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Abstract. We propose CLIP-Actor, a text-driven motion recommen-
dation and neural mesh stylization system for human mesh animation.
CLIP-Actor animates a 3D human mesh to conform to a text prompt by
recommending a motion sequence and optimizing mesh style attributes.
We build a text-driven human motion recommendation system by lever-
aging a large-scale human motion dataset with language labels. Given a
natural language prompt, CLIP-Actor suggests a text-conforming human
motion in a coarse-to-fine manner. Then, our novel zero-shot neural style
optimization detailizes and texturizes the recommended mesh sequence
to conform to the prompt in a temporally-consistent and pose-agnostic
manner. This is distinctive in that prior work fails to generate plausible
results when the pose of an artist-designed mesh does not conform to the
text from the beginning. We further propose the spatio-temporal view
augmentation and mask-weighted embedding attention, which stabilize
the optimization process by leveraging multi-frame human motion and re-
jecting poorly rendered views. We demonstrate that CLIP-Actor produces
plausible and human-recognizable style 3D human mesh in motion with
detailed geometry and texture solely from a natural language prompt.

Keywords: mesh animation, mesh stylization, text-driven editing

1 Introduction

Manual generation of animatable and detailed 3D avatars is cumbersome
and requires time-consuming efforts with intensive labor and pain of creation.
To reduce such burdens, many attempts have been introduced to automate
such processes [6, 10, 11, 13, 18, 23, 32, 42, 54]. Furthermore, highly deformable
human bodies make it more challenging to design temporally-consistent detailed
geometries and textures. This process may be fully automated by text-guided 3D
avatar generation, i.e., making a machine understand the human text prompt to
create a 3D avatar amenable to the prompt. Text-guided 3D avatar generation can
be widely applied to machine-created media, such as virtual human animation [54],
language-driven robot task planning [56,63], and movie script visualization [24].
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Fig. 1. CLIP-Actor. Given an input text prompt, CLIP-Actor recommends the best
matching human meshes in motion and iteratively stylizes them by synthesis-through-
optimization. CLIP-Actor can detail and texturize not just a single mesh frame but a
short action clip by optimizing temporal-consistent and pose-agnostic style attributes.

Our key intuition is from the text-visual coupled understanding of humans.
For example, when an actor reads a script for a play, the actor brings up an
image of gestures, tone of speech, and clothes to her/his mind following the
context described in the script. We believe such text-visual coupled imagination
can be a breakthrough for accelerating machine-created media, e.g ., stylized
3D humans in motion. We can embody it to the machine by leveraging the
text-image joint embedding space of CLIP [49]. With the representational power
of the CLIP embedding space, the similarity measure between text and image
provides concrete signals in building text-to-3D human meshes in motion.

In this work, we propose CLIP-Actor, an automated framework of text-
driven recommendation and stylization of animating 3D human meshes. Given
a text prompt describing human action and style, CLIP-Actor crafts a short
clip of animated human meshes conforming to the prompt (see Fig. 1). Our
method is free from extra artist-designed 3D mesh inputs since it searches meshes
in motion from a database that strongly correlates with the given query text.
The CLIP-Actor then detailizes and texturizes the mesh sequence by optimizing
our proposed Decoupled Neural Style Fields (DNSF) in a pose-agnostic manner.
The objective of the optimization is to maximize the correlation between the
input text prompt and 2D rendered images of the stylized 3D mesh. We optimize
DNSF with spatio-temporally augmented rendered images and provide an initial
content mesh with a multi-modal sampling strategy. Moreover, we propose mask-
weighted embedding attention for stable neural optimization. We demonstrate
that CLIP-Actor can stylize visually and physically plausible 3D human meshes
in motion with various text descriptions in zero-shot.
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We summarize our main contributions as follows:

• We propose CLIP-Actor, a text-driven animated human mesh synthesis system.
• We propose a hierarchical text-driven human motion recommendation module

that utilizes fine-grained textual semantic matching to capture visual and
textual cues within the text prompt.

• Our novel decoupled neural style field (DNSF) learns style attributes of the
human meshes in motion in a temporally consistent and pose-agnostic manner.

• We further develop novel methods to improve the convergence of the text-
driven neural DNSF optimization: multi-modal content mesh sampling, spatio-
temporal view augmentation, and mask-weighted embedding attention.

2 Related Work

Our work is closely related to text-driven 3D object contents and style
manipulation. Multi-modal object stylization has been mainly studied using
learned multi-modal embedding space, such as CLIP [49] and 3D content/style
manipulation methods. We briefly review these lines of research.

Text-driven visual data manipulation. Recent advances in learned text and
image joint embedding space [15, 49] have lit a fire in research about the style
manipulation of images and 3D objects. CLIP embedding space is learned with
abundant natural images and texts and was originally developed for zero-shot
image and language analysis tasks. Interestingly, its representation turns out
powerful enough to manipulate visual data with intuitive text guides. For images,
text conditional image generation [17,19,30,31,40] has been notably advanced
by CLIP. A representative work, StyleCLIP [43], manipulates an input image by
optimizing over its latent code of a pre-trained generative model given a natural
language text-prompt. CLIPDraw [17] synthesizes images with text guidance by
optimizing the parameters of a set of curves via gradient descent.

Analogous to the image domain, several works [26, 38] extend the manipu-
lation target domain to 3D objects by leveraging the advances in differentiable
rendering [4,29,39,41,50]. The differentiable rendering technique enables seamless
gradient flow from 2D rendered images to their 3D objects, allowing CLIP to
bridge between language and 3D modalities through 2D images. Dream Fields [26]
generates a 3D structure using implicit representation in free space, given a text
prompt. It exploits no structural prior knowledge to learn or manipulate 3D
contents. This allows flexible content exploration with novel styles but often
results in abstract visual contents. As another concurrent work, Michel et al . [38]
propose Text2Mesh, a CLIP-guided optimization method to manipulate the
given fixed source mesh styles to conform to the target text condition prompt.
In contrast to Dream Fields, since Text2Mesh stylizes a 3D object over the
displacement and its texture map defined on a fixed, T-posed template human
mesh, it imposes strong structural prior. It demonstrates plausible and interesting
styles and textures of meshes given a text prompt. However, we observed that
when the given template mesh is hard to conform to the given text prompt, it
produces undesirable stylization; e.g ., the text containing detailed human action
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produces a failure of stylization when the pose of the given human template mesh
and the action are not conformed to each other.

We focus on animating human meshes with details and styles according to the
input text prompt. We exploit the parametric human mesh model to disentangle
style from geometric contents, i.e., pose. Such disentanglement enables the pose,
detail, and style of human mesh to conform to the input text sequentially. This
enables to stably manipulate 3D human objects, better conforming to the input
text prompt from action to style.

Text-driven human motion manipulation. Many recent approaches have
been studied to generate human body motion with given natural language
descriptions. One line of work [2, 3, 20, 33, 47] guides the machine to translate
natural language descriptions in a sequential manner and generate human skeletal
motions using recurrent neural models. Another line of work [21,22,45] generates
human motion conditioned on the limited number of closed-set action categories.
CLIP-Actor focuses on textual and visual semantics in a whole sentence and can
tackle various natural language descriptions.

Recently, MotionCLIP [59] and TEMOS [46] propose to learn the natural
language conditioned mesh motion generation. MotionCLIP learns the human
motion autoencoder and makes its latent space compatible with CLIP text
and image space using semantic similarity. Similarly, TEMOS learns generative
human mesh motion latent space with transformer-VAE [16,28,45] and aligns
it with natural language latent space via DistilBERT [55], thus composing the
cross-modal motion latent space. While both methods focus on the latent space
to capture textual and visual semantics of natural language descriptions, CLIP-
Actor directly maps the descriptions to realistic motion using a recommendation
system. Moreover, our detailed volumetric meshes are stylized with appearance
attributes much more expressive than those of the aforementioned methods.

Texture and geometric stylization of human mesh in motion. Aside
from 3D mesh pose, recent work has added different levels of details to bare
human meshes, e.g ., cloth modeling or texture color. The separate modeling
of human and cloth meshes [6, 23, 32], the neural extension of the parametric
human mesh model [5, 12,35], the neural parametric approach [10,11,42], and
the neural implicit approach [52, 53, 62] show promising clothed human mesh
results from the given human scans, but without surface colors. Those works deal
with texture and geometric styles separately. Recently, Saito et al . [54] propose a
weakly-supervised way to recover both texture and geometric styles.

None of these methods can generate diverse color and cloth details of human
motion in a zero-shot manner, e.g ., with only a text guide. We present a novel
text-driven recommendation, detailization, and texturization of animating human
meshes in zero-shot, where human meshes in motion with texture and geometric
details are generated from the machine’s imagination without the task dataset.
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Fig. 2. Overall architecture. Given a text description of the human action, the
text-driven human motion recommendation module finds the best semantically matched
motion sequence from the motion database [48]. Content meshes are then sampled in a
multi-modal context. Decoupled Neural Style Field takes a T-posed human mesh and
learns text-driven style attributes, which are then applied to the content meshes. We
apply spatio-temporal view augmentation and weight rendered images to guide the
neural optimization with similarity among rendered images and the text.

3 CLIP-Actor: An Overview

Our goal is to visualize 3D motion that conforms to the input description
by stylizing mesh with the color and displacement of its vertices. For example,
consider a natural language prompt, “walking Steve Jobs wearing blue jeans.”
Instead of preparing extra fixed 3D mesh inputs, our model obtains a sequence
of 3D meshes that conforms to the input prompt, i.e., walking, by retrieving a
motion sequence from a dataset, e.g ., BABEL [48]. The retrieved mesh sequence
becomes the “content” of our mesh stylization. We then grant the characteristics,
e.g ., cloth, hair, to the meshes by optimizing the neural model to learn the color
and displacement of the mesh vertices. Finally, our model generates a short clip
of walking Steve jobs wearing blue jeans (see Fig. 2).

Formally, given a text prompt y, we retrieve a sequence of pose parameters
R1:T = [R1, . . . ,RT ] of SMPL [34,44,51] for duration T . In a single frame t, mesh
vertices Mt can be acquired with a linear mapping as: Mt =M(Rt,βt), ∀t ∈
{1, . . ., T}, where Rt denotes the pose parameters, and βt the shape parameters
for a human mesh. Then, a single mesh at frame t is represented by the faces F , and
the 3D mesh vertices Mt ∈ RV×3, where V is the number of vertices. Since SMPL
mesh faces F for every frame are identical with given triangulation, we represent
a single mesh using the mesh vertices, Mt. Hence, M1:T = [M1, . . . ,MT ] denotes
a full sequence of human meshes and is taken to our decoupled neural style field
(DNSF) as “content.” The DNSF then learns “style,” i.e., color and displacement,
of mesh vertices and produces a sequence of textured mesh M∗

1:T .
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Fig. 3. Hierarchical multi-modal motion retrieval. Given text prompt as a query,
our retrieval module finds the most relevant raw action label from the database [48].
First, the query and all of the raw action labels are encoded by CLIP text encoder h(·),
and we measure similarity between them. Top-k indices of raw action labels are selected,
and corresponding raw action labels are retrieved by the top−k filter. The language
model encoder m(·) vectorizes the query and top-k action labels. The highest-scored
raw action label is retrieved as the final matched result for the input text prompt.

4 Text-driven Human Motion Recommendation

In this section, we propose a motion recommendation module to obtain a
motion sequence that conforms to the text prompt. We recommend the motion
by retrieving visually and textually relevant action labels from the dataset.

Hierarchical multi-modal motion retrieval. We propose a hierarchical
multi-modal motion retrieval module to obtain a motion sequence corresponding
to the given prompt (see Fig. 3). We utilize a large scale human motion dataset
with language labels, BABEL [48], containing frame-level aligned SMPL pose
parameters and raw action labels. Given the text prompt as a query, the raw
action label that is visually and linguistically associated with the query is matched
through our motion recommendation system. We design a two-stage retrieval;
cross-modal aware matching and textual semantic matching. The hierarchical
matching enables CLIP-Actor to catch visual-language (cross-modal) aware
contexts and linguistic semantics. These comprehensive matching modules hand
over good initial content to the subsequent neural mesh stylization.

Cross-modal aware matching. Cross-modal aware matching finds the action
labels similar to the input text prompt on the joint image-text space. We prepare
the database, i.e., a set of raw action labels A, gathered from BABEL [48]. We
retrieve a set Ak⊂A of the raw action label ai ∈ A, given a text prompt y as:

Ak = top−k[S(h(ai),h(y))], where S(x,y) = x⊤y

∥x∥2∥y∥2
, (1)

h(·) is the pre-trained CLIP text encoder, and top−k[·] denotes a function that
returns k best matches. The similarity is measured by the cosine similarity.
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Specifically, consider an input prompt “a man walking backwards.” The
cross-modal aware matching vectorizes the input prompt and the action labels
using the CLIP text encoder and computes the similarity between them. The
set of matched action labels Ak is determined as {“walking in place,” “walking
backward,” “walking laterally”} and the top-1 matched label is “walking in
place.” Since the CLIP text encoder is learned to focus on words that appear
visually, it catches visual semantics (i.e., walking), and all the elements in Ak are
closely related to the input prompt in visual space. However, the text encoder of
CLIP is trained with still images instead of videos so that it cannot distinguish
fine-grained action (i.e., “walking in place” vs. “walking backwards”; because
both appear to be the same in a still image). Thus, we propose textual semantic
matching as the following step to compensate for the single-stage retrieval.

Textual semantic matching. The textual semantic matching finds the most
relevant action label with the input prompt by capturing textual semantics in
the sentence. We utilize the language expert, MPNet [57], so that our two-stage
module can distinguish textual semantics and grammatical structures. The best
matching label a∗ is retrieved as:

a∗ = argmaxaj∈Ak
S(m(aj),m(y)), (2)

where m(·) denotes the pre-trained MPNet encoder. Again, consider our above
example of “a man walking backwards.” The top-k action labels are re-ranked,
and the most similar action label “walking backward” is retrieved as a final result.
The sequence of meshes M1:T associated with the retrieved action label is passed
to the following neural mesh stylization pipeline as the content mesh sequence.

5 Decoupled Stylization of Human Meshes in Motion

We represent a stylized human mesh with the content mesh and the style
attributes. In practice, we denote the content mesh as Mi ∈ RV×3 sampled from
the retrieved human motion sequence of T frames, M1:T . The mesh’s surface style
attributes (c,d) ∈ RV×3 × RV are interpreted as the per-vertex RGB color and
per-vertex displacement, which are applied over surfaces via given triangulation.
The Neural Style Field [38] takes a fixed static mesh as input and learns the style
attributes with a multi-layer perceptron (MLP). Michel et al . [38] claim that this
implicit formulation tightly couples the style field to the source mesh. However,
since Neural Style Field takes a single posed mesh at a time, a significant number
of MLPs are required to stylize a sequence of human meshes.

Decoupled Neural Style Field. Instead, we introduce Decoupled Neural Style
Field (DNSF). We propose to rather decouple the style field from the content
mesh so that we need only one neural network to learn style attributes for the
meshes in motion. Specifically, we first map the style attributes from the template
human mesh Mc and merge it with the content meshes Mi,∀i ∈ {1, . . . , T}, right
before rendering (refer to Fig. 2). DNSF can achieve the same mesh stylization
as the basic Neural Style Field while effectively decoupling the style from the
content mesh. In practice, parameterized as an MLP Gθ, DNSF maps the vertices
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on the template human mesh, i.e., T-posed SMPL Mc, to style attributes c and
d, in a pose-agnostic manner as:

DNSF: Gθ(Mc) 7→ {c,d}. (3)

We also employ the Fourier feature-based positional encoding to the mesh
vertices, which helps the style field to cover higher frequency details [58]. In detail,
the MLP Gθ gets the positional encoded feature as input and outputs per-vertex
RGB value, c ∈ [0, 1]V×3, and per-vertex displacement value, d ∈ [−0.1, 0.1]V ,
along the per-vertex normal direction. The predicted style attributes are then
applied to the content posed mesh Mi to produce the stylized human mesh M∗

i .

Text-driven DNSF optimization. The core of the text-driven DNSF op-
timization is to maximize the semantic correlation between the visual mesh
observation and the input text prompt. However, we cannot directly utilize CLIP
to measure the semantic correlation with the created 3D mesh itself because the
CLIP visual encoder is designed and trained only for 2D images.

We leverage an intuitive idea that the observations of a 3D object can be
described similarly from any viewpoint [26, 27, 61]. To utilize the representation
power of CLIP as a supervision signal, we first render images of the 3D meshes for
input compatibility. With randomly sampled N camera poses, p = [p1, . . . ,pN ],
we differentiably render the stylized mesh M∗

i to get N -view rendered images I∗ij ,
∀j ∈ {1, 2, . . . , N} [60]. Thereby, our main optimization objective, semantic loss,
is defined with the pre-trained CLIP image and text encoders, g(·) and h(·), as:

Ls = 1− ḡ(I∗i )
⊤h(y)

∥ḡ(I∗i )∥2∥h(y)∥2
, ḡ(I∗i ) =

1

N

∑N

j=1
g(I∗ij), (4)

where y denotes the input text prompt, and g(I∗i ) ∈ R512 and h(y) ∈ R512 the
unnormalized CLIP embedding vectors for the image and the text prompt, respec-
tively. The semantic loss is basically a cosine similarity between the normalized
mean embedding vectors for N rendered images of the stylized mesh M∗

i and
the normalized embedding for the input text prompt y.

Spatio-temporal view augmentation. Prior works show that spatial aug-
mentations, such as 3D viewpoint or 2D image augmentations, improve the
quality of content generation [17,26,27,38]. We extend it to spatio-temporal view
augmentation, where we propose to leverage both multi-view property and human
motion originating from the temporal movement. This naturally diversifies views
in a combinatorial way by the spatio-temporal context of human motion.

The strength of DNSF is amplified with the spatio-temporal view augmenta-
tion. Recall that DNSF Gθ takes a template SMPL mesh as an input, which is
pose-agnostic. Therefore, the semantic loss Ls can be measured with any content
mesh Mi∈{1,...,T} in the motion sequence for learning DNSF. One can sample
and use the center frame or the frame that conforms best with the text prompt.
This increases the chance to measure the loss with a view favorable to DNSF
learning. Considering that the näıve selection of the content mesh fails to generate
plausible color and geometric details when it does not conform with the text
prompt, the content mesh sampling strategy is a crucial design choice.
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Multi-modal content mesh sampling. One näıve way to choose the content
mesh to stylize with is to randomly select a single mesh within a mesh sequence.

Fig. 4. We choose the top-k best
matching mesh frames that con-
form with a given text prompt. We
show the CLIP scores.

However, as careful text prompt and its seman-
tic alignment with the mesh’s rendered image
are crucial for the optimization [38,67], we de-
sign multi-modal content mesh sampling that
finds the best text-conforming meshes within
the motion. Specifically, we render the images
of the content mesh sequence, I(M1:T ), and
compute each image’s CLIP similarity score
with y. For example, when the text prompt is
given as “a man jumping kick”, we render each
mesh in retrieved motion into an image and
find the semantically matching frames with
the jumping kick action (refer to Fig. 4).

Mask-weighted embedding attention. Before the pre-trained CLIP encoder
g(·) encodes the rendered images, we apply differentiable 2D image augmen-
tations, including random crop and perspective transformations [50]. Such 2D
augmentations help DNSF learn style attributes from diverse perspective images,
thus can achieve better generalization in 3D contents [26,38].

Fig. 5. Näıve mean embedding of
the random-cropped renders may
distract the optimization of DNSF.

However, the problem occurs when careless
random crops are applied. The prior work [38]
applies extreme close-ups to crop the rendered
images, which severely samples the empty ren-
ders (see Fig. 5). Such redundant images do
not conform to the text prompt even for the
properly stylized meshes and distract the sta-
ble DNSF optimization.

We mitigate this issue by weighting the CLIP embedded vectors g(I∗ij) from N

different camera poses {pj}Nj=1 according to each image’s foreground pixel ratio.
In other words, we reject the embedding vector g(I∗ij), if I

∗
ij has an extremely small

portion of mesh foreground pixels in it. We call this mask-weighted embedding
attention, and implement it by simply adding the weight wij to Eq. (4) as:

ḡ(I∗i ) =
∑N

j=1

wij∑N
k=1 wik

g(I∗ij), wij =
1

HW

∑
H,W

1[mij(h,w) = 1], (5)

where H and W denote the height and width of the rendered image I∗ij and its
foreground mask mij .

6 Experiments

In this section, we evaluate CLIP-Actor in several aspects. Since our model is
in an over-fitting regime and the first approach that addresses the stylization of
3D human meshes in “motion” conditioned on the natural language, we mainly
ablate our technical components and the design choices qualitatively.
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Fig. 6. Qualitative results of CLIP-Actor. Each image shows the representative
frame from the recommended motion sequence, with detailed surface geometries and
textures, along with the input text prompt. CLIP-Actor shows good action and style
consistency, vivid and attractive texture results.

Specifically, we describe the models for our evaluation and ablation study
in Sec. 6.1. We then show our qualitative and quantitative results compared
with competing methods in Secs. 6.2 and 6.3. In Sec. 6.4, we empirically support
our choice of the hierarchical motion retrieval. In Sec. 6.5, we show how our
decoupled style representation, mesh sampling, view augmentation, and attention
mechanism help us achieve better qualitative results.

6.1 Model Description

We define our full model, CLIP-Actor, as the one that uses the top-3 best
matching mesh frames conforming with a given text prompt, i.e., using multi-
modal content mesh sampling and spatio-temporal view augmentations along
with the mask-weighted embedding attention. Also, the CLIP-Actor (base) is the
model that utilizes only the center frame of the retrieved motion sequence and
does not utilize DNSF, i.e., using posed mesh to learn the style field. Still, CLIP-
Actor (base) is a strong baseline model since it at least mitigates the limitation
of Text2Mesh [38] by suggesting the initial mesh to the neural optimization.

6.2 Qualitative Results

In Fig. 6, we visualize CLIP-Actor’s recommendation and mesh stylization
results for a given text prompt. With only a single text prompt, CLIP-Actor can
retrieve visually conforming motion sequences containing representative poses.
Moreover, CLIP-Actor can capture the subject’s representative identities. For
example, the geometric and texture details such as Spiderman’s webbed costume,
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Fig. 7. Qualitative comparison. We compare CLIP-Actor with other competing
methods [26, 38] and our strong baseline, CLIP-Actor (base). Given the same text
prompts as input, (a) Dream Fields shows abstract generations, which are blurry and
hard to recognize, (b) Text2Mesh shows a better generation than Dream Fields but
suffers from substantial defects on the surfaces. (c) CLIP-Actor (base) shows more
text-conforming meshes with human-recognizable style attributes but still suffers from
surface defects. (d) CLIP-Actor shows human-recognizable and semantically conforming
action, while presenting detailed color and geometry, such as hairstyle and face identities.

the iconic color of Lionel Messi’s uniform, Freddie Mercury’s hairstyle, and the
robe that Gandhi wears are well-illustrated in Fig. 6.

We also evaluate CLIP-Actor with other recent competing methods, Dream
Fields [26] and Text2Mesh [38], and our strong baseline model, CLIP-Actor
(base). Figure 7 illustrates the visual comparison of the methods.

Given the same text prompts, Dream Fields shows blurry and non-human-
recognizable renderings of the generated 3D content. We postulate that such
performance degradation is due to the lack of structural prior when training the
Dream Fields. Dream Fields learns the occupancy and the color of 3D points in
virtual space without any structural guidance. For example, we cannot impose
the human body’s physical constraints on Dream Fields when performing specific
actions (refer to Fig. 7a). We found that applying only semantic supervision to
such a highly unrestrained content generation process fails to handle physically
constrained human motion and textures.

Text2Mesh shows enhanced texture generation than Dream Fields. However,
it still fails since the given artist-designed human mesh is absolutely uncorrelated
with the target human action. Such limitation is originated from Text2Mesh’s
highly coupled style field, which learns the style field from the “posed” content
mesh. Text2Mesh also clamps the per-vertex displacement to lie in a limited
range, preventing style attributes from largely changing the content [38]. On
the other hand, by adding our novel text-driven human motion recommendation
module before Text2Mesh, and providing the text-conforming content mesh as an
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initial point, i.e., CLIP-Actor (base), we can significantly enhance Text2Mesh’s
qualitative performance.

Finally, our full CLIP-Actor further enhances the qualitative result by cap-
turing semantically meaningful details such as a cap on a baseball player and
the hairstyle of Tony Stark (see Fig. 7d) while reducing the messy spikes. Our
novel DNSF, multi-modal content mesh sampling, and spatio-temporal view aug-
mentation enable CLIP-Actor to leverage multi-view renderings originating from
multi-frame human motion; thus, results are much smoother and text-conforming.
More importantly, note that all the other methods except CLIP-Actor cannot
handle human motion. CLIP-Actor recommends text-conforming human motion
and synthesizes temporally consistent and pose-agnostic mesh style attributes.

6.3 Quantitative Results

Fig. 8. User study results. CLIP-
Actor outperforms other competing
methods in various aspects.

Since there are no benchmarks for our
task, we conduct a user study to evaluate
CLIP-Actor quantitatively. We ask 46 non-
expert users to score (1-5) five random text-
avatar paired results regarding motion-text
consistency, stylization quality, and overall
consistency with the given text. Figure 8
shows that our CLIP-Actor outperforms
other competing methods in all aspects,
while none of the competing methods scored
higher than a neutral point (i.e., <3). The differences are significantly noticeable
in the motion-text consistency, which validates our good action consistency.

6.4 Evaluation on Retrieval Module

We validate the performance of our retrieval module design choice by compar-
ing it with other variants. We use the SICK dataset [37] that contains contextually
similar sentence pairs generated from image descriptions. We build module vari-
ants to simulate various retrieval scenarios. Details about the dataset and the
experiment settings can be found in the supplementary material.

Retrieval module variants. We consider two hierarchical modules and two
single-stage baselines for the design variants. Our full hierarchical retrieval module
utilizes pre-trained CLIP and MPNet sequentially (see CLIP+MPNet in Sec. 4).
We also design the reverse ordered hierarchical module, MPNet+CLIP. For
hierarchical models, top-k candidates are matched at the first stage, and the
best-matched item is selected after re-ranking. Finally, our single-stage baselines
are the modules that only use either pre-trained CLIP or MPNet encoder.

Quantitative results. We empirically show the performance of our hierarchical
motion retrieval module by comparing it with the different design variants. As
shown in Table 1a, the single-stage baselines show comparable results with our
hierarchical model in the SICK4.8 setting, where the sentence pairs are more
related to each other (refer to Table 1b). However, CLIP shows higher precision
than MPNet in SICK4.4. We postulate that CLIP catches the visual semantics,



CLIP-Actor 13

Table 1. Evaluation results on the retrieval module. (a) The precision is mea-
sured as the percentage of matched sentence pairs among all pairs. (b) The samples of
each range of the SICK dataset. Our hierarchical retrieval outperforms all the other
variants.

(a) (b)

Retrieval Precision [%]

Retrieval Module SICK4.8 SICK4.4 SICK[4.4,4.8]

CLIP 91.94 85.21 81.62
MPNet 91.94 83.56 80.55
MPNet+CLIP 91.34 85.48 80.41

CLIP+MPNet (Ours) 92.24 85.75 81.90

e.g ., similar context can be imagined from “performing with a guitar” and
“playing a guitar”. On the other hand, the language expert, MPNet, focuses on
the textual difference of description, e.g ., “performing with” and “playing”. Thus,
it is sensitive to the textual structure. In the setting with the increased number of
samples, i.e., SICK[4.4,4.8], CLIP shows comparable results with ours but is still
insufficient without the help of the language expert. Moreover, the MPNet+CLIP
shows unstable performances over settings. In contrast, our full retrieval module
consistently outperforms over all settings. We demonstrate that a coarse-to-fine
matching system achieves favorable retrieval performance on natural language.

6.5 Ablation on Decoupled Neural Style Fields (DNSF)

We analyze CLIP-Actor by ablating each of the components of DNSF. Figure 9
shows the qualitative ablation results for our major technical components.

Effects of temporal augmentation. First, we remove temporal view aug-
mentation so that DNSF utilizes only a single mesh frame (top-1). Removing the
multi-frame renderings significantly degrades the visual quality, where it presents
noticeable spikes on the surface and unrealistic colors (−aug t in Fig. 9). Since our
full model utilizes top-3 relevant frames and 2D, 3D augmentations, it leverages
multi-view of stylized mesh, which regularizes the model from overfitting [26, 38].

Effects of multi-modal content mesh sampling. We also compare the
full CLIP-Actor with the model without multi-modal content mesh sampling.
Multi-modal content mesh sampling enables DNSF to begin its optimization
with better initialization that conforms with the text prompt. Näıve sampling
of the content mesh yields unrecognizable face identities, degraded texture, and
geometric details (see −sample in Fig. 9).

Effects of mask-weighted embedding attention. The mask-weighted em-
bedding attention adds detailed touches to the stylized meshes. By preventing
empty renderings from guiding the optimization, it enables learning fine geometric
and texture details via focused gradient flow in back-propagation. When the
augmented rendered images contain extreme close-ups of distal body regions,
such as tiptoe or fingertips, our embedding attention method draws the DNSF’s
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Fig. 9. Ablation results. We remove each of CLIP-Actor’s components to validate
corresponding effects. Our full model shows the most smooth geometry and vivid color.

attention to the mesh foreground pixels rather than empty space with focused
gradient flow. In Fig. 9, -weight shows the result when we train DNSF without
our attention mechanism. Our full CLIP-Actor shows much smooth, fine-grained
geometric details. We believe our novel attention mechanism can be applied
to not only text-driven 3D object manipulation pipelines [26, 38, 67] but also
differentiable rendering applications [27,39,65].

7 Conclusion

We present CLIP-Actor, a text-driven animated human mesh synthesis system.
Leveraging multi-modal aware and semantic textual matching, CLIP-Actor rec-
ommends the best semantically matching human motion sequence with the input
text prompt in a hierarchical manner. Our CLIP-Actor then stylizes the meshes
of recommended motion by synthesis-through-optimization in a pose-agnostic
manner via decoupled neural style fields. We further develop novel neural opti-
mization techniques to utilize multi-modal sampling and embedding weighting,
which stabilize and enhance the detailization and texturization quality.

CLIP-Actor can be extended to other parametric mesh models, such as hands
and animals [7–9,51,64,68,69], enabling diverse animation of 3D objects. One
promising future application of CLIP-Actor would be a dataset generation of
stylized meshes in motion, paired with natural language description. We believe
such multi-modal datasets can boost exciting future applications.
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This supplementary material aims to provide additional contents and details
that are not included in the main paper due to the space limitation. In Sec. A,
we describe the design choices for the proposed Decoupled Neural Style Field
(DNSF) and justify our full model by comparing it with different settings. In
Sec. B, we describe the datasets and experimental details of human motion
recommendation. In Sec. C, we provide additional qualitative results of CLIP-
Actor. In Sec. D, we provide the overall algorithm for CLIP-Actor. Furthermore,
we provide training details of CLIP-Actor in Sec. E and provide the discussion
and possible future direction of CLIP-Actor in Sec. F. We also provide the video
results demonstrating the text-conforming stylized meshes in motion.

A Analysis on the Decoupled Neural Style Field

In this section, we introduce our design choices and implementation details
when composing and optimizing our decoupled neural style field, DNSF, and
corresponding effects. Moreover, we provide implementation details of our mask-
weighted embedding attention.

A.1 Effects of Content Mesh Resolution

Recall that the CLIP-Actor learns the best text-conforming per-vertex color
and displacement for the content meshes. Thus, the resolution of the content
meshes, i.e., the number of mesh vertices, would be the critical factor of the
texture generation quality. Text2Mesh also shows that the näıve neural style field
network can synthesize a more plausible style with high-resolution meshes, i.e.,
meshes with more vertices [38].

SMPL vs. SMPL-X: content mesh selection. We can change the content
mesh model with SMPL [34] variants, SMPL-H [51] and SMPL-X [44], which
have different numbers of vertices, to investigate the effects of the mesh resolution.
With its linear blend skinning operation, SMPL maps pose parameters, Rt and
shape parameters βt, to 6,890 mesh vertices, i.e., MSMPL ∈ R6890×3. SMPL-X,
on the other hand, has 10,475 vertices i.e., MSMPLX ∈ R10475×3. Furthermore,
SMPL-X can express detailed hand poses and expressive faces, which is essential

∗ Authors contributed equally to this work.
† Joint affiliated with Yonsei University, Korea.

https://clip-actor.github.io
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Fig. a. Effects of content mesh resolution. (i) With SMPL, which has the smallest
number of vertices, CLIP-Actor shows unrealistic texture and geometric details. (ii)
With higher resolution mesh, SMPL-X, CLIP-Actor achieves much smoother geometry,
along with expressive hand and facial details. However, it still suffers from unrealistic
colors. (iii) With subdivided SMPL, CLIP-Actor achieves better texture and geometry
details than (i) and (ii). (iv) CLIP-Actor with subdivided SMPL-X achieves the most
realistic color configuration and fine-grained geometric details.

in modeling human interactions and expressions [44]. We conduct experiments
that compare the qualitative mesh stylization results with both mesh models
as the content mesh. Figure a(i),(ii) illustrate qualitative results of CLIP-Actor
with different body mesh models. With the lowest mesh resolution, i.e., SMPL,
CLIP-Actor generates unrealistic body configurations, such as sharp edges and
slim body parts. Also, using SMPL as the content mesh, CLIP-Actor cannot
represent detailed human actions. In Fig. a(i), the SMPL mesh spreads its hands,
thus fails to express the baseball player grabbing the bat. On the other hand,
SMPL-X, which has a higher resolution than SMPL, shows a smoother result,
detailed hand pose, and facial expressions.

Mesh subdivision for higher resolution. Furthermore, we utilize mesh
subdivision [50] to achieve higher mesh resolution (∼ 4× number of vertices).
Note that we use subdivided SMPL-X for the content mesh for our full model1.

Using subdivided meshes of SMPL and SMPL-X (Fig. a(iii),(iv)) as the
content mesh, they show detailed cloth geometry, texture generation and smooth
body curvatures than the basic SMPL, SMPL-X meshes. Also, SMPL-X-Sub,
which is our CLIP-Actor’s full version, shows the most realistic color configuration
compared to other mesh models. Since our text-driven optimization of decoupled
neural style field is based on the rendering of the stylized meshes, we postulate
that higher resolution of the content meshes results in better supervision signal,
thus leading to improved qualitative results.

1 Note that we denote our content mesh as SMPL in the main paper for simplicity.
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A.2 Mask-weighted Embedding Attention

In the main paper, we mentioned that 2D augmentations are essential for plau-
sible texture generation. Recall that, we apply differentiable 2D augmentations
before the rendered images are passed into the pre-trained CLIP encoder.

In practice, we adopt the multi-level 2D augmentations for the rendered im-
ages, following Text2Mesh [38]. The multi-level 2D augmentation is the method
that renders both colored mesh and de-colorized mesh into images I∗ and I∗geo,
computes semantic loss for each rendered image, and leverage gradient accumula-
tion during optimization. The advantages of such multi-level 2D augmentations
are in two-folds. First, rendered images in diverse viewpoints and augmentations
improve generalization across views [26]. Next, separate rendering of textured and
de-colorized meshes, I∗ and I∗geo, and gradient accumulation enable guiding both
global context and local geometric details with only a single text prompt [38].

In detail, we apply a global 2D augmentation Tglobal(·) to the rendered images
I∗. Tglobal(·) does not contain the image crop but only random perspective
transformation. Also, the local 2D augmentation Tlocal(·) is applied to I∗ and
I∗geo. Tlocal(·) contains both random crops up to 10% of the original image and
the random perspective transformation.

However, the problem occurs in careless Tlocal(·). Prior work [38] simply
applied extreme close-ups to the de-colorized rendering of the meshes, which
leads to random, empty rendered images. Such empty images do not conform to
the text prompt, and these dummy images can distract the optimization process
with random gradient direction. In CLIP-Actor, we mitigate this problem with
mask-weighted attention embedding.

B Datasets of Human Motion Recommendation

In this section, we explain the dataset used in the retrieval system and
evaluation for human motion recommendation. Moreover, we provide the details
of the dataset and the experiment settings.

Retrieval dataset. We use BABEL [48] as a database of the retrieval system.
BABEL is a dataset that labels a large-scale human motion capture dataset [36]
with unique action categories. Although they provide over 250 action categories,
e.g ., arm movements, the categories are too abstracted to be matched with our
natural language prompt. Therefore, we utilize the raw labels untrimmed and
diverse, e.g ., walk without energy and walk fast, so that the variants of natural
language text prompt can be semantically matched with the raw labels. Instead
of using a limited number of closed-set action categories, the raw labels can
handle the open-set action descriptions.

Evaluation dataset. To evaluate the text-driven motion retrieval module, we
use the SICK [37] as an evaluation dataset. SICK consists of the sentence pairs
obtained from the Flickr8K dataset [25] and the video description dataset [1].
Since the sentences in SICK are composed of descriptions of images or video,
the dataset is well-matched with our multi-modal retrieval scenario in terms
of finding visual semantics. Each sentence pair in SICK is annotated with a
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relatedness score from 1 to 5 that indicates the degree of semantic relatedness
between two sentences. We set a range of scores from 4.4 to 4.8 for evaluation
settings to ignore unreliable pairs and exclude the pairs that are only different
with grammatical voice or article. SICK4.8 and SICK4.4 settings are constructed
with the sentences with the score 4.8 and 4.4, respectively and SICK[4.4,4.8]
setting comprises the sentences in the range. The samples of the SICK according
to the score are shown in Table 1b in the main paper.

C Additional Qualitative Results

In this section, we present additional qualitative results of CLIP-Actor, with
diverse subjects and actions (See Fig. b) We describe the text prompts we used
and the corresponding results. Since we cannot express dynamic action sequences
in images, video results are also attached in the supplementary files.

Fig. b. Additional qualitative results. The first two rows show that CLIP-Actor
recommends the human motion from the text description and generates plausible mesh
stylization in zero-shot. The last row shows the compositional mesh stylization that
allows users to stylize the same retrieved motion, “walking forwards” with different
identities via text prompt, e.g ., Hermione Granger.
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D CLIP-Actor: Algorithm

In this section, we provide a thorough algorithm for CLIP-Actor. CLIP-Actor
is a system that includes the recommendation module, text-driven DNSF op-
timization, and stylization, and we arrange the overall pipeline with the algorithm.

Algorithm 1 Overall pipeline of CLIP-Actor

Require: Pre-trained CLIP image encoder g(·), text encoder h(·),
Pre-trained MPNet text encoder, m(·), SMPL Linear Blend SkinningM(·),
BABEL dataset A, SMPL template mesh Mc

Input: Natural language text prompt y

Output: Text-conforming stylized meshes in motion M∗
1:T

# Text-driven Human Motion Recommendation

1: S(x,y) def
= x⊤y

∥x∥2∥y∥2
▷ Cosine similarity between two vectors, x, y

# top-k[·] returns top-k items and indices in tuple

2: [Ak, ]← top-k[S(h(ai),h(y))], ∀ai ∈ A ▷ Cross-modal aware matching

3: a∗ ← argmaxaj∈Ak
S(m(aj),m(y)); ▷ Textual semantic matching

# Get pose parameters from BABEL dataset with retrieved action label, a∗

4: R1:T = [R1, . . . ,RT ]← BABEL(a∗)
5: M1:T =M(R1:T ,β); ▷ Motion sequence of the content meshes

6: I1:T ← render(M1:T );
7: [ , idx ]← top-k[S(g(I1:T ),h(y))]; ▷ Multi-modal content mesh sampling

# DNSF optimization for L iterations

8: for iter = 1, 2, . . . , L do
9: Ls ← 0

10: c,d← Gθ(Mc); ▷ Decoupled Neural Style Field
11: for i ∈ idx do ▷ Temporal view augmentation
12: M∗

i ← texturize(c,d);
13: Sample N camera poses, p = [p1, . . . ,pN ] ▷ 3D Spatial augmentation
14: for j = 1, 2, . . . , N do
15: I∗ij ← render(M∗

i ,pj);
16: I∗ij ← 2D_augmentations(I∗ij); ▷ 2D Spatial augmentation
17: wij ← mask_weighted_att(I∗ij);
18: end for

19: ḡ(I∗i ) =
∑N

j=1 wijg(I
∗
ij)∑N

j=1 wij
; ▷ Mask-weighted embedding attention

20: Ls ← Ls + (1− S(ḡ(I∗i ),h(y)));
21: end for
22: θ∗ ← Update DNSF Gθ parameters, θ
23: end for

# Test time: Stylization of human meshes in motion

24: c∗,d∗ ← Gθ∗(Mc) ▷ Generate color and geometry with learned DNSF
25: for k = 1, 2, . . . , T do
26: M∗

1:T ← texturize(c∗,d∗) ▷ Stylize meshes in motion with c∗,d∗

27: end for
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E Training Details

We provide training details of CLIP-Actor, including optimizer, training
hardware specifications, and training time. We use the Adam optimizer with the
initial learning rate set to 0.0005 and the learning rate decay factor as 0.9 every
100 iterations. We train CLIP-Actor for 1500 iterations using a single NVIDIA
TITAN RTX GPU. Total training takes about 30 minutes to one hour depending
on the motion sequence length, and training options such as the number of frames
we use for spatio-temporal view augmentation.

F Discussion

Fig. c. A case of
object projection on
mesh surface.

We find the observations about human mesh stylization
harnessing CLIP [49] text-image joint space. Given the
text prompt that describes an interaction with objects,
the objects are often projected onto the human mesh and
stylized together. For example, a basketball is depicted on
the player’s chest when the action prompt that interacts
with the ball is given, i.e., chest passing (see Fig. c). Since
CLIP is trained with the pairs of text and 2D images, a
depth ambiguity from the 2D images can be propagated
to the 3D mesh stylization. The further development of
object mesh manipulation can be applied to our work to
model Human-Object-Interaction [14,66] as future work.

Since CLIP-Actor recommends the motion conforming to the input prompt
instead of generating motions, some prompts might not be compatible with the
BABEL [48]. CLIP-Actor has two major features to prevent such cases. First, our
retrieval module implements semantic matching; thus, it finds visual and textual
proximal action labels robustly. For example, given “Thor swinging Mjölnir” as
an input, where “swinging Mjölnir” is not included in BABEL, CLIP-Actor
retrieves “swing hammer side to side.”

Still, incompatible prompts might exist and harm the subsequent stylization
process. Our multi-modal content mesh sampling handles such cases. It finds
the best mesh frames within the motion to achieve reasonable stylization quality.
Our design choices on modules prevent the drastic degradation in stylization
even with incompatible prompts. We think that further improvements to handle
out-of-distribution cases would be an interesting future direction.


