLOW blocks are preset (but different) in these
two stages.

24 Z. Zhou, X. Ning et al.

600 601 602 603 604 605
0.1

0.2

0.3

0.4

0.5

800 801 802 803 804 805

0.2

0.3

0.4

0.5

CLOSE (w/o. WIT) Kendall's Tau
CLOSE (w. WIT) Kendall's Tau
CLOSE (w/o. WIT) P@top5%
CLOSE (w. WIT) P@top5%

Fig.A4: The trend of the ranking quality right after switching the sharing extent
(at 600 and 800 epoch) on NAS-Bench-301. X-axis: Training epochs. Y-axis:
Ranking quality (Kendall’s Tau or P@top5%).

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8 NAS-Bench-201

Vanilla Kendall's Tau
CLOSE Kendall's Tau
CLOSE-S Kendall's Tau

Vanilla P@top5%
CLOSE P@top5%
CLOSE-S P@top5%

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5
NAS-Bench-301

Fig.A5: Comparison of the vanilla one-shot supernet, CLOSE and CLOSE-S.
X-axis: Training epochs. Y-axis: Ranking quality (Kendall’s Tau or P@top5%).

As shown in Fig. A5, CLOSE-S achieves a higher KD and P@top5% than
the vanilla supernet on two generic search spaces across the training process.
Although it cannot reach the performances of CLOSE, CLOSE-S is easier to
implement, thus can be adopted when the performance demand is not as strict.

	CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS

