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Abstract. The prime challenge in unsupervised domain adaptation (DA)
is to mitigate the domain shift between the source and target domains.
Prior DA works show that pretext tasks could be used to mitigate this
domain shift by learning domain invariant representations. However, in
practice, we find that most existing pretext tasks are ineffective against
other established techniques. Thus, we theoretically analyze how and
when a subsidiary pretext task could be leveraged to assist the goal task
of a given DA problem and develop objective subsidiary task suitability
criteria. Based on this criteria, we devise a novel process of sticker in-
tervention and cast sticker classification as a supervised subsidiary DA
problem concurrent to the goal task unsupervised DA. Our approach
not only improves goal task adaptation performance, but also facilitates
privacy-oriented source-free DA i.e. without concurrent source-target ac-
cess. Experiments on the standard Office-31, Office-Home, DomainNet,
and VisDA benchmarks demonstrate our superiority for both single-
source and multi-source source-free DA. Our approach also complements
existing non-source-free works, achieving leading performance.

1 Introduction

The prevalent trend in supervised deep learning systems is to assume that train-
ing and testing data follow the same distribution. However, such models often fail
[7] when deployed in a new environment (target domain) due to the discrepancy
in the training (source domain) and target distributions. A standard approach
to deal with this problem of domain shift is Unsupervised Domain Adaptation
(DA) [13,41], which aims to minimize the domain discrepancy [4] between source
and target. The prime challenge in DA is to facilitate the effective utilization of
the unlabeled samples while adapting to the target domain.

Drawing motivation from self-supervised pretext task literature [47,16], re-
cent DA works [6,43] have adopted subsidiary tasks as side-objectives to improve
the adaptation performance. The intuition is that subsidiary task objectives en-
force learning of domain-generic representations, leading to improved domain
alignment [66] and consequently, better feature clustering for unlabeled target
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Fig. 1. We tackle A. unsupervised goal task DA by introducing B. a concurrent
subsidiary supervised DA. C. Our theoretical insights reveal that subsidiary tasks
having both higher TSM (X-axis) and DSM (Y-axis) are most suitable for concurrent
goal-subsidiary adaptation (i.e. the shaded blue area). The proposed sticker-based tasks
better suit concurrent goal-subsidiary DA among other self-supervised pretext tasks.

[43]. We aim to design a similar framework but, contrary to prior works, we
adopt a novel perspective of subsidiary supervised DA for the subsidiary task
concurrent to unsupervised goal task DA. Specifically, the framework involves a
shared backbone with a goal classifier and a subsidiary classifier (Fig. 1A, B).

To better understand how subsidiary supervised DA objectives support goal
task DA, we intend to theoretically analyze the proposed framework. While sev-
eral subsidiary tasks are available in the literature, there has been little attention
on identifying the desirable properties of a subsidiary task that would better aid
the unsupervised DA. A recent self-supervised work [71] studied the effective-
ness of pretraining with existing subsidiary tasks [47,16] on different downstream
supervised settings such as fine-grained or medical image classification [50,72].
We argue that our intended theoretical analysis is necessary to understand the
same for DA settings as DA presents a different set of challenges compared to
downstream supervised learning paradigms.

Thus, we attempt to answer two interconnected questions,

1. How does subsidiary supervised DA help goal task unsupervised DA?

2. What kind of subsidiary tasks better suit concurrent goal-subsidiary DA?

For the first question, we uncover theoretical insights based on generalization
bounds in DA [4,84]. These bounds define distribution shift or domain discrep-
ancy between source and target as the worst discrepancy for a given hypothesis
space. We analyze the effect of adding the subsidiary supervised DA problem on
the hypothesis space of the shared backbone. Based on this, we find that a higher
domain similarity between goal and subsidiary task samples leads to a lower do-
main discrepancy. This leads to better adaptation for concurrent goal-subsidiary
DA w.r.t. naive goal DA. Further, we observe that a higher goal-subsidiary task
similarity aids effective learning of both tasks with the shared backbone, which
is crucial for subsidiary DA to positively impact the goal DA.

For the second question, we first devise a subsidiary-domain similarity metric
(DSM) and a subsidiary-task similarity metric (TSM) to measure the domain
similarity and task similarity between any subsidiary task with a given goal task.
Based on our theoretical insights, we propose a subsidiary task suitability criteria
using both DSM and TSM to identify DA-assistive subsidiary tasks. With this
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criteria, we evaluate the commonly used subsidiary tasks from the pretext task
literature like rotation prediction [43], patch location [66], and jigsaw permuta-
tion prediction [6] in Fig. 1C. We observe that these existing tasks have signifi-
cantly low DSM. On the other hand, dense output based tasks like colorization
[33] or inpainting [52] severely lack in TSM as goal task is classification-based.
Understanding these limitations, we devise a sticker-intervention that facilitates
domain preservation (high DSM) and propose a range of sticker-based subsidiary
tasks (Fig. 2). For general shape-based goal tasks, it turns out that sticker clas-
sification task has the best TSM among other sticker-based tasks. This yields
higher adaptation performance thereby validating the proposed criteria.

Subsidiary tasks under sticker-intervention

A L W X

A. Sticker location B. Sticker rotation C. Sticker classification

Fig. 2. Sticker intervention involves mixup of input with
a masked sticker. We devise the following sticker-based
tasks; A. locating the quadrant of the sticker, B. predicting
sticker rotation, C. classifying sticker category.

To evaluate our the-
oretical insights and
the proposed concur-
rent subsidiary DA, we
particularly focus on
source-free DA regime
[34,29]. In this, the
source and target data
are not concurrently
accessible while model
sharing is permitted. While this challenging setting holds immense practical
value by working within the data privacy regulations, we choose source-free DA
as it can prominently highlight our advantages. The well-developed discrepancy
minimization techniques, tailored to general DA scenarios, guide the adaptation
more significantly than our proposed approach but cannot be used for source-free
DA. Further, existing source-free works [37] rely heavily on pseudo-label based
self-training on target data. Our proposed subsidiary supervised adaptation im-
plicitly regularizes target-side self-training, leading to improved adaptation.

To summarize, our main contributions are:

– We introduce concurrent subsidiary supervised DA, for a subsidiary task,
that not only improves unsupervised goal task DA but also facilitates source-
free adaptation. We provide theoretical insights to analyze the impact of
subsidiary DA on the domain discrepancy, and hence, the goal task DA.

– Based on our insights, we devise a subsidiary DA suitability criteria to iden-
tify DA-assistive subsidiary tasks that better aid the unsupervised goal task
DA. We also propose novel sticker intervention based subsidiary tasks that
demonstrate the efficacy of the criteria.

– Our proposed approach achieves state-of-the-art performance on source-free
single-source DA (SSDA) as well as source-free multi-source DA (MSDA)
for image classification. The proposed approach also complements existing
non-source-free works, achieving leading performance.

2 Related Work
Pretext tasks in self-supervised learning. Pretext tasks are used to learn
deep feature representations from unlabeled data, in a self-supervised manner,
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for downstream tasks. There are several pretext tasks such as image inpaint-
ing [52], colorization [82,33,83], spatial context prediction [9], contrastive pre-
dictive coding [48], image rotation [16], and jigsaw puzzle solving [47]. Pretext
tasks are commonly used for pre-training on unlabeled data followed by finetun-
ing on labeled data. Conversely, we perform supervised DA for the pretext-like
task along with the unsupervised goal task DA, resulting in a representation
that aligns the domains while maintaining the goal task performance.
Source-free DA. Recently, several methods have investigated source-free DA.
USFDA [31] and FS [32] investigate universal DA [80] and open-set DA [60],
in a source-free setting by synthesizing training samples to make the decision
boundaries compact. SHOT [37,38], NRC [78] maximize mutual information and
propose pseudo-labeling, using global structure to match target features to that
of a fixed source classifier. To provide adaptation supervision, 3C-GAN [34]
generates labeled target-style images from a GAN. Finally, SFDA [39], UR [64],
and GtA [30] are semantic segmentation specific source-free DA techniques.
Pretext task based DA. Several DA works have demonstrated the efficacy
of learning meaningful representations using pretext tasks. Early works [14,15]
used reconstruction as a pretext task to extract domain-invariant features. [5]
captured both domain-specific and shared features by separating the feature
space into domain-private and domain-shared spaces. [6] used jigsaw puzzles as
a side-objective to tackle domain generalization. [66] proposed that adaptation
can be accomplished by learning many self-supervision tasks at the same time.
[26] suggested a cross-domain SSL strategy for adaptation with minimal source
labels based on instance discrimination [74]. [22] recommended employing SSL
pretext tasks like rotation prediction and patch placement prediction. [59] solved
the challenge of universal domain adaptation by unsupervised clustering. [57]
employed easy labels for synthetic images, such as the surface normal, depth,
and instance contour, to train a network. [11] employed SSL pretext tasks like
rotation prediction as part of their domain generalization technique.

3 Approach

In this section, we introduce required preliminaries (Sec. 3.1), followed by theo-
retical insights (Sec. 3.2) that motivate our training algorithm design (Sec. 3.4).

3.1 Preliminaries

3.1.1 Goal task unsupervised DA. For closed set DA problem, consider a
labeled source dataset Ds = {(xs, ys) : xs∈X , ys∈Cg} where X is the input
space and Cg denotes the label set for the goal task. xs is drawn from the marginal
distribution ps. Let Dt = {xt : xt∈X} be an unlabeled target dataset with
xt∼pt. The goal is to assign labels for each target image xt. The usual approach
[13,65,40] is to use a backbone feature extractor h : X →Z followed by a goal
classifier fg : Z → Cg (see Fig. 3). The expected source risk with h and an
optimal labeling function fS : X → Cg, is ϵs(h) = Ex∼ps

[1(fg ◦h(x) ̸= fS(x))],
where (.) is an indicator function. Similarly, ϵt(h) is the target risk with optimal
labeling function fT : X →Cg. We restate the theoretical upper bound on target
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risk from [84]. For backbone hypothesis h∈H with H being the hypothesis space
and a domain classifier fd : Z→{0, 1} (0 for source, 1 for target),

ϵt(h)≤ϵs(h) + dH(ps, pt)+λg; λg=min

{
E
ps
[1(fS(x) ̸=fT (x))], E

pt
[1(fS(x) ̸=fT (x))]

}
where, dH(ps, pt)= sup

h∈H

∣∣∣∣ E
x∼ps

[1(fd◦h(x)=1)]− E
x∼pt

[1(fd◦h(x)=1)]

∣∣∣∣ (1)

Fig. 3. Our method uses
a shared backbone h with
goal classifier fg and sub-
sidiary classifier fn.

Here, dH is the H-divergence [4] that indicates the
distribution shift or worst-case domain discrepancy
between the two domains. λg is a constant that rep-
resents the optimal cross-domain error of the labeling
functions. Thus, the target risk ϵt(h) is upper bounded
by these two terms along with the source risk ϵs(h).

3.1.2 Subsidiary supervised DA. Next, we in-
troduce a subsidiary supervised DA problem concur-
rent to the goal task unsupervised DA. To this end,
we aim to devise a subsidiary classification task with
a new label set Cn. The label-set specific attributes are inflicted on x ∈ X
via an intervention, to form supervised pairs. These pairs form labeled source,
(xs,n, yn)∈Ds,n and labeled target, (xt,n, yn)∈Dt,n datasets. Here, the in-
puts xs,n and xt,n are drawn from marginal distributions ps,n and pt,n re-
spectively. We also define the optimal labeling functions for source and tar-
get subsidiary task as fS,n : X → Cn and fT,n : X → Cn. Next, the prediction
mapping involves the shared goal-task backbone h followed by a subsidiary
classifier fn : Z → Cn (see Fig. 3). Here, the source-subsidiary task error is
ϵs,n(h) = Ex∼ps,n [1(fn ◦ h(x) ̸= fS,n(x))]. Similarly, ϵt,n(h) for target and λn
defined as in Eq. 1. Thus, generalization bounds for subsidiary DA with the same
H is stated as,

ϵt,n(h) ≤ ϵs,n(h) + dH(ps,n, pt,n) + λn (2)

3.1.3 Metrics. We introduce two metrics that form the basis of our insights.

a) Subsidiary-Domain Similarity Metric (DSM), γDSM(., .). DSM mea-
sures the similarity between two domains as the inverse of the standard A-
distance [4]. A-distance can be thought of as a proxy [13] for H-divergence.

b) Subsidiary-Task Similarity Metric (TSM), γTSM(., .). TSM measures
the task similarity of a subsidiary task w.r.t. the goal task. TSM is computed us-
ing the standard linear evaluation protocol [62] borrowed from transfer learning
and self-supervised literature. It is the performance of a subsidiary-task linear
classifier attached to a goal-task pretrained backbone feature extractor hs,g. In-
tuitively, it indicates the extent of compatibility between the two tasks.

For a dataset pair of source-goal and source-subsidiary, i.e. (Ds,Ds,n);

γDSM(Ds,Ds,n) = 1− 1

2
dA(Ds,Ds,n); γTSM(Ds,Ds,n) = 1−min

fn
ϵ̂s,n(hs,g) (3)

Here, dA(., .) denotes A-distance and ϵ̂s,n(.) denotes empirical error for sub-
sidiary task on source data. Note that 0≤ ϵ̂s,n(hs,g)≤1 while 0≤dA(D1,D2)≤2.
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3.2 Theoretical insights

We analyze the impact of solving subsidiary supervised DA on the goal task
unsupervised DA. We first consider the combined bounds (combining Eq. 1, 2),

ϵt(h) + ϵt,n(h) ≤ ϵs(h) + ϵs,n(h) + dH(ps, pt) + dH(ps,n, pt,n) + λg + λn (4)

Among the six terms on the right side, the two λ terms are constants as they do
not involve the hypothesis h or hypothesis space H. We analyze the source error
duet, ϵs(h)+ϵs,n(h), and the domain discrepancy duet dH(ps, pt)+dH(ps,n, pt,n).

3.2.1 Analyzing the domain discrepancy duet. First, we analyze w.r.t.
the domain discrepancy duet by considering the following three configurations.

Fig. 4. Three configura-
tions of hypothesis spaces.

a) While performing only unsupervised goal task
DA, the backbone optimization would operate on

a limited hypothesis space H(uns)
g ⊂ H where

H(uns)
g = {h∈H : |ϵt(h)− ϵs(h)| ≤ ζ

(uns)
g }. Here, ζ

(uns)
g

is a threshold on the source-target error gap.

b) While performing supervised adaptation only for
subsidiary domain adaptation, the optimization would

operate on a limited hypothesis space H(sup)
n ⊂H i.e.,

H(sup)
n = {h ∈ H : |ϵt,n(h)− ϵs,n(h)| ≤ ζ

(sup)
n }.

Here, ζ
(sup)
n is a threshold on the subsidiary-task source-target error gap.

c) While concurrently performing a) unsupervised goal task DA and b) sub-
sidiary supervised DA (i.e. the proposed approach), the optimization would op-

erate on a limited hypothesis spaceHg,n⊂H. Specifically,Hg,n=H(sup)
n ∩H(uns)

g .
This is because the backbone is shared between the two DA tasks and hence,
would be limited to the intersection space.

Different configurations lead to different H-spaces and consequently, different
H-divergences. Comparing the H-divergences leads us to the following insight.

Insight 1. (H-divergence in concurrent goal DA and subsidiary DA)
The backbone hypothesis space for concurrent unsupervised goal DA and sub-

sidiary supervised DA, i.e. Hg,n=H(sup)
n ∩H(uns)

g will yield a lower H-divergence

than H(uns)
g (hypothesis space for only unsupervised goal task DA), i.e.

dHg,n
(ps, pt) ≤ dH(uns)

g
(ps, pt) and dHg,n

(ps,n, pt,n) ≤ dH(uns)
g

(ps,n, pt,n) (5)

Remarks. In Eq. 1, dH(ps, pt) is the supremum over the hypothesis space H i.e.

a worst-case measure. SinceHg,n⊂H(uns)
g ,Hg,n would have a lowerH-divergence

as the worst-case hypothesis of H(uns)
g may be absent in the subset Hg,n. This

applies to both pairs, (ps, pt) and (ps,n, pt,n). While a lower H-divergence duet
leads to improved goal DA, the equality may hold when the worst hypothesis of

H(uns)
g remains in Hg,n. In such a case, concurrent DA would perform the same

as naive goal DA. To this end, we put forward the following insight.
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Insight 2. (When is concurrent DA strictly better than naive goal DA?)

A subsidiary task supports the strict inequality dHg,n
(ps, pt)< dH(uns)

g
(ps, pt) if

with at least (1−δ) probability, the subsidiary-domain similarity γDSM(Ds,Ds,n)
exceeds a threshold ζd by no less than ξ; P[γDSM(Ds,Ds,n) ≥ ζd − ξ] ≥ 1 − δ.

Remarks. In other words, the strict inequalities in Eq. 5 would hold if the DSM
γDSM(., .) exceeds a threshold ζd. The supports for this insight are twofold. First,
a subsidiary task may heavily alter domain information [44], e.g . jigsaw shuffling
[6]. Then, the backbone will be updated using out-of-domain samples which is
undesirable as such samples are unlikely for inference. This will be avoided if
Insight 2 is satisfied. Second, if DSM is high, we can approximate ps ≈ ps,n and
pt ≈ pt,n. Thus, more samples from subsidiary task data will be available for
training the backbone to be domain-invariant (as subsidiary task uses samples
from both the domains) i.e. reducing dH against the same in naive goal DA.

3.2.2 Analyzing the source error duet. Now we analyze w.r.t. the source
error duet of Eq. 4. While the H-divergence is lower for concurrent goal task DA
and subsidiary supervised DA, a logical concern is that simultaneous minimiza-
tion of errors, i.e. ϵs(h)+ ϵs,n(h), for both tasks may be difficult with the shared
backbone h. Further, it may happen that simultaneous training for both tasks
in target domain may hamper the goal task performance as it is unsupervised.
In such cases, the subsidiary task would be ill-equipped to assist the goal task
adaptation. To avoid these, we propose another empirical criterion as follows.

Insight 3. (Goal and subsidiary task similarity for concurrent DA)
Higher goal-subsidiary task similarity (TSM) aids effective minimization of both
task errors with the shared backbone, which is crucial for subsidiary supervised
DA to positively affect the goal task DA. The criterion is γTSM(Ds,Ds,n) > ζn.

Remarks. Here, ζn is a threshold. The TSM γTSM indicates the compatibility
of goal task features to support the subsidiary task. Intuitively, a higher TSM
implies more overlap in the discriminative features of the two tasks, which would
allow better simultaneous minimization of both task errors.

Based on Insight 1, concurrent subsidiary supervised DA and goal task DA
yields a lower domain discrepancy. Further, based on Insight 2, a subsidiary
task can be selected such that effective minimization of both source errors is
possible simultaneously. Thus, using Eq. 1, we can infer that suph∈Hg,n

ϵt(h) ≤
sup

h∈H(uns)
g

ϵt(h) i.e. a lower target error upper bound for our approach w.r.t.

naive goal task DA. Now, we summarize the criteria (Insight 2, 3).

Definition 1. (Subsidiary DA suitability criteria) A subsidiary task is
termed DA-assistive i.e. suitable for subsidiary supervised DA if the sum of DSM
γDSM and TSM γTSM exceeds a threshold ζ,

γDSM(Ds,Ds,n) + γTSM(Ds,Ds,n) > ζ (6)

Remarks. In other words, a subsidiary task which is domain-preserving and has
high task similarity w.r.t. the goal task is DA-assistive i.e. suitable for subsidiary
supervised DA to aid the goal task DA. We employ this criteria empirically
for a diverse set of subsidiary tasks (shown in Fig. 1C). Next, we describe the
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motivation for our proposed sticker intervention and corresponding subsidiary
tasks as well as training algorithms tailored for source-free DA.

3.3 Sticker intervention based subsidiary task design

While one may consider pretext tasks from the self-supervised learning literature
as candidates for subsidiary DA, almost all such tasks fail to satisfy subsidiary
DA suitability criteria in Eq. 6. For instance, dense output based tasks such
as colorization [82,33], inpainting [52], etc. exhibit markedly low task similar-
ity (TSM) against the non-dense goal tasks. Further, the input intervention for
certain pretext tasks such as jigsaw [6], patch-location[66], rotation [43,22], sig-
nificantly alter the domain information leading to low domain similarity (DSM).

Insight 4. (Sticker-intervention based tasks well suit subsidiary DA)
Sticker intervention is the process of pasting a sticker xn (i.e., a symbol with
random texture and scale) on a given image sample xs ∈ Ds to obtain a stick-
ered sample, i.e. xs,n = T (xs, xn) ∈ Ds,n. Following this, the subsidiary task
could be defined as the classification of some sticker attribute (e.g. shape, loca-
tion, or orientation). Such a formalization provides effective control to maximize
γDSM(Ds,Ds,n) and γTSM(Ds,Ds,n), in line with our suitability criteria.

Apply soft sticker-mask
(random scale, location and texture)

Sticker intervention

input outputmask

Fig. 5. Sticker intervention.

Remarks. The sticker intervention (Fig. 5) fa-
cilitates domain preservation while simultaneously
supporting a range of subsidiary tasks. Since the
proposed sticker intervention alters only a local area
of the sample, the original content is not suppressed
which in turn preserves the domain information, im-
plying high DSM. Following this, one can ablate over a range of sticker-based
tasks in order to select a suitable subsidiary task based on the given goal task.
Below, we discuss some possible subsidiary tasks under the sticker intervention.
a) Sticker location (Fig. 2A). We draw motivation from patch-location [66],
where the task is to classify the quadrant to which a patch-input belongs. With
sticker intervened images, the task is to classify the quadrant with the sticker.
Our use of whole images as input is more domain-preserving than patch-input.
b) Sticker rotation (Fig. 2B). Motivated by the image rotation task [43], we
propose sticker rotation task where the rotation of the sticker has to be classified
(0◦, 90◦, 180◦and 270◦rotations possible). Note that our sticker rotation does not
affect the domain information while rotating the entire image does.
c) Sticker classification (Fig. 2C). While the discriminative features in the
previous two tasks were location and rotation, we propose sticker classification
task with primary discriminative features as shape. In other words, the task is
to classify the sticker shape (i.e. the symbol) given a stickered sample.

3.4 Training algorithm design under source-free constraints

For the standard DA setting with concurrent access to source and target data
[13,65], the subsidiary supervised DA can be implemented simply by optimiz-
ing the subsidiary classification loss simultaneously for source and target. This
would yield a lower domain discrepancy as discussed in Sec. 3.2. However, in the
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more practical source-free setting [34,31] where concurrent source-target access
is prohibited, this simple approach would not be possible. We believe the im-
provements will be prominent in source-free DA based on the following insight:

Insight 5. (Subsidiary DA better suits challenging source-free DA).
Existing source-free DA works heavily rely on pseudo-label or clustering based
self-training on unlabeled target with no obvious alternative. The proposed sub-
sidiary supervised adaptation helps to implicitly regularize the target-side self-
training, leading to improved adaptation performance. The subsidiary DA not
only aids goal DA as a result of high DSM but also preserves the goal task induc-
tive bias as a result of high TSM, while adhering to the source-free constraints.

Remarks. The source-free setting presents new challenges which highlight the
advantages of our proposed method more prominently. This is because, the per-
formance in non-source-free DA is strongly influenced by well-developed discrep-
ancy minimization techniques. However, these techniques cannot be leveraged in
a source-free setting due to their requirement of concurrent source-target data
access. Thus, we primarily operate in the source-free regime to evaluate our the-
oretical insights and the proposed concurrent subsidiary supervised DA problem.

A. Source-side training B. Target-side training
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r 
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Supervised 

DA

Goal task
Unsupervised 

DA

Fig. 6. A. Source-side training involves
goal pre-training (Sec. 3.4.1) and sticker
pre-training (Sec. 3.4.2). B. Target-side
training involves concurrent goal-task
unsupervised DA and sticker-task super-
vised DA (Sec. 3.4.3).

We perform the training in three
steps. First two steps involve pre-
training of goal task and subsidiary task
respectively with source data. The final
step involves adapting both tasks to tar-
get domain. For clarity, we first summa-
rize available and intervened datasets re-
quired for training and their notations.

Datasets. The goal task source data is
denoted by (xs, ys) ∈ Ds while the cor-
responding unlabeled target is denoted
by xt ∈ Dt. The intervened stickered-
source data, coupled with both goal
and sticker task labels, is denoted by
(xs,n, ys, yn) ∈ Ds,n. The correspond-
ing stickered-target data, with only sub-
sidiary sticker task labels, is denoted
by (xt,n, yn) ∈ Dt,n. We introduce
a pseudo-OOS (out-of-source) dataset,

D(od)
s further in this section.

3.4.1. Goal task source pre-training (Fig. 6A). We train the backbone h
and goal classifier fg with source data Ds and stickered-source data Ds,n:

min
θh,θfg

E
(x,y)∈Ds∪Ds,n

[Ls,g]; Ls,g = Lce(fg◦h(x), y) (7)

Here, θh and θfg are the parameters of h and fg, Lce is the cross-entropy loss, y
is the goal task label, and expectation is implemented by sampling mini-batches.
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3.4.2. Sticker task source pre-training (Fig. 6A). We pretrain the sticker
classifier fn while inculcating the ability to reject samples out of the source
distribution. Specifically, fn predicts a (|Cn| + 1)-sized vector and is trained to
classify out-of-source (OOS) samples to the (|Cn|+ 1)th class.

Insight 6. The OOS node in the sticker classifier implicitly behaves as a do-
main discriminator from adversarial alignment methods. Minimizing the OOS
probability only for the target data aligns the target with the source.

Remarks. In source training, the OOS objective forces the sticker classifier to
discriminate between source and OOS samples. This is done with the intuition
that OOS samples simulate the role of target samples in adversarial alignment
methods. This domain discriminatory knowledge will support future source-free
target alignment. Concretely, the shared backbone can be adapted to the target,
by minimizing OOS probability for target samples, as source knowledge is pre-
served by freezing fg. Thus, we require OOS data to prepare fn for adaptation.

Obtaining the OOS dataset. The naive approach is to use a dataset unre-
lated to the goal task label set. Conversely, we devise a pseudo-OOS dataset
using only the already available source samples. Mitsuzumi et al . [44] show that,
beyond a certain grid size, shuffling the grid patches makes the domain unrec-
ognizable. Inspired by this, we generate the pseudo-OOS dataset by shuffling
the grid patches of source images. We also perform the sticker intervention on
shuffled images, at random, to further instill the differences between source and

pseudo-OOS samples (see Suppl). Formally, (x
(od)
s , y

(od)
s ) ∈ D(od)

s where y
(od)
s

denotes the OOS category i.e. the (|Cn|+ 1)th category of fn.
We train only the sticker classifier fn, keeping backbone h and goal classifier

fg frozen, using cross-entropy loss Lce. With Ls,n = Lce(fn ◦h(xs,n), yn), the
overall objective for stickered source data Ds,n and pseudo-OOS data D(od)

s is,

min
θfn

E
Ds,n

[Ls,n]+ E
D(od)

s

[L(od)
s ]; where L(od)

s =Lce(fn◦h(x(od)s ), y(od)s ) (8)

3.4.3. Source-free target adaptation (Fig. 6B). For unsupervised goal task
adaptation, we use the general self training loss Lst and diversity loss Ldiv [37].
See Suppl. for more details. The goal task objective is given in Eq. 9 (left),

min
θh

E
Dt∪Dt,n

[Lst + Ldiv] and min
(θh,θfn )

E
Dt,n

[Lt,n]; Lt,n=Lce(fn◦h(xt,n), yn) (9)

The goal classifier fg is frozen to preserve its inductive bias and only the back-
bone h is updated for both original and stickered samples in Eq. 9 (left).

For subsidiary supervised sticker adaptation, we use a simple cross-entropy
loss with sticker labels. We implicitly minimize OOS probability by maximizing
label class probability. We observe that this works well and explicit minimization
of OOS probability is not required. As per Insight 6, out-of-target (OOT) samples
are not required. Further, using OOT samples to update the backbone could be
undesirable as discussed under Insight 2. The objective is given in Eq. 9 (right).
Both backbone h and sticker classifier fn are updated as the task is supervised.
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Table 1. Single-Source Domain Adaptation (SSDA) on Office-Home benchmarks. SF
indicates source-free adaptation.

Method SF
Office-Home

Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

FixBi [45] ✗ 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
SENTRY[55] ✗ 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2
SCDA [35] ✗ 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1

SHOT [37] ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
A2Net [75] ✓ 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
GSFDA [79] ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
CPGA [56] ✓ 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
NRC [78] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
SHOT++[38] ✓ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
Ours ✓ 61.0 80.4 82.5 69.1 79.9 79.5 69.1 57.8 82.7 74.5 65.1 86.4 74.0

4 Experiments

We provide the implementation details of our experiments and thoroughly eval-
uate our approach w.r.t. state-of-the-art prior works across multiple settings.
Unless mentioned, Ours implies sticker classification as the subsidiary task.

4.1 Experimental setup

Datasets. We evaluate the effectiveness of our approach on four standard DA
benchmarks. Office-31 [58] benchmark consist of three domains under office
environments: Amazon (A), DSLR (D), and Webcam (W), each with 31 object
categories. Office-Home [70] is a more challenging dataset. It comprises of im-
ages of commonplace objects divided into four domains: Artistic (Ar), Clipart
(Cl), Product (Pr), and Real-World (Rw), each with 65 classes. VisDA [54] is
a large-scale dataset for synthetic-to-real domain adaptation. The source domain
has 152,397 synthetic images, while the target domain has 55,388 real-world im-
ages. DomainNet [53] is the most challenging due to its highly diverse domains
and huge class imbalance. It has 6 domains: Clipart (C), Real (R), Infograph
(I), Painting (P), Sketch (S) and Quickdraw (Q) with 345 classes each.

Implementation details. We use a ResNet-50 [18] backbone for Office-Home,
Office-31 and DomainNet, and ResNet-101 for VisDA, for a fair comparison with
prior works. We employ the same network design as SHOT [37], i.e. replacing
the classifier with a fully connected layer with batch norm [21] and another fully
connected layer with weight normalization [61]. For the subsidiary classifier, we
use the same architecture after ResLayer-3. The number of sticker classes is
10. See Suppl. for more details related to sticker intervention and sticker-based
tasks. Following [2,37], we use label smoothing for source training using Adam
[28] with learning rate 1e-3, momentum 0.9, and batch size 64. We use separate
Adam optimizers for each loss term to avoid loss balancing hyperparameters.

4.2 Discussion

We provide an extensive ablation study of both the source-side and target-side
training. Further, we show that our approach is compatible with existing non-
source-free DA works and achieves faster and improved convergence.
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Table 2. Multi-Source Domain Adaptation (MSDA) on DomainNet and Office-Home.
We outperform source-free (denoted by SF) prior arts despite not using domain labels.

Method SF w/o Domain
Labels

DomainNet Office-Home

→C →I →P →Q →R →S Avg →Ar →Cl →Pr →Rw Avg

WAMDA [1] ✗ ✗ 59.3 21.8 52.1 9.5 65.0 47.7 42.6 71.9 61.4 84.1 82.3 74.9
SImpAl50 [69] ✗ ✗ 66.4 26.5 56.6 18.9 68.0 55.5 48.6 70.8 56.3 80.2 81.5 72.2
CMSDA [63] ✗ ✗ 70.9 26.5 57.5 21.3 68.1 59.4 50.4 71.5 67.7 84.1 82.9 76.6
DRT [36] ✗ ✗ 71.0 31.6 61.0 12.3 71.4 60.7 51.3 - - - - -
STEM [46] ✗ ✗ 72.0 28.2 61.5 25.7 72.6 60.2 53.4 - - - - -

Source-combine ✗ ✓ 57.0 23.4 54.1 14.6 67.2 50.3 44.4 58.0 57.3 74.2 77.9 66.9
SHOT [37]-Ens ✓ ✗ 58.6 25.2 55.3 15.3 70.5 52.4 46.2 72.2 59.3 82.8 82.9 74.3
DECISION [2] ✓ ✗ 61.5 21.6 54.6 18.9 67.5 51.0 45.9 74.5 59.4 84.4 83.6 75.5
SHOT++ [38] ✓ ✗ - - - - - - - 73.1 61.3 84.3 84.0 75.7
CAiDA [10] ✓ ✗ - - - - - - - 75.2 60.5 84.7 84.2 76.2
NRC [78] ✓ ✓ 65.8 24.1 56.0 16.0 69.2 53.4 47.4 70.6 60.0 84.6 83.5 74.7
Ours ✓ ✓ 70.3 25.7 57.3 17.1 69.9 57.1 49.6 75.1 64.1 86.6 84.4 77.6

4.2.1 Comparison with prior arts

a) Single Source Domain Adaptation (SSDA). We compare our proposed
approach with prior source-free SSDA works in Table 1 and 4. Our approach out-
performs source-free NRC [78] and SHOT++ [38] by 1.5% and 1.7% respectively
on Office-31 (Table 4), and gives comparable performance to non-source-free
works. On the larger and more challenging VisDA dataset, our approach sur-
passes NRC by 1.6% and SHOT++ by 1% (Table 4). On Office-Home (Table 1),
our model achieves state-of-the-art results exceeding the source-free SHOT++
and the non-source-free method SCDA [35] by 1% and 0.9% respectively.

b) Multi Source Domain Adaptation (MSDA). In Table 2, we compare
with the source-only baseline (source-combine) and source-free works. Even with-
out domain labels, our approach achieves state-of-the-art results, even w.r.t.
non-source-free works on Office-Home (+1%). On DomainNet, we outperform
source-free works (+2.2%) with comparable results to non-source-free works.

Table 3. Subsidiary task com-
parisons on Office-Home for
source-free DA. Here, baseline
is same as #3 in Table 6.

Method SSDA MSDA

Baseline (B) 66.2 74.3
B + inpainting 66.3 74.5
B + colorization 66.8 74.7

B + jigsaw 67.0 74.8
B + patch-loc 67.6 75.0
B + rotation 67.9 75.4

B + sticker-loc 68.8 75.5
B + sticker-rot 69.0 75.7
B + sticker-clsf 69.7 76.2

c) Evaluating the subsidiary DA suitability
criteria. We empirically evaluate the DSM and
TSM for our sticker-based tasks as well as existing
tasks borrowed from self-supervised literature in
Fig. 7A, 7B. Compared to patch location [66] and
image rotation [43], sticker location and sticker
rotation tasks exhibit higher DSM and thus, are
more suitable with better adaptation performance
(also see Table 3). However, the sticker classifica-
tion task is the most suitable due to its higher
TSM as shape is the primary discriminative fea-
tures, same as in the goal task. We observe a
positive correlation between DA performance and
both DSM and TSM, which empirically verifies
our suitability criteria. In Table 3, we addition-
ally compare dense output based tasks like colorization and inpainting, which
give marginal gains compared to other subsidiary tasks.
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Fig. 7. We observe higher A. domain similarity (DSM) and B. task similarity (TSM)
for our sticker-based tasks compared to existing subsidiary tasks like patch-location
and image-rotation. This correlates with the better MSDA performance of sticker-based
tasks on Office-Home and validates our criteria (Definition 1). C. Faster and improved
convergence w.r.t. prior source-free works on both SSDA and MSDA for Office-Home.

Table 4. Single-Source DA (SSDA) on Office-31 and VisDA. SF indicates source-free.

Method SF
Office-31 VisDA

A→D A→W D→W W→D D→A W→A Avg S → R

CAN [25] ✗ 95.0 94.5 99.1 99.8 78.0 77.0 90.6 87.2
FixBi [45] ✗ 95.0 96.1 99.3 100.0 78.7 79.4 91.4 87.2
CDAN+RADA [23] ✗ 96.1 96.2 99.3 100.0 77.5 77.4 91.1 76.3
RFA [3] ✗ 93.0 92.8 99.1 100.0 78.0 77.7 90.2 79.4

SHOT [37] ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6 82.9
CPGA [56] ✓ 94.4 94.1 98.4 99.8 76.0 76.6 89.9 84.1
HCL [19] ✓ 90.8 91.3 98.2 100.0 72.7 72.7 87.6 83.5
VDM-DA [68] ✓ 93.2 94.1 98.0 100.0 75.8 77.1 89.7 85.1
A2Net [75] ✓ 94.5 94.0 99.2 100.0 76.7 76.1 90.1 84.3
NRC [78] ✓ 96.0 90.8 99.0 100.0 75.3 75.0 89.4 85.9
SHOT++ [38] ✓ 94.3 90.4 98.7 99.9 76.2 75.8 89.2 87.3
Ours ✓ 96.1 94.5 99.2 100.0 77.1 78.5 90.9 88.2

d) Faster and improved convergence. Fig. 7C illustrates the improved and
faster convergence of our approach compared to source-free prior arts for both
SSDA and MSDA. The hypothesis space for concurrent subsidiary supervised
DA and unsupervised goal task DA, Hg,n, is a subset of the hypothesis space for

only unsupervised goal task DA, H(uns)
g . Thus, we observe faster convergence

for our approach. Further, as per Insight 1, the lower domain discrepancy leads
to a lower target error i.e. improved convergence.

4.2.2 Ablation Study. Below, we discuss a thorough ablation study.

a) Effect of subsidiary supervised DA and OOS node. In Table 6, we com-
pare the baseline i.e. only unsupervised goal task DA (#3) with the addition of
only OOS classifier (#4). Here, a binary classifier is used for OOS detection. We
observe gains of 0.8% and 0.6% for SSDA and MSDA respectively. This indicates
that only OOS helps, but subsidiary classifier is essential for further improve-
ments. Next, we compare the baseline (#3) with concurrent goal-subsidiary DA
without using OOS (#5). We observe an improvement of 3.5% and 1.9% for
SSDA and MSDA. Adding the OOS objective to the subsidiary supervised DA
(#6 vs. #4) improves the source-target alignment as explained in Insight 6,
resulting in improvements of 3.1% and 1.4% for SSDA and MSDA.
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Table 5. Evaluating compatibil-
ity of subsidiary DA with non-
source-free DA works on Office-
Home. SSDA and MSDA indicate
single-source and multi-source DA.

Method
Office-Home

SSDA MSDA

CDAN [41] 65.8 69.4
+ Subsidiary-DA 67.1 71.2

SRDC [67] 71.3 73.1
+ Subsidiary-DA 71.9 75.2

FixBi [45] 72.7 -
+ Subsidiary-DA 73.7 -

CMSDA [63] - 76.6
+ Subsidiary-DA - 78.1

Table 6. Ablation analysis. Here, sticker-w-OOS-
clsf denotes learning with all the proposed com-
ponents unlike in only-OOS-clsf (all losses except
Ls,n,Lt,n) and only-sticker-clsf (all losses except

L(od)
s ). SF denotes source-free constraint.

# Variation SF
Office-Home

SSDA MSDA

1. Source-only baseline - 60.2 66.9

2. + sticker-w-OOS-clsf - 61.9 71.4

3. Adaptation baseline (B) ✓ 66.2 74.3

4. B + only-OOS-clsf ✓ 67.0 74.9

5. B + only-sticker-clsf ✓ 69.7 76.2

6. B + sticker-w-OOS-clsf ✓ 73.1 77.6

7. B + sticker-w-OOS-clsf ✗ 74.5 78.3

b) Subsidiary-goal task similarity. As per Insight 3, higher goal-subsidiary
task similarity is important for effective learning of both tasks. Thus, in Table 6,
we compare the source-only baseline (#1) with only subsidiary supervised DA
without goal task target adaptation (#2). We observe gains of 1.7% and 1.3% for
SSDA and MSDA respectively. This illustrates the positive correlation between
sticker classification and goal task even when target goal losses are not used.

4.2.3 Compatibility with non-source-free DA. In Table 5, we evaluate
the compatibility of concurrent subsidiary supervised DA with existing non-
source-free SSDA techniques [13,41,67]. MSDA results are obtained by combining
the multiple sources for each target. Compared to the original reported results,
all four perform better with our proposed subsidiary DA. Note that our non-
source-free variant outperforms these results (#7 in Table 6).

5 Conclusion

In this work, we introduced concurrent subsidiary supervised DA for a pretext-
like task to aid the unsupervised goal task DA. We provide theoretical insights
to analyze the effect of subsidiary supervised DA on the domain discrepancy and
consequently on the goal task adaptation. Based on the insights, we introduce
a subsidiary DA suitability criteria to determine DA-assistive subsidiary tasks
that improve the goal task DA performance. We also propose a novel sticker
intervention based pretext task that follows our criteria. The proposed approach
outperforms prior state-of-the-art source-free SSDA and MSDA works on four
standard benchmarks, establishing the usefulness of our approach.
Acknowledgments. This work was supported by MeitY (Ministry of Electron-
ics and Information Technology) project (No. 4(16)2019-ITEA), Govt. of India
and a research grant by Google.
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Supplementary Material:
Concurrent Subsidiary Supervision for

Unsupervised Source-Free Domain Adaptation

Supplementary Video

We provide a high-level summary video at https://youtu.be/ENJMz-Eg87k.
We visually demonstrate the key insights of our work as well as illustrate the
different subsidiary tasks and training algorithm used. We encourage the reader
to go through the video for a better understanding of the key ideas.

Supplementary Document

In this document, we provide extensive implementation details, additional perfor-
mance analysis and ablation studies. Towards reproducible research, we release
our complete codebase and trained network weights at https://github.com/

val-iisc/StickerDA. This supplementary is organized as follows:

– Section A: Notations (Table 7)
– Section B: Approach (Algo. 1)

◦ Target adaptation (Sec. B.1)
◦ Subsidiary DA suitability criteria (Sec. B.2)

– Section C: Implementation details

◦ Sticker intervention (Sec. C.1, Fig. 8, 9)
◦ Experimental settings (Sec. C.2)

– Section D: Analysis

◦ Extended comparisons (Sec. D.1, Table 12, 8, 9)
◦ Hyperparam. sensitivity (Sec. D.2, Table 10, Fig. 11, 10)
◦ Domain discrepancy analysis (Sec. D.3, Fig. 10)
◦ Domain alignment analysis (Sec. D.4, Fig. 10)
◦ Efficiency analysis (Sec. D.5, Table 11)
◦ Combining subsidiary tasks (Sec. D.6, Table 13)
◦ Differences and relationships with prior-arts (Sec. D.7, Table 14, 15)

A Notations

We summarize the notations used in the paper in Table 7. The notations are
listed under 5 groups: Models, Preliminaries, Datasets, Samples, and Spaces.

B Approach

We summarize our approach in Algo. 1 and provide details of the target adapta-
tion objectives that were omitted from the main paper due to space constraints.

https://youtu.be/ENJMz-Eg87k
https://github.com/val-iisc/StickerDA
https://github.com/val-iisc/StickerDA
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Table 7. Notation Table

Symbol Description

M
o
d
el
s h Shared backbone feature extractor

fg Goal task classifier
fn Subsidiary task classifier

P
re
li
m
in
a
ri
es

ps Source marginal distribution
pt Target marginal distribution
ϵs Source goal task error
ϵt Target goal task error
ϵs,n Source subsidiary task error
ϵs,n Target subsidiary task error
dH H-divergence
H Backbone hypothesis space

H(uns)
g H-space for unsup. goal task

H(sup)
n H-space for sup. subsidiary task

D
a
ta
se
ts

Ds Labeled source dataset
Dt Unlabeled target dataset
Ds,n Subsidiary source dataset
Dt,n Subsidiary target dataset

D(od)
s Pseudo-OOS dataset

S
a
m
p
le
s

(xs, ys) Labeled source sample
(xs,n, ys, yn) Labeled subsidiary source sample

(x
(od)
s , y

(od)
s ) Labeled pseudo-OOS sample

xt Unlabeled target sample
(xt,n, yn) Subsidiary target sample

S
p
a
ce
s

X Input space
Z Backbone feature space
Cg Label set for goal task
Cn Label set for subsidiary task

B.1 Target adaptation

Self-training loss. We apply self-supervision in the target domain to cluster
target samples based on their neighborhood [78]. Each target sample in the
feature space is aligned with its neighbor. As a result, the model learns a dis-
criminative metric that translates a point to a semantically similar match. This
is accomplished by reducing the entropy over point similarity. The model learns
tightly clustered features as it moves neighboring points closer together, resulting
in discriminative decision boundaries.

For each mini-batch of target features, we calculate the similarity to all target

samples. Let F
(mb)
t ∈ R|Dt|×d denote the memory bank which stores all target

features and d denotes the dimensions for output features fg ◦ h(xt). Here, |Dt|
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denotes the number of samples in the target dataset. All stored features are
L2-normalized. Specifically,

F
(mb)
t = [F1, F2, . . . , F|Dt|] (10)

where Fj denotes the jth item in F
(mb)
t . Let fi = h(xi) denote the features

of the current ith mini-batch, and Bt denote the set of indices of the mini-batch

samples in F
(mb)
t . The probability that fi is a neighbor of the feature Fj is,

pi,j =
exp(FT

j fi/T )∑|Dt|
j=1,j ̸=i exp(F

T
j fi/T )

(11)

where the temperature parameter T controls the number of neighbors. Then,
the entropy i.e. the loss is defined as,

Lst = − 1

|Bt|
∑
i∈Bt

Dt∑
j=1,j ̸=i

pi,j log(pi,j) (12)

Diversity loss. We encourage the prediction to be balanced to avoid degenerate
solutions, where the model predicts all data to a particular class (and does not
predict other classes for any target sample). We employ the prediction diversity
loss, which has been frequently used in clustering [17] and domain adaptation
[37]. The diversity objective is,

Ldiv(fg ◦ h(x)) = DKL(p̂,
1

|Cg|
1|Cg|)− log |Cg| (13)

where 1|Cg| represents a |Cg|-dimensional vector of ones, p̂=Ext∈Dt
[σ(fg◦h(xt))]

is average output embedding for entire target dataset, and σ denotes softmax.

B.2 Subsidiary DA suitability criteria

B.2.1 Subsidiary-Domain Similarity Metric (DSM). As discussed in
Sec. 3.1.3 of the main paper, we define subsidiary-domain similarity metric, γDSM

as the inverse of the H-divergence between the two domains. We follow [13] and
use the A-distance [4] between the goal task dataset Ds and the subsidiary task
dataset Ds,n as a proxy for H-divergence. We define the dataset labels as 1 for
subsidiary source dataset Ds,n and 0 for original source dataset Ds and train
a linear binary classifier on the features of a frozen ImageNet-pretrained [51]
ResNet-50 [18] with a subset of the mixed data, and obtain the classifier error
on the other subset as ψ. The DSM is then computed as,

dA(Ds,Ds,n) = 2ψ(1− ψ) (14)

γDSM(Ds,Ds,n) = 1− 1

2
dA(Ds,Ds,n) (15)
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Algorithm 1 Pseudo-code for the proposed approach

Source-side training

1: Input: source data Ds, stickered source data Ds,n, pseudo-OOS dataset D(od)
s ,

ImageNet pretrained backbone h (as per [37]), randomly initialized goal classifier
fg and randomly initialized sticker classifier fn.

Goal task source pre-training

2: for iter < MaxIter do:
3: Sample batch from Ds ∪ Ds,n

4: Compute Ls,g using Eq. 7 (main paper)
5: update θh, θfg by minimizing Ls,g

6: end for

Sticker task source pre-training

7: for iter < MaxIter do:
8: Sample batch from Ds,n

9: Sample batch from D(od)
s

10: Compute Ls,n and L(od)
s using Eq. 8 (main paper)

▷ using samples from Ds,n and D(od)
s respectively

11: update θfn by minimizing Ls,n,L(od)
s using separate Adam optimizers

12: end for

Target-side training

13: Input: target data Dt, stickered target data Dt,n, source-side pretrained backbone
h, goal classifier fg and sticker classifier fn.

Source-free target adaptation

14: for iter < MaxIter do:
15: Sample batch from Dt

16: Sample batch from Dt,n

17: Compute Lst and Ldiv using Eq. 12, 13 (suppl.)
▷ using samples from both Dt and Dt,n

18: Compute Lt,n using Eq. 9 (main paper)
▷ using samples from only Dt,n

19: update θh, θfn by minimizing Lt,n

20: update θh by minimizing Lst,Ldiv using separate Adam optimizers
21: end for

How to choose the threshold ζd? Insight 2 introduced a threshold ζd for
DSM to select pretext tasks suitable for subsidiary supervised DA. To choose a
threshold, we first consider the A-distances between the actual source and target
domains. These A-distances are in the range of 1.5 to 2.0 [69] for Office-Home
and indicate the range of A-distances corresponding to realistic domain shifts.
This range corresponds to the range of 0 to 0.25 in terms of DSM. In Fig. 7A of
the main paper, we observed DSM in a range of 0 to 0.3 for the patch-location
and image-rotation subsidiary task samples w.r.t. the original samples, indicating
that these tasks induce a realistic domain shift. Contrary to this, our proposed
sticker task produced DSM in the range of 0.6 to 0.9, indicating much better
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A. Sticker Dataset Procurement

B. Sticker Intervention
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Sticker Intervention

Fig. 8. Illustration of A. sticker dataset procurement and B. sticker intervention T
(see Sec. C.1). Best viewed in color.

domain preservation. Thus, we choose the threshold ζd = 0.5 which represents
∼70% reduced domain shift w.r.t. realistic domain shifts (i.e. w.r.t. 1.5 to 2.0).

B.2.2 Subsidiary-Task Similarity Metric (TSM). γTSM determines how
similar a subsidiary task is to the goal task. TSM is calculated using the basic
linear evaluation protocol [62] in self-supervised literature. It illustrates the de-
gree of compatibility between the two tasks. For computing γTSM, we train a
linear classifier fn on the features hs,g for subsidiary task dataset Ds,n extracted
using a frozen source-pretrained ResNet-50 [18] backbone. For the sticker classi-
fication task, we randomly select 4 classes to keep the number of classes uniform
for the different subsidiary task candidates illustrated in Fig. 1C and Fig. 7B
in the main paper. We thus obtain the error for the different subsidiary task
classifiers as ϵ̂s,n and the subsidiary-task similarity metric is computed as:

γTSM(Ds,Ds,n) = 1−min
fn

ϵ̂s,n(hs,g) (16)

How to choose the threshold ζn? Insight 3 introduced a threshold ζn for
TSM to select pretext tasks suitable for subsidiary supervised DA. The task
similarity of the subsidiary task is dependent on the goal task. For computing
the threshold for TSM, we plot the γTSM for the candidate subsidiary tasks (Fig.
7B) and select the appropriate threshold ζn. Based on our observations in Fig.
7B of the main paper, we set ζn as 0.6.

Suitability criterion. Definition 1 in the main paper gives the overall suitabil-
ity criterion for selecting the subsidiary task as:

γDSM(Ds,Ds,n) + γTSM(Ds,Ds,n) > ζ (17)

Therefore, we set the threshold ζ as a sum of ζd and ζn i.e. 1.1.
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Fig. 9. The pseudo-OOS data D(od)
s contains patch-shuffled versions of source data

Ds. Green circles only highlight the stickers and are not part of the samples.

C Implementation details

C.1 Sticker intervention

We define a sticker as a printed alphabet with a random color and random
texture [8] within the alphabet. We scale the sticker randomly and paste it at
a random location within a black image (all zeros) with the same size as goal
task sample xs∈RH×W , yielding xn∈RH×W (see Fig. 8A). The corresponding
sticker-task labels yn, along with xn, form the sticker dataset Dn. We also define
a pixel-wise mask to perform mixup [81] only at the sticker pixels to avoid the
effects of the black background on the rest of the goal task image.

Specifically, m(u)=1(xn(u) ̸=0) where u : [ux, uy] denotes the spatial index
in an H ×W lattice. As shown in Fig. 8B, a goal task sample x, i.e. either xs,

x
(od)
s or xt, and a sticker xn are combined using mixup [81] as,

T (x, xn) = m⊙ (λx+ (1− λ)xn) + (1−m)⊙ x (18)

where λ denotes the mixup ratio, ⊙ represents element-wise multiplication
and T is the sticker intervention (as defined in Insight 4 of main paper).

C.1.1 Hyperparameters

a) Sticker shape is decided by randomly selected alphabets.
b) Sticker size is determined by randomly sampling the size ratio between
sticker and goal task images from a uniform distribution over the range [0.1, 0.4].
c) Sticker location for pasting the sticker in the goal task image is sampled
from a uniform distribution over the ranges [1, H] and [1,W ]. The sampled
coordinates are rounded down to the nearest integer for pasting the sticker.
d) Number of sticker classes determines the difficulty level of the subsidiary
supervised DA problem.
e) Mixup ratio determines the visibility of the sticker w.r.t. the goal task
image. We use a constant mixup ratio of 0.4.
We provide ablations for these hyperparameters in Sec. D.2.
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C.1.2 Usage. The intervention is applied in the same manner to both source
samples xs as well as target samples xt, yielding sticker labels yn for the sticker
classifier. Mitsuzumi et al . [44] show that, beyond a certain grid size (4x4),
shuffling the grid patches makes the domain unrecognizable. Inspired by this, we
generate the pseudo-OOS dataset by randomly shuffling the grid patches with
a grid size of (6x6) as shown in Fig. 9. The sticker intervention is also applied
to the pseudo-OOS samples in order to emphasize the difference between source
and pseudo-OOS samples even when stickers are present. However, for pseudo-

OOS samples, the sticker label is treated as y
(od)
s , for the OOS node to act as

an implicit domain discriminator, leading to improved source-target alignment.
Enabling source-free DA. The proposed sticker intervention can be used
within source-free constraints. This is because, the alphabet font can be shared
between source-side and target-side while the texture dataset [8] is open-source.

C.2 Experimental settings

Architecture details. We use a ResNet-50 [18] backbone for Office-Home,
Office-31 and DomainNet, and ResNet-101 for VisDA, for a fair comparison with
prior works. We employ the same network design as SHOT [37], i.e. replacing
the classifier with a fully connected layer with batch norm [21] and another fully
connected layer with weight normalization [61]. For the subsidiary classifier, we
use the same architecture after ResLayer-3.
Optimization details. We employ multiple Adam optimizers during training
to avoid loss weighting hyperparameters. Specifically, we use a distinct optimizer
for each loss term. In each training iteration, we optimize only one of the losses
(round robin method). Each optimizer uses a learning rate of 1e-3. Intuitively,
each Adam optimizer’s moment parameters adaptively scale the associated gra-
dients, eliminating the requirement for loss-scaling hyperparameter tuning. For
source model training, following [37], we set the maximum number of epochs
to 100 and 30 for Office-31 and Office-Home, whereas it is set to 10 and 15 for
VisDA and DomainNet respectively. For adaptation, the maximum number of
epochs is set to 15 for all datasets, following [37].

D Analysis

We provide more comparisons with prior state-of-the-art methods and report
hyperparameter sensitivity analyses.

D.1 Extended comparisons and ablations

a) Single-Source DA for Office-31 and VisDA. Our approach outperforms
source-free NRC [78] and SHOT++ [38] by 1.5% and 1.7% respectively on Office-
31 (Table 8), and gives comparable performance to non-source-free works. On
the larger and more challenging VisDA dataset, our approach surpasses NRC by
1.6% and SHOT++ by 1% (Table 8).
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Table 8. Single-Source Domain Adaptation (SSDA) on Office-31 and VisDA bench-
marks with mean and standard deviation over 5 runs. The last row indicates the vari-
ance over different sets of sticker shapes while others indicate variance over different
random seeds. SF indicates source-free DA.

Method SF
Office-31 VisDA

A→D A→W D→W W→D D→A W→A Avg S → R

FAA [20] ✗ 94.4 92.3 99.2 99.7 80.5 78.7 90.8 -
RFA [3] ✗ 93.0 92.8 99.1 100.0 78.0 77.7 90.2 79.4
SCDA [35] ✗ 95.4 95.3 99.0 100.0 77.2 75.9 90.5 -
DMRL [73] ✗ 93.4±0.5 90.8±0.3 99.0±0.2 100.0±0.0 73.0±0.3 71.2±0.3 87.9 -
MCC [24] ✗ 98.6±0.1 95.5±0.2 98.6±0.1 100.0±0.0 72.8±0.3 74.9±0.3 89.4 -
CAN [25] ✗ 95.0±0.3 94.5±0.3 99.1±0.2 99.8±0.2 78.0±0.3 77.0±0.3 90.6 87.2
RWOT [76] ✗ 94.5±0.2 95.1±0.2 99.5±0.2 100.0±0.0 77.5±0.1 77.9±0.3 90.8 -
FixBi [45] ✗ 95.0±0.4 96.1± 0.2 99.3±0.2 100.0±0.0 78.7±0.5 79.4± 0.3 91.4 87.2
CDAN+RADA [23] ✗ 96.1±0.4 96.2±0.4 99.3±0.1 100.0±0.0 77.5±0.1 77.4±0.3 91.1 76.3

SHOT [37] ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6 82.9
CPGA [56] ✓ 94.4 94.1 98.4 99.8 76.0 76.6 89.9 84.1
HCL [19] ✓ 90.8 91.3 98.2 100.0 72.7 72.7 87.6 83.5
VDM-DA [68] ✓ 93.2 94.1 98.0 100.0 75.8 77.1 89.7 85.1
A2Net [75] ✓ 94.5 94.0 99.2 100.0 76.7 76.1 90.1 84.3
NRC [78] ✓ 96.0 90.8 99.0 100.0 75.3 75.0 89.4 85.9
SHOT++ [38] ✓ 94.3 90.4 98.7 99.9 76.2 75.8 89.2 87.3
3C-GAN [34] ✓ 92.7±0.4 93.7±0.2 98.5±0.1 99.8±0.2 75.3±0.5 77.8±0.1 89.6 -
SFDA [27] ✓ 92.2±0.2 91.1±0.3 98.2±0.3 99.5±0.2 71.0±0.2 71.2±0.2 87.2 -
Ours (random seed) ✓ 95.6±0.2 94.6±0.2 99.2±0.1 99.8±0.2 77.0±0.3 77.7±0.3 90.7 88.2±0.4
Ours (random sticker) ✓ 95.5±0.1 94.2±0.2 98.9±0.2 99.9± 0.1 77.2±0.1 76.3±0.2 90.3 88.0±0.3

b) Multi-Source DA for Office-31. To analyze our performance on closed-set
MSDA, we compare our approach with source-free and non-source-free prior arts
in Table 12. Even without domain labels, our approach achieves state-of-the-art
results on the Office-31 benchmark, even for the non-source-free setting.

c) Variance across random seeds. We highlight the significance of our results
by reporting the mean and standard deviation of accuracy for 5 runs with differ-
ent random seeds (2nd last row of Table 8) for SSDA. We observe low variance
even w.r.t. prior non-source-free works.

d) Ablations for target adaptation. We present ablations on the goal task
objectives for the target-side training (Lst and Ldiv) in Table 9. First, we com-
pare the baseline i.e. source-trained model (#1) with the Ldiv based DA model
(#2). It is interesting to note that only using the diversity objective with sub-
sidiary supervision improves SSDA and MSDA by 2.4% and 5.5% respectively
over the baseline (#2 vs. #1), highlighting the relevance of diversity promotion.

The neighborhood clustering based self-training loss Lst improves target clus-
tering in the latent Z space by bringing the backbone features h(x) closer to their
respective nearest neighbors. Using Lst in conjunction with the subsidiary DA
loss Lt,n enhances the goal task adaptation by 10.5% and 5.2% for SSDA and
MSDA respectively, compared to not using Lst (#4 vs. #2). We observe that
employing both Ldiv and Lst further improves the performance by 3.8% and
1.9% for SSDA and MSDA respectively (#4 vs. #3), demonstrating that the
two losses are complementary for goal task DA.
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from Office-Home.

D.2 Hyperparameter sensitivity analysis

a) Sticker shape. We randomly selected 10 alphabets and used them consis-
tently to report all the results in the main paper. However, to test the variance
of our approach w.r.t. sticker shape, we report the mean and standard deviation
over 5 runs of SSDA experiments on Office-31 (last row of Table 8), randomly
sampling the 10 alphabets (i.e. sticker shapes) for each run. We observe a low
standard deviation indicating low sensitivity to the sticker shapes.
b) Sticker size. We select this scale range based on empirical evidence (Table
10). We observe that adaptation performance suffers with sticker scale less than
0.1, since the sticker is hardly visible, making it difficult for the sticker classifier to
receive meaningful supervision. The performance with larger sized stickers (more
than 0.7) also drops as the sticker may occlude goal task content significantly.
c) Sticker location. We observe that our approach is only mildly sensitive to
this hyperparameter (Table 10). We restrict the sticker location to regions far
from the image centre and observe slightly lower accuracy. On the other hand,
pasting the sticker near the image centre area further decreases performance
as the sticker may occlude a larger part of the goal task content. Allowing the
sticker to be pasted uniformly across the image yields the best performance.
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d) Number of sticker classes. We perform a
sensitivity analysis for the number of sticker cat-
egories |Cn| for MSDA on Office-Home (Fig. 11).
We observe that performance improves with in-
creasing number of classes upto 10 and reduces
slightly for higher |Cn|. Overall, we observe con-
sistent gains over the baseline.
e) Mixup ratio λ. In Fig. 10A, we observe con-
sistent gains over the baseline (mixup ratio λ = 0
i.e. sticker classifier and losses not used) for a wide
range of λ values. The best performance is ob-
served for λ = 0.4. Intuitively, higher mixup ratios
imply very low sticker visibility while lower mixup ratios imply more occlusion
of goal task content, both yielding slightly lower performance.



24 J. N. Kundu et al.

Table 9. Ablation study on Office-
Home. SF, SSDA and MSDA indi-
cate source-free, single-source DA and
multi-source DA.

#
Target-side

SF
Office-Home

Lst Ldiv Lt,n SSDA MSDA

1 ✗ ✗ ✗ - 60.2 66.9
2 ✗ ✓ ✓ ✓ 62.6 72.4
3 ✓ ✗ ✓ ✓ 69.3 75.7
4 ✓ ✓ ✓ ✓ 73.1 77.6

Table 10. Sensitivity analysis for
sticker scale and location on the
single-source DA (SSDA) benchmark of
Office-Home dataset.

Sticker scale Acc.

0.05− 0.1 71.8

0.1− 0.4 72.2

0.4− 0.7 73.1

0.7− 1.0 72.0

Sticker location Acc.

Central region 71.5

Except central region 72.0

Entire image 73.1

D.3 Domain discrepancy analysis

In Fig. 10B, we report A-distance as a measure of the domain discrepancy
dH(ps, pt) across different source-target pairings in the backbone feature space Z
for our approach and prior source-free state-of-the-art SSDA [37] and MSDA [2]
works. A lower value for A-distance indicates lower domain discrepancy. In
comparison to prior works, our technique clearly achieves lower A-distance be-
tween source and target for both settings. This implies that our backbone learns
domain-agnostic features that are more generalized to the target domain. This
corresponds to an increase in target performance and demonstrates that sub-
sidiary supervised adaptation efficiently minimizes the latent space distribution
shift, dH(ps, pt), consistent with Insight 1 of the main paper.

D.4 Domain alignment analysis

In Fig. 10C, we present t-SNE [42] visualizations of backbone features learned
by SHOT [37] and our approach for SSDA, and DECISION [2] and our approach
for MSDA. As expected, all three approaches aid the formation of target clusters
but source-target alignment for prior arts is weaker compared to our approach.
We also observe that our method better preserves the source clusters (green in
SSDA and blue in MSDA) while producing dense clusters for the target features
(red in both settings) that are better aligned with the source clusters. This
improved source-target alignment can be attributed to the OOS node in the
sticker classifier, consistent with Insight 6 presented in the main paper.

Table 11. Training and inference time comparison w.r.t. NRC [78] and SHOT++ [38].
All timings are obtained using a single 1080Ti GPU.

Method
Training time (in sec), Ar→Cl Inference

time (in
millisec)

Office-Home

Source
pretrain

Sticker
pretrain

Target
adapt

Total
SSDA
Avg.

MSDA
Avg.

NRC 282 - 1060 1342 1.9 72.2 74.7
SHOT++ 306 - 10043 10349 1.9 73.0 75.7
Ours 282 643 284 1209 1.9 74.0 77.6
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Table 12. Multi-Source DA (MSDA)
comparisons on Office-31.

Method SF
Office-31

�A �W �D Avg.

PFSA [12] ✗ 57.0 97.4 99.7 84.7
SImpAl [69] ✗ 70.6 97.4 99.2 89.0
WAMDA [1] ✗ 72.0 98.6 99.6 90.0
MIAN [49] ✗ 76.2 98.4 99.2 91.3
MLAN [77] ✗ 75.7 98.8 99.6 91.4

Source-combine ✗ 65.2 94.6 98.4 86.1
SHOT[37]-Ens ✓ 75.0 94.9 97.8 89.3
DECISION [2] ✓ 75.4 98.4 99.6 91.1
CAiDA [10] ✓ 75.8 98.9 99.8 91.6
Ours ✓ 78.3 99.1 99.7 92.4

Table 13. Combining multiple sub-
sidiary tasks (SSDA on Office-Home).

SSDA

Baseline (B) 66.2

B + patch-loc 67.6
B + rotation 67.9
B + rotation + patch-loc 68.0

B + sticker-rot 69.0
B + sticker-clsf 69.7
B + sticker-rot + sticker-clsf 69.5

D.5 Efficiency analysis

We provide detailed training time comparisons of our work w.r.t. NRC [78] and
SHOT++ [38] in Table 11. We make certain observations: 1)We achieve superior
target adaptation efficiency with the fastest training (4th column) and the best
performance (last 2 columns). Note that we use same learning rate and scheduler
as in NRC and SHOT++. 2) Inference complexity (6th column) is same for all
as we do not require the subsidiary classifier during inference.

D.6 Combining subsidiary tasks

Introducing multiple subsidiary tasks in the same framework brings up additional
challenges like multi-task balancing. For instance, consider a combination of
rotation (Rot) and patch-location (PL). From Fig. 1C in the main paper, Rot
has high TSM while PL has high DSM. This does not imply that combining
Rot and PL would yield a better overall TSM+DSM, and may rather have a
detrimental impact. Thus, one should aim for a subsidiary task having both
TSM and DSM greater than those of Rot and PL. Empirically, we do not find
any conclusive result. In Table 13, we observe that while Rot+PL shows marginal
gains, combining Sticker-rot and Sticker-clsf shows degraded performance.

Table 14. Comparisons w.r.t. pretext task based DA works.

Method Pretext Task
High

DSM+TSM
Additional

regularization

Rotation,
SS-DA [17]

Rot. Patch Jigsaw
✗

Adv. alignment,
AdaBN

JiGen [5] Jigsaw ✗ Augmentations
PAC [34] Rotation ✗ Aug. consistency
Ours Sticker ✓ None
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Table 15. Comparisons w.r.t. prior source-free DA works.

Method Key insights (differences) Common

SHOT Info-max. for implicit feature alignment Ldiv

SHOT++ Easy-hard target split for better adaptation Ldiv

CPGA Contrastive prototypes for better pseudo-labels Lst

GSFDA Local struct. clustering for better repr. learning Lst,Ldiv

NRC Cluster assumption for better pseudo-labels Lst,Ldiv

A2Net
Dual classifiers to find src-similar tgt samples and

-contrastive matching for category-wise alignm.

1. How and when subsidiary task is DA-assistive?

2. Criteria for DA-assistive subsidiary tasksOurs

3. Process of sticker intervention

Lst,Ldiv

D.7 Differences and relationships with prior-arts

These are discussed in Table 14 and 15. Our method is free from additional
regularization unlike prior works (Table 14). While our key contributions are
unique, the common losses are widely used (e.g . GSFDA, NRC in Table 15).
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