Skip to main content

Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation Search: Tight or Not

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13683))

Included in the following conference series:

Abstract

The rotation search problem aims to find a 3D rotation that best aligns a given number of point pairs. To induce robustness against outliers for rotation search, prior work considers truncated least-squares (TLS), which is a non-convex optimization problem, and its semidefinite relaxation (SDR) as a tractable alternative. Whether or not this SDR is theoretically tight in the presence of noise, outliers, or both has remained largely unexplored. We derive conditions that characterize the tightness of this SDR, showing that the tightness depends on the noise level, the truncation parameters of TLS, and the outlier distribution (random or clustered). In particular, we give a short proof for the tightness in the noiseless and outlier-free case, as opposed to the lengthy analysis of prior work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The catch is that the fast methods might not always be correct (e.g., at extreme outlier rates).

  2. 2.

     [5, 12, 39, 62] analyzed SDRs under noise but they are not for geometric vision problems.

  3. 3.

    Alternatively, if \((\boldsymbol{w}_0^*)^\top \boldsymbol{Q}_{j}\boldsymbol{w}_0^*\) is small, then \(\boldsymbol{Q}_{j}\) might be treated as noisy data rather than an outlier. We consider such noisy case in Sects. 3.3 (without outliers) and 3.4 (with outliers).

References

  1. Agostinho, S., Gomes, J., Del Bue, A.: CvxPnPL: a unified convex solution to the absolute pose estimation problem from point and line correspondences. Technical report. arXiv:1907.10545v2 [cs.CV] (2019)

  2. Aholt, C., Agarwal, S., Thomas, R.: A QCQP approach to triangulation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 654–667. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_47

    Chapter  Google Scholar 

  3. Alfassi, Y., Keren, D., Reznick, B.: The non-tightness of a convex relaxation to rotation recovery. Sensors 21(21), 7358 (2021)

    Article  Google Scholar 

  4. Antonante, P., Tzoumas, V., Yang, H., Carlone, L.: Outlier-robust estimation: hardness, minimally tuned algorithms, and applications. IEEE Trans. Robot. (2021)

    Google Scholar 

  5. Bandeira, A.S., Boumal, N., Singer, A.: Tightness of the maximum likelihood semidefinite relaxation for angular synchronization. Math. Program. 163(1–2), 145–167 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boumal, N.: An introduction to optimization on smooth manifolds. Available online (2020). http://www.nicolasboumal.net/book

  7. Briales, J., Gonzalez-Jimenez, J.: Fast global optimality verification in 3D SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4630–4636 (2016)

    Google Scholar 

  8. Briales, J., Gonzalez-Jimenez, J.: Convex global 3D registration with lagrangian duality. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4960–4969 (2017)

    Google Scholar 

  9. Briales, J., Kneip, L., Gonzalez-Jimenez, J.: A certifiably globally optimal solution to the non-minimal relative pose problem. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 145–154 (2018)

    Google Scholar 

  10. Brynte, L., Larsson, V., Iglesias, J.P., Olsson, C., Kahl, F.: On the tightness of semidefinite relaxations for rotation estimation. J. Math. Imaging Vision 64(1), 57–67 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bustos, A.P., Chin, T.J.: Guaranteed outlier removal for rotation search. In: IEEE International Conference on Computer Vision, pp. 2165–2173 (2015)

    Google Scholar 

  12. Candes, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carlone, L., Calafiore, G.C.: Convex relaxations for pose graph optimization with outliers. IEEE Robot. Automation Lett. 3(2), 1160–1167 (2018)

    Article  Google Scholar 

  14. Carlone, L., Calafiore, G.C., Tommolillo, C., Dellaert, F.: Planar pose graph optimization: duality, optimal solutions, and verification. IEEE Trans. Rob. 32(3), 545–565 (2016)

    Article  Google Scholar 

  15. Carlone, L., Rosen, D.M., Calafiore, G., Leonard, J.J., Dellaert, F.: Lagrangian duality in 3D SLAM: verification techniques and optimal solutions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 125–132 (2015)

    Google Scholar 

  16. Chaudhury, K.N., Khoo, Y., Singer, A.: Global registration of multiple point clouds using semidefinite programming. SIAM J. Optim. 25(1), 468–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, Y., Chi, Y., Fan, J., Ma, C., et al.: Spectral methods for data science: a statistical perspective. Found. Trends Mach. Learn. 14(5), 566–806 (2021)

    Google Scholar 

  18. Cheng, Y., Lopez, J.A., Camps, O., Sznaier, M.: A convex optimization approach to robust fundamental matrix estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2170–2178 (2015)

    Google Scholar 

  19. Cifuentes, D.: A convex relaxation to compute the nearest structured rank deficient matrix. SIAM J. Matrix Anal. Appl. 42(2), 708–729 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cifuentes, D., Agarwal, S., Parrilo, P.A., Thomas, R.R.: On the local stability of semidefinite relaxations. Mathematical Programming, pp. 1–35 (2021)

    Google Scholar 

  21. Ding, T., et al.: Robust homography estimation via dual principal component pursuit. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6080–6089 (2020)

    Google Scholar 

  22. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  23. Eriksson, A., Olsson, C., Kahl, F., Chin, T.J.: Rotation averaging and strong duality. In: Conference on Computer Vision and Pattern Recognition, pp. 127–135 (2018)

    Google Scholar 

  24. Fredriksson, J., Olsson, C.: Simultaneous multiple rotation averaging using lagrangian duality. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 245–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37431-9_19

    Chapter  Google Scholar 

  25. Garcia-Salguero, M., Briales, J., Gonzalez-Jimenez, J.: Certifiable relative pose estimation. Image Vis. Comput. 109, 104142 (2021)

    Article  Google Scholar 

  26. Garcia-Salguero, M., Gonzalez-Jimenez, J.: Fast and robust certifiable estimation of the relative pose between two calibrated cameras. J. Math. Imaging Vis. 63(8), 1036–1056 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Giamou, M., Ma, Z., Peretroukhin, V., Kelly, J.: Certifiably globally optimal extrinsic calibration from per-sensor egomotion. IEEE Robot. Automation Lett. 4(2), 367–374 (2019)

    Article  Google Scholar 

  28. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2004)

    Google Scholar 

  29. Horn, B.K.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629–642 (1987)

    Article  Google Scholar 

  30. Iglesias, J.P., Olsson, C., Kahl, F.: Global optimality for point set registration using semidefinite programming. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  31. Ikami, D., Yamasaki, T., Aizawa, K.: Fast and robust estimation for unit-norm constrained linear fitting problems. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8147–8155 (2018)

    Google Scholar 

  32. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  33. Kahl, F., Henrion, D.: Globally optimal estimates for geometric reconstruction problems. Int. J. Comput. Vision 74(1), 3–15 (2007)

    Article  MATH  Google Scholar 

  34. Khoo, Y., Kapoor, A.: Non-iterative rigid 2D/3D point-set registration using semidefinite programming. IEEE Trans. Image Process. 25(7), 2956–2970 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lajoie, P.Y., Hu, S., Beltrame, G., Carlone, L.: Modeling perceptual aliasing in SLAM via discrete-continuous graphical models. IEEE Robot. Automation Lett. 4(2), 1232–1239 (2019)

    Article  Google Scholar 

  36. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, M., Liang, G., Luo, H., Qian, H., Lam, T.L.: Robot-to-robot relative pose estimation based on semidefinite relaxation optimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4491–4498 (2020)

    Google Scholar 

  38. Ling, S.: Near-optimal bounds for generalized orthogonal procrustes problem via generalized power method. arXiv:2112.13725 [cs.IT] (2021)

  39. Lu, C., Liu, Y.F., Zhang, W.Q., Zhang, S.: Tightness of a new and enhanced semidefinite relaxation for MIMO detection. SIAM J. Optim. 29(1), 719–742 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma, Y., Soatto, S., Košecká, J., Sastry, S.: An Invitation to 3D Vision: From Images to Geometric Models, vol. 26. Springer (2004)

    Google Scholar 

  41. Maron, H., Dym, N., Kezurer, I., Kovalsky, S., Lipman, Y.: Point registration via efficient convex relaxation. ACM Trans. Graph. 35(4) (2016)

    Google Scholar 

  42. Ozyesil, O., Singer, A., Basri, R.: Stable camera motion estimation using convex programming. SIAM J. Imag. Sci. 8(2), 1220–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Parra Bustos, A., Chin, T.J.: Guaranteed outlier removal for point cloud registration with correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2868–2882 (2018)

    Article  Google Scholar 

  44. Parra Bustos, A., Chin, T.J., Eriksson, A., Li, H., Suter, D.: Fast rotation search with stereographic projections for 3D registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2227–2240 (2016)

    Article  Google Scholar 

  45. Peng, L., Fazlyab, M., Vidal, R.: Towards understanding the semidefinite relaxations of truncated least-squares in robust rotation search. Technical report, arXiv:2207.08350 [math.OC] (2022)

  46. Peng, L., Tsakiris, M.C., Vidal, R.: ARCS: accurate rotation and correspondences search. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11153–11163 (2022)

    Google Scholar 

  47. Probst, T., Paudel, D.P., Chhatkuli, A., Gool, L.V.: Convex relaxations for consensus and non-minimal problems in 3D vision. In: IEEE/CVF International Conference on Computer Vision, pp. 10233–10242 (2019)

    Google Scholar 

  48. Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.: SE-Sync: a certifiably correct algorithm for synchronization over the special euclidean group. Int. J. Robot. Res. 38(2–3), 95–125 (2019)

    Article  Google Scholar 

  49. Shi, J., Heng, Y., Carlone, L.: Optimal pose and shape estimation for category-level 3d object perception. In: Robotics: Science and Systems (2021)

    Google Scholar 

  50. Shor, N.Z.: Dual quadratic estimates in polynomial and boolean programming. Ann. Oper. Res. 25(1), 163–168 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tat-Jun, C., Zhipeng, C., Neumann, F.: Robust fitting in computer vision: Easy or hard? Int. J. Comput. Vision 128(3), 575–587 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tian, Y., Khosoussi, K., Rosen, D.M., How, J.P.: Distributed certifiably correct pose-graph optimization. IEEE Trans. Rob. 37(6), 2137–2156 (2021)

    Article  Google Scholar 

  53. Unnikrishnan, J., Haghighatshoar, S., Vetterli, M.: Unlabeled sensing with random linear measurements. IEEE Trans. Inf. Theory 64(5), 3237–3253 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, L., Singer, A.: Exact and stable recovery of rotations for robust synchronization. Inf. Inference J. IMA 2(2), 145–193 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Wise, E., Giamou, M., Khoubyarian, S., Grover, A., Kelly, J.: Certifiably optimal monocular hand-eye calibration. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 271–278. IEEE (2020)

    Google Scholar 

  56. Yang, H., Antonante, P., Tzoumas, V., Carlone, L.: Graduated non-convexity for robust spatial perception: From non-minimal solvers to global outlier rejection. IEEE Robot. Automation Lett. 5(2), 1127–1134 (2020)

    Article  Google Scholar 

  57. Yang, H., Carlone, L.: A quaternion-based certifiably optimal solution to the Wahba problem with outliers. In: IEEE International Conference on Computer Vision, pp. 1665–1674 (2019)

    Google Scholar 

  58. Yang, H., Carlone, L.: Certifiable outlier-robust geometric perception: Exact semidefinite relaxations and scalable global optimization. Technical report, arXiv:2109.03349 [cs.CV] (2021)

  59. Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. IEEE Trans. Rob. 37(2), 314–333 (2021)

    Article  Google Scholar 

  60. Zhao, J.: An efficient solution to non-minimal case essential matrix estimation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  61. Zhao, J., Xu, W., Kneip, L.: A certifiably globally optimal solution to generalized essential matrix estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  62. Zhong, Y., Boumal, N.: Near-optimal bounds for phase synchronization. SIAM J. Optim. 28(2), 989–1016 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by grants NSF 1704458, NSF 1934979 and ONR MURI 503405-78051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangzu Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, L., Fazlyab, M., Vidal, R. (2022). Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation Search: Tight or Not. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20050-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20049-6

  • Online ISBN: 978-3-031-20050-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics