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Abstract. The goal of this work is to reconstruct speech from a silent
talking face video. Recent studies have shown impressive performance on
synthesizing speech from silent talking face videos. However, they have
not explicitly considered on varying identity characteristics of different
speakers, which place a challenge in the video-to-speech synthesis, and
this becomes more critical in unseen-speaker settings. Our approach is
to separate the speech content and the visage-style from a given silent
talking face video. By guiding the model to independently focus on mod-
eling the two representations, we can obtain the speech of high intelligi-
bility from the model even when the input video of an unseen subject is
given. To this end, we introduce speech-visage selection that separates
the speech content and the speaker identity from the visual features of the
input video. The disentangled representations are jointly incorporated to
synthesize speech through visage-style based synthesizer which generates
speech by coating the visage-styles while maintaining the speech content.
Thus, the proposed framework brings the advantage of synthesizing the
speech containing the right content even with the silent talking face
video of an unseen subject. We validate the effectiveness of the proposed
framework on the GRID, TCD-TIMIT volunteer, and LRW datasets.
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1 Introduction

Imagine a subway station packed with people, and a middle-aged woman next to
you appears to ask you something. It is hard for you to understand her because
of the noise of an incoming subway, so you try to follow her by looking at her
face and mouth movements and infer what she tries to say. Then, you can finally
understand and give an answer to her. These days, people frequently encounter
these kinds of situations, not only in real-time but also in silent video conferences,
corrupted video messages, and even conversations with a speech-impaired person
[3]. In order to help these situations, there has been much research, namely lip-
reading, on recognizing speech from silent or audio-corrupted videos.

Video-to-speech synthesis is one of the lip-reading techniques, which recon-
structs speech from silent talking face videos. It has the advantage of not requir-
ing extra human annotations (i.e., text), while other conventional text-based
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lip-reading techniques need them [2,37]. Nevertheless, video-to-speech synthesis
is considered as challenging since it is expected to represent not only the speech
content but also the identity characteristics (e.g., voice) of the speaker. Thus, it
is difficult to be applied in unseen, even multi-speaker, settings. There has been
remarkable progresses in video-to-speech synthesis [8, 9, 17, 22, 28, 33, 40], espe-
cially with few speakers. While they have shown impressive performances, they
have not explicitly considered the varying identity characteristics of different
speakers, thus not investigated well in unseen multi-speaker setting.

To alleviate the challenge, we draw inspiration from human intuition in pre-
dicting a silent speech. When a silent talking video – seen or unseen – is given,
humans firstly look at the entire appearance that represents the speaker’s char-
acter (e.g., gender and age) and then predict the speech sound based on the lip
movements [4]. By mimicking the human speech predicting process, we propose
to learn to disentangle the lip movements (i.e., speech content) and the visage
appearances (i.e., identities) from a silent talking face video and to predict the
speech by jointly modeling the two disentangled representations. In doing so, it
is promising that the model can reconstruct speech containing correct content
from even unseen speaker’s talking face videos.

In this paper, we introduce a novel framework for video-to-speech synthe-
sis. It consists of speech-visage feature selection module that separates speech
content and visage-style (i.e., identity) from a given talking face video. The pro-
posed module exploits a deep learning-based feature selection [14,26] with feature
transformation and normalization, which is jointly trained with the entire model
in an end-to-end manner. The proposed module outputs speech selective masks,
each of which contains the distinctive score of the speech content information in
the visual feature of a talking face video while leaving out its speaker identity
attributes. From the masks, the speech content features and the identity features
can be separately driven. With the obtained two distinctive features through the
speech-visage feature selection module, we introduce a visage-style based syn-
thesizer, called VS-synthesizer. Inspired by [5, 21] [5], the content features are
taken into the VS-synthesizer as input, and the encoded content features are
sequentially coated with the visage-styles of extracted identity features.

In order to guide the proposed framework, two learning methods are pro-
posed: visual- and audio-identification. In visual-identification learning, we guide
the network to produce the same identity features when they are from the same
subject and to predict right subject identity from the identity features. Through
audio-identification learning, we expect that the network well predicts the correct
subject identity from the generated mel-spectrogram, even when the different
identity features are coated in the original speech content features.

Through the proposed framework, the model can separately focus on mod-
eling the speech content and generating the speech with target speaker’s ap-
pearance. It brings the advantage of synthesizing speech containing the right
content even if a silent talking face video of an unseen subject is given. More-
over, the proposed framework can synthesize speech with different visage-styles
while maintaining the original content. Our key contributions are as follows: (1)
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To the best of our knowledge, it is the first time to directly tackle the chal-
lenge induced from varying visage-styles of different speakers, in video-to-speech
synthesis by separating the identity and speech content. (2) We design a speech-
visage feature selection for masking identity attributes from a talking face video
while maintaining speech content, and vice versa. (3) To guarantee the disen-
tanglement of speech content from identity, we propose two learning methods:
visual-identification and audio-identification.

2 Related Work

Video to Speech Synthesis. Speech synthesis from silent talking faces is one
of the lip-reading techniques that have been consistently studied [28, 43]. The
initial approach [9] presented an end-to-end CNN-based model that predicts the
speech audio signal from a silent talking face video and significantly improved
the performance than the methods using hand-crafted visual features [29]. An-
other initial work [8] proposed reconstructing the speech representation by using
both video frames and dense optical flow fields for capturing the dynamics of
lip movements. Lip2Audspec [1] also presented a reconstruction-based video-to-
speech synthesis method with autoencoders. 1D GAN-based methods [30, 40]
were proposed to directly synthesize a raw waveform from the lip movements
video. Lip2Wav [33] introduced a well-known sequence-to-sequence architecture
into video-to-speech synthesis to capture the context. Memory [17,22] proposed
to use a multi-modal memory network to associate audio modalities during the
inference. Distinct from the previous methods, we try to disentangle the identity
characteristics and speech content from a silent talking face video for video-to-
speech synthesis.

Feature Selection. Feature selection has become a focus of many research areas
that utilize huge amounts of high-dimensional data. Early works [15,24] initially
surveyed feature selection and extraction techniques for improving learning per-
formance, increasing computational efficiency, decreasing memory storage, and
building better generalized models. Among a number of different techniques,
deep learning-based feature selection methods are hybrid feature selection meth-
ods that ensemble different feature selection algorithms to construct a group of
feature subsets [24]. Deep feature selection [25] selected features by imposing a
sparse regularization term to select nonzero weights features at the input level.
Another work [35] proposed a method to assess which features are more likely
to contribute to the classification phase. In recent research for feature selection,
attention-based feature selection [14] was proposed to build the correlation that
best describes the degree of relevance of the target and features. Most recently,
a feature mask module [26] is proposed that considers the relationships between
the original features by applying a feature mask normalization. By adopting
the feature selection concept, this paper attempts to select identity-relevant and
content-relevant features from the visual representations.
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Fig. 1. Overall architecture of the proposed method, containing multi-head speech-
visage feature selection and visage-style synthesizer

3 Proposed Method

Suppose we are given a sequence of silent talking face video x ∈ RT×H×W×3

with length T , height H, and width W . The goal of our work is to reconstruct
a mel-spectrogram y ∈ RF×S that matches the input silent talking face frames,
where F and S represents the spectral dimension of the mel-spectrogram and
the frame length, respectively. The main objective of our learning problem is to
disentangle the speech content and the visage-style (i.e., identity) from a silent
talking face video, and to synthesize speech by jointly incorporating the two
disentangled representations. Hence, it is for enhancing the robustness of the
model to unseen speakers and bringing the advantage of generating speech of
different visage-styles with fixed speech content. Fig. 1 shows the overview of the
proposed framework. It contains two major modules: multi-head speech-visage
feature selection and visage-style based synthesizer.

3.1 Speech-visage feature selection

When a silent talking face video is given, humans discriminate the entire ap-
pearances of the speaker that represent the speaker’s character (e.g., gender and
age) and the lip movements, to associate the speech. Motivated from the hu-
man cognitive system [4], speech-visage feature selection module is designed to
discriminate between human lip movements and visage-styles.

To this end, a visual encoder ΦV E firstly extracts visual feature fvis from a
silent talking face video x with the dimension of embedding C,

fvis = ΦV E(x) ∈ RT×C . (1)

From fvis, the proposed speech-visage feature selection module chooses the
speech content information while leaving out the identity information, by pro-
ducing a speech selective mask w̄. Inspired by the modern deep feature selection
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Fig. 2. Multi-head speech-visage feature selection module

method [14], the speech selective mask w̄ is produced with two steps, non-linear
transformation and normalization. Firstly, a non-linear transformation, ϕtrans

(i.e.LSTM), is applied to the visual features fvis to capture the importance of
each feature having on speech content,

w = ϕtrans(fvis) ∈ RT×C . (2)

Next, mask generalization and normalization are performed to prevent the
speech selective mask from being biased to the batch-wise input visual features
during training [26]. This enables extracting the generalized vector from all sam-
ples. For the normalization, the softmax function is utilized to extract the im-
portance score of the speech content of fvis,

w̄ = Softmax(
1

B

B∑
i=1

wi), (3)

where wi represents the transformed visual feature of i-th sample in the mini-
batch size of B. Note that the generalization on mini-batch is performed during
training only. Then, the speech selective mask is applied to the embedded visual
feature fvis to select the speech content feature as follows,

fsc = ϕsc(w̄ ⊙ fvis) ∈ RT×C , (4)

where the ϕsc is an embedding layer, ⊙ represents element-wise multiplication,
and fsc represents the selected speech content feature. Since the speech selec-
tive mask w̄ only attends to the speech content information, making the mask
opposite, w̄c = 1 − w̄, can produce the opposite of the speech content, namely
the identity feature fid:

fid = ϕid(w̄c ⊙ fvis) ∈ RT×C , (5)

where ϕid represents a linear layer that embeds the selected identity feature.

Multi-head speech-visage feature selection. Due to the multiple character-
istics, such as gender and age, of a speaker in regard to the identity and speech
content, viewing multiple aspects of the visual face features can enable a better
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Fig. 3. Visualization of (a) visual-identification loss and (b) audio-identification loss

selection of both the speech content and identity. To enhance the feature selec-
tion procedure, the speech-visage feature selection can be employed in a multi-
view fashion that produces N different speech selective masks, {w̄1, . . . , w̄N}, as
shown in Fig. 2. Similar to the multi-head attention [39], our multi-view design
allows the model to jointly consider the information with different aspects (e.g.,
gender and age). The multi-view speech-visage feature selection procedure can
be written as,

fsc = ϕsc([w̄
1 ⊙ fvis, . . . , w̄

N ⊙ fvis]), (6)

where [ , ] represents concatenation in the channel dimension. Similarly, we also
utilize the inverse of multi-view speech selective masks to obtain the identity
features,

fid = ϕid([w̄
1
c ⊙ fvis, . . . , w̄

N
c ⊙ fvis]). (7)

We investigate the effect of using multiple speech selective masks in Section 4.3.

3.2 Visage-style based synthesizer

The speech content features fsc contain the correct words of speech and the iden-
tity features fid have the visage-style of a certain speaker. During generation, the
speech content should be maintained and only the style should be coated. There-
fore, our generation objective is similar to that of style transfer [11, 18, 19]. For
this purpose, we employ a style-based generator, namely Visage Style-based syn-
thesizer (VS-synthesizer), which reconstructs the mel-spectrogram with respect
to the speech content features fsc clothed in the encoded identity features fid.
For the style encoder, a visage-style encoder ΦV S is introduced to sequentially
extract visage-style features s = {s1, . . . , sM} from the identity features fid,
where M represents the number of styles which will be embedded into the syn-
thesizer through AdaIN [18,21]. The speech (i.e., mel-spectrogram) fmel ∈ RF×S

is generated with the following equation,

fmel = ΨV S(fsc, s). (8)
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To convert the mel-spectrogram into a waveform, we utilize the Griffin-Lim
algorithm [13] which is a well known method for converting linear spectrogram
into a waveform. Following [42], we use a postnet that learns to convert the
mel-spectrogram into a linear spectrogram which is utilized for the Griffin-Lim
algorithm. It is trained with the reconstruction loss using ground-truth linear
spectrograms.

3.3 Learning to select the speech content

To guide the proposed speech-visage feature selection module to select the speech
content feature while leaving out the identity features, we propose two identifi-
cation learning methods on different modalities, visual and audio.

Visual-identification learning. To guide the visage-style features s obtained
from the identity features fid contain identity-related representation, we apply
the identification loss as follows,

Lvid = CE(φv(ΦV S(fid)), id), (9)

where φv is a visual-identity classifier, CE represents the cross-entropy loss, and
id is the subject identity. Therefore, both the visage-style and identity features
can carry the identity-related information. In addition to the identification loss,
we sample two input talking face videos with the same subject, x and x′. We
expect that the two extracted visage-style features from each video, s and s′, to
be similar, since the visage-style of the same speaker is not varying. Thus, we
apply mean squared error objective function as a feature loss,

Lvfeat
= ||s− s′||2. (10)

Finally, to guarantee the disentanglement of speech content and identity rep-
resentations, the speech content feature fsc should not contain the identity repre-
sentations. To achieve this, we adopt an adversarial learning concept that guides
the encoder to learn to deceive a classifier. Specifically, Gradient Reversal Layer
(GRL) [10] is added before the visual-identity classifier φv so that the gradient
sign is reversed during back-propagation. The loss function of speech content
feature can be written as follows,

Lvsc = CE(φv(grl(ΦV S(fsc))), id). (11)

Therefore, the visual-identity classifier struggles to find the identity information
from fsc while the speech-visage feature selection module learns to not include
the identity information into the speech content features fsc. Note that we only
utilize the last style (i.e., sM ) for the visual-identification learning instead of
using all styles to reduce the computational cost. The final visual-identification
loss (Fig. 3(a)) is defined as Lv = Lvid + Lvfeat

+ Lvsc .
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Audio-identification learning. Although we disentangled the identity fea-
tures fid and speech content features fsc, there is no guidance to properly in-
corporate the two disentangled representations for generating speech. Therefore,
we additionally guide the model with a proposed audio-identification loss at the
output side. To this end, a pre-trained audio-identity classifier φa is introduced
to recognize the subject of the final synthesized mel-spectrogram,

Laself
= CE(φa(ΨV S(fsc, s)), id). (12)

Moreover, we design a cross speech classification learning (Fig. 3(b)); when
two input talking face videos with different subjects x and x∗ are given, we
crossly cloth the visage-style features s and s∗ into the speech content features
of the different subjects, f∗

sc and fsc, respectively. Therefore, each generated
speech should contain the crossly changed visage-style (i.e., identity). This is
guided with the following cross-speech classification loss,

Lacross
= CE(φa(ΨV S(fsc, s

∗)), id∗)

+CE(φa(ΨV S(f
∗
sc, s)), id)).

(13)

Through the cross-speech classification loss, we can achieve both the disentan-
glement of speech content and identity and the ability to jointly incorporate
the disentangled representations in synthesizing the desired speech. The final
audio-identification loss is defined as La = Laself

+ Lacross .

3.4 Total loss functions

Adversarial loss. We utilize both unconditional and conditional GAN losses
[12, 31], where the former makes the generated mel-spectrogram realistic, and
the latter guides the mel-spectrogram to match the final visage-style feature,
sM ,

Lg = logD(fmel) + logD(fmel, s
M ), (14)

and the discriminator loss is defined as,

Ld = logD(y) + log(1−D(fmel))

+ logD(y, sM ) + log(1−D(fmel, s
M )).

(15)

Reconstruction loss. Finally, a reconstruction loss is adopted to synthesize the
mel-spectrogram containing correct contents. The reconstruction loss is defined
as,

Lrecon = ||y − fmel||2 + ||y − fmel||1. (16)

Total loss. The total loss function for the generator part is the sum of the
pre-defined loss functions with the balancing weights α1, α2, α3, and α4,

Ltot = α1Lv + α2La + α3Lg + α4Lrecon. (17)
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4 Experiments

4.1 Dataset

GRID corpus [7] dataset is the most commonly used dataset for speech recon-
struction tasks [1, 8, 9, 28, 30, 33, 40], containing 33 speakers with 6 words taken
from a fixed dictionary. Since we focus on the training with a large number of
subjects, we conduct experiments on two different settings: 1) multi-speaker in-
dependent (unseen) setting where the speakers in the test dataset are unseen
and 2) multi-speaker dependent (seen) setting that all 33 speakers are used
all training, validation, and evaluation with 90%-5%-5% split, respectively. For
multi-speaker independent setting, we follow the same split as [41].

TCD-TIMIT volunteer [16] dataset has 59 speakers with about 100 pho-
netically rich sentences. Similar to the GRID dataset, we use two experimental
settings.We utilize the officially provided data split of the TCD TIMIT dataset.
Please note that it is the first time to exploit the TCD-TIMIT volunteer dataset
in a video-to-speech task, which was not utilized due to its difficulties.

LRW [6] dataset contains up to 1000 utterances of 500 different words, spoken
by manifold speakers. Since the original dataset does not provide identity infor-
mation, we clustered and labeled the speaker information of LRW Total 17,580
speakers are labeled; train, validation, and evaluation splits are newly generated
so that the subjects are completely separated among three splits (20 for test and
validation, respectively, and the rest for train). It is also the first time to utilize
the identity information with the multi-speaker independent (unseen) splits. The
details and splits are available in supplementary materials.

4.2 Implementation details

For both GRID and TCD-TIMIT volunteer datasets, we center-crop [44] and
resize the video frames to 96×96, and 128×128 for LRW dataset. All of the audio
in the dataset are resampled to 16kHz We convert the mel-spectrogram so that
the length of the mel-spectrogram is 4 times longer than that of the video frames.
The architectural details of each module can be found in the supplementary
materials. We use the Adam optimizer [23] with 0.0001 learning rate, discretely
decaying half at step 20000, 40000, and 60000. We choose the number N of
multi-head masks to 6 and 9 for multi-speaker independent setting and multi-
speaker dependent setting, respectively. The number of styles is set to 3 (i.e.,
M = 3). The hyperparameters α1, α2, α3, and α4 are 1.0, 1.0, 1.0, and 50.0,
respectively. For computing, we use a single Titan-RTX GPU.

For the evaluation, we use three standard speech quality metrics: Short Time
Objective Intelligibility (STOI) [38], Extended Short Time Objective Intelligi-
bility (ESTOI) [20] for estimating the intelligibility and Perceptual Evaluation
of Speech Quality (PESQ) [34].To verify our generated speech, we conduct a
human subjective study through mean opinion scores of naturalness, content
accuracy, and voice matching.
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Table 1. Performance comparison in multi-speaker independent setting on GRID

Method STOI ESTOI PESQ

GAN-based [40] 0.445 0.188 1.240

Vocoder-based [28] 0.537 0.227 1.230

Lip2Wav [33] 0.522 0.251 1.284

VV-Memory [17] 0.550 0.275 1.346

End-to-end GAN [30] 0.553 0.269 1.372

Proposed model 0.567 0.308 1.373

Table 2. Performance comparison in multi-speaker independent setting on TCD-
TIMIT volunteer dataset

Method STOI ESTOI PESQ

Lip2Wav [33] 0.456 0.210 1.375

VV-Memory [17] 0.450 0.212 1.382

Proposed model 0.478 0.217 1.410

4.3 Experimental results

Results in multi-speaker independent setting. To verify the robustness
of the proposed framework to unseen speakers, we conduct the experiments on
a multi-speaker independent setting of the GRID and TCD-TIMIT volunteer
datasets, where unseen subjects are utilized for testing. Table 1 elaborates the
performance comparisons on the GRID dataset. We can clearly see that the
proposed method outperforms the state-of-the-art performances.For the TCD-
TIMIT volunteer dataset, shown in the upper part of Table 2, our proposed
method achieved 0.478, 0.217, and 1.410, in STOI, ESTOI, and PESQ, respec-
tively, outperforming the previous works [17,33].

We additionally conduct a human subjective study through mean opinion
scores (MOS) for naturalness, intelligibility, and voice matching.Naturalness
evaluates how natural the synthetic speech is compared to the actual human
voice, and intelligibility evaluates how clear words in the synthetic speech sound
compared to the actual transcription. For the above two measures, natural-
ness and intelligibility, we follow the exactly same protocol of the previous
works [17,33]. We additionally measure voice matching part that determines how
well the results of the proposed model matches the voice of the target speaker.
We use 20 samples obtained from the multi-speaker independent setting of the
GRID dataset and ask 16 participants to evaluate 6 different approaches and the
ground truth in a 5-point scale. The mean scores with 95% confidence intervals
are shown in Table 3. Our method achieves the score of 2.96, 3.35, and 3.34 for
naturalness, intelligibility, and voice matching, respectively, which are the best
among the state-of-the-art methods. Especially, the highest intelligibility means
the proposed framework can generate speech containing the right content by dis-
entangling the speech content from the identity representations. Moreover, from
the voice matching, we verify that the model can synthesize the proper voices
that follow the visages of the subjects even if the subjects are not seen before.
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Table 3. MOS results comparison of the previous methods [22, 28, 30, 33, 40], the
proposed method, and the ground truth

Method Naturalness Intelligibility Voice Matching

GAN-based [40] 1.94±0.22 1.74±0.21 1.37±0.17

Vocoder-based [28] 1.98±0.16 1.68±0.25 1.15±0.11

Lip2Wav [33] 2.71±0.25 2.64±0.24 2.71±0.23

VV-Memory [17] 2.91±0.19 2.80±0.23 2.85±0.26

End-to-end GAN [30] 2.68±0.22 2.76±0.26 2.18±0.19

Proposed model 2.96±0.28 3.35±0.34 3.34±0.27

Actual Voice 4.28±0.40 4.73±0.41 -

Table 4. Performance comparison in
multi-speaker dependent setting on GRID
corpus

Method STOI ESTOI PESQ

End-to-end GAN [30] 0.647 0.436 1.777

Proposed model 0.667 0.502 1.868

Table 5. Performance comparison in
multi-speaker dependent setting on TCD-
TIMIT volunteer dataset

Method STOI ESTOI PESQ

Lip2Wav [33] 0.524 0.303 1.545

VV-Memory [17] 0.555 0.356 1.584

Proposed model 0.557 0.352 1.587

Results in multi-speaker dependent setting. To verify that the effective-
ness of the proposed method in a multi-speaker dependent setting, we conduct
experiments on the full data of the GRID dataset and the TCD-TIMIT volun-
teer dataset. Table 4 shows the comparison results on the GRID dataset with the
previous state-of-the-art method [30]. The results on the TCD-TIMIT volunteer
dataset are shown in Table 5. The proposed method achieves the best perfor-
mances except for ESTOI, but it shows comparable performance with [17]. The
results in the multi-speaker dependent setting show that the proposed method
is effective not only for an unseen speaker but also for multi-speaker.

Results on dataset with a large number of subjects. We additionally
conduct an experiment on LRW dataset which contains 17,580 subjects to verify
the generalization of the proposed model to new large unseen speakers. Ta-
ble 6 shows the performance in multi-speaker independent (unseen) setting on
LRW. This even indicates the comparable performance to the results reported
in Lip2Wav [33] (0.543 STOI, 0.344 ESTOI, and 1.197 PESQ) which has per-
formed the experiments on LRW dataset with the original seen setting that
contain overlapped subjects in all train, validation, and test splits. This proves
that our model works well on dataset with a very large number of subjects with
diverse vocabulary, thus generalizing our model’s performance. The audio sam-
ples of the generated speech of LRW are available in supplementary materials.

Qualitative results. We visualize the generated mel-spectrogram with the
ground truth ones and those from the previous works [17, 33]. Fig. 5(a) indi-
cates the generated mel-spectrogram from the multi-speaker independent set-
ting of the GRID and TCD-TIMIT datasets, respectively. Additionally, Fig. 4
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Table 6. Performance in
multi-speaker independent
setting on LRW

Proposed model

STOI 0.555

ESTOI 0.305

PESQ 1.264
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GRID corpus TCD-TIMIT volunteer

Fig. 5. Qualitative results of (a) generated mel-spectrogram of ground truth, the pro-
posed method, [17], and [33] in multi-speaker independent setting of GRID corpus and
TCD-TIMIT datasets and (b) the ground truth and the generated mel-spectrogram by
changing the reference speaking-style features of subject id 15 (female) with that of
subject id 13 (male), and that of subject id 31 (female)

shows the generated mel-spectrogram of words against, level, and operation in
LRW dataset with the ground truth ones. It is clearly shown that the generated
mel-spectrograms from the proposed method are visually well-matched with the
ground truth mel-spectrograms.

One of our contribution is that we can synthesize speech with different visage-
styles by altering the identity features fid with others. Fig. 5(b) shows the results
of the generated mel-spectrogram with different visage-style features, subject id
13 and 31, which are originally from the subject id 15 of the GRID corpus dataset.
When we generate with male speaker’s visage-style (i.e., subject id 13) we can
observe that the overall frequency of generated mel-spectrogram becomes lower,
which means the proposed method can reflect the changed identity features. The
audio samples are provided in the supplementary materials.

Ablation study. We analyze the effectiveness of the proposed architecture
through ablation studies. We firstly verify two proposed learning methods, visual-
and audio-identification, that help to guide the speech-visage feature selection
module. Then, we examine that the multi-head speech-visage feature selection
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Table 7. Ablation study in multi-speaker independent setting on GRID dataset

Baseline
Proposed Method

Lv La Multi-head STOI ESTOI PESQ

✓ ✗ ✗ ✗ 0.521 0.247 1.288

✓ ✓ ✗ ✗ 0.532 0.289 1.299

✓ ✓ ✓ ✗ 0.556 0.291 1.360

✓ ✓ ✓ ✓ 0.567 0.308 1.373

Table 8. Analysis on different number of speech selective masks in multi-speaker
dependent setting on GRID dataset

Metric N=1 N=3 N=6 N=9

STOI 0.651 0.648 0.653 0.667

ESTOI 0.489 0.480 0.486 0.502

PESQ 1.706 1.738 1.767 1.868

technique is more beneficial than the single speech-visage feature selection. Ta-
ble 7 shows the ablation results in the multi-speaker independent setting using
the GRID dataset. The baseline is the model that does not apply the speech-
visage feature selection, so fvis are taken in to both VS-synthesizer and visage-
style encoder. After applying the speech-visage feature selection, the perfor-
mances increases when both visual- and audio- identification learning methods
are adopted. The highest performances are obtained when multiple selections
are adopted with 6 heads in the feature selection. The result shows that the
multiple masks help the module to discover various attributes of the input vi-
sual features, thus yielding better separation of the speech content and identity,
which are finally beneficial to reconstruct the speech of diverse speakers.

Effectiveness of multi-heads. To analyze the effect of different number of
speech selective masks from the multi-head speech-visage feature selection mod-
ule, we check the performances by differing the number of heads in multi-speaker
dependent setting on the GRID dataset, shown in Table 8. While the proposed
method with the single speech selective mask achieves the reasonable perfor-
mance compared to [30] in Table 4, the 9 speech selective masks helps the pro-
posed model attaining the highest performances. This means that the sufficient
number of the speech selective masks enables our model to separate the speech
content and identity.

We additionally visualize the representations of speech content features fsc

and identity features fid in multi-speaker independent setting on the GRID
dataset. Fig. 6(a) shows t-SNE [27] visualization of two features from the single
speech-visage feature selection procedure, N=1, and Fig. 6(b) shows the two
features from N=6. Each color represents a different subject identity. We can
observe that the identity feature fid tends to be clustered with the same identity
while the speech content feature fsc does not, confirming the proposed frame-
work is effective for disentangling the two factors. Moreover, when we increase



14 J. Hong et al.
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(a) N=1 (b) N=6

Fig. 6. t-SNE [27] visualization of speech content features fsc and identity features
fid of (a) single speech visage feature selection procedure (N=1) and (b) multi-head
speech visage feature selection procedure (N=6) in regard to the subject ids

Table 9. The Equal Error Rate (EER) for evaluating the content-voice disentangle-
ment quality

EER (%) fid fid

N=1 29.44 33.84

N=6 16.90 46.48

the number of heads for the speech-visage selection module, the disentanglement
is further strengthened as seen in the better-clustered identity features fid.

Speaker verification on disentangled features. Finally, we perform the
speaker verification on the disentangled identity features fid and the speech con-
tent features fsc in multi-speaker independent setting on the GRID. We quan-
titatively evaluate the content-voice disentanglement quality using the Equal
Error Rate (EER) (The lower the EER value, the higher the accuracy) which is
commonly used for identity verification. Following [32], we find the EER of fid

to be 29.44% and that of fsc to be 33.84% for N=1, and 16.90% and that of fsc

to be 46.48% for N=6, shown in Table 9. The results show that the proposed
method can well disentangle the identity and speech content representations.
With the greater N, the model can disentangle the two features more clearly.

5 Conclusion

We propose a novel video-to-speech synthesis framework with the speech-visage
feature selection, visage-style based synthesizer, and two learning methods. The
speech-visage feature selection separates the speech content and speaker identity,
and the visage-style based synthesizer utilizes them to adequately reconstruct
speech from silent talking face videos. The experimental results on benchmark
databases show that the proposed method effectively synthesizes the speech from
silent talking face videos of unseen speakers. [36]

Acknowledgement This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
NRF-2022R1A2C2005529).



VisageSynTalk: Unseen Speaker Video-to-Speech Synthesis 15

References

1. Akbari, H., Arora, H., Cao, L., Mesgarani, N.: Lip2audspec: Speech reconstruc-
tion from silent lip movements video. In: 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 2516–2520. IEEE (2018)

2. Assael, Y.M., Shillingford, B., Whiteson, S., De Freitas, N.: Lipnet: End-to-end
sentence-level lipreading. arXiv preprint arXiv:1611.01599 (2016)

3. Burnham, D., Campbell, R., Away, G., Dodd, B.: Hearing eye II: the psychology
of speechreading and auditory-visual speech. Psychology Press (2013)

4. Chen, T.: Audiovisual speech processing. IEEE signal processing magazine 18(1),
9–21 (2001)

5. Chen, Y.H., Wu, D.Y., Wu, T.H., Lee, H.y.: Again-vc: A one-shot voice conversion
using activation guidance and adaptive instance normalization. In: ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 5954–5958. IEEE (2021)

6. Chung, J.S., Zisserman, A.: Lip reading in the wild. In: Asian conference on com-
puter vision. pp. 87–103. Springer (2016)

7. Cooke, M., Barker, J., Cunningham, S., Shao, X.: An audio-visual corpus for speech
perception and automatic speech recognition. The Journal of the Acoustical Society
of America 120(5), 2421–2424 (2006)

8. Ephrat, A., Halperin, T., Peleg, S.: Improved speech reconstruction from silent
video. In: Proceedings of the IEEE International Conference on Computer Vision
Workshops. pp. 455–462 (2017)

9. Ephrat, A., Peleg, S.: Vid2speech: speech reconstruction from silent video. In:
2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 5095–5099. IEEE (2017)

10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International conference on machine learning. pp. 1180–1189. PMLR (2015)

11. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2414–2423 (2016)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014)

13. Griffin, D., Lim, J.: Signal estimation from modified short-time fourier transform.
IEEE Transactions on acoustics, speech, and signal processing 32(2), 236–243
(1984)

14. Gui, N., Ge, D., Hu, Z.: Afs: An attention-based mechanism for supervised feature
selection. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33,
pp. 3705–3713 (2019)

15. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of machine learning research 3(Mar), 1157–1182 (2003)

16. Harte, N., Gillen, E.: Tcd-timit: An audio-visual corpus of continuous speech. IEEE
Transactions on Multimedia 17(5), 603–615 (2015)

17. Hong, J., Kim, M., Park, S.J., Ro, Y.M.: Speech reconstruction with reminiscent
sound via visual voice memory. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 29, 3654–3667 (2021)

18. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 1501–1510 (2017)



16 J. Hong et al.

19. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: Proceedings of the European conference on computer vision
(ECCV). pp. 172–189 (2018)

20. Jensen, J., Taal, C.H.: An algorithm for predicting the intelligibility of speech
masked by modulated noise maskers. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 24(11), 2009–2022 (2016)

21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4401–4410 (2019)

22. Kim, M., Hong, J., Park, S.J., Ro, Y.M.: Multi-modality associative bridging
through memory: Speech sound recollected from face video. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 296–306 (2021)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Fea-
ture selection: A data perspective. ACM Computing Surveys (CSUR) 50(6), 1–45
(2017)

25. Li, Y., Chen, C.Y., Wasserman, W.W.: Deep feature selection: theory and applica-
tion to identify enhancers and promoters. Journal of Computational Biology 23(5),
322–336 (2016)

26. Liao, Y., Latty, R., Yang, B.: Feature selection using batch-wise attenuation and
feature mask normalization. In: 2021 International Joint Conference on Neural
Networks (IJCNN). pp. 1–9. IEEE (2021)

27. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(11) (2008)

28. Michelsanti, D., Slizovskaia, O., Haro, G., Gómez, E., Tan, Z.H., Jensen, J.:
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