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Abstract. We present DeepMend, a novel approach to reconstruct resto-
rations to fractured shapes using learned occupancy functions. Existing
shape repair approaches predict low-resolution voxelized restorations, or
require symmetries or access to a pre-existing complete oracle. We repre-
sent the occupancy of a fractured shape as the conjunction of the occu-
pancy of an underlying complete shape and the fracture surface, which
we model as functions of latent codes using neural networks. Given occu-
pancy samples from an input fractured shape, we estimate latent codes
using an inference loss augmented with novel penalty terms that avoid
empty or voluminous restorations. We use inferred codes to reconstruct
the restoration shape. We show results with simulated fractures on syn-
thetic and real-world scanned objects, and with scanned real fractured
mugs. Compared to the existing voxel approach and two baseline meth-
ods, our work shows state-of-the-art results in accuracy and avoiding
restoration artifacts over non-fracture regions of the fractured shape.

Keywords: Learned Occupancy, Shape Representation, Repair, Frac-
ture, Implicit Surface, Neural Networks

1 Introduction

Automated restoration of fractured shapes is an important area of study, with ap-
plications in consumer waste reduction, commercial recycling, cultural heritage
object restoration, medical fields such as orthopedics and dentistry, and robot-
driven repair. Despite its wide application, automated repair of fractured shapes
has received little attention. Most current automated techniques use symmetries
to complete fractured shapes . These techniques do not generalize to ob-
jects with non-symmetrical damage. The only existing generalizable approach
for repair operates in voxel space and produces low-fidelity restorations.

In this work, we present DeepMend, a novel deep learning approach to gener-
ate high-fidelity restoration shapes given an input fractured shape. Our approach
is inspired by work on learning functions for quantities such as signed distance
field (SDF) or occupancy that implicitly represent the shape surface over the
continuous 3D domain @ These approaches perform
partial shape completion by using the learned function to infer a latent code us-
ing field value samples from a partial shape, and to compute the complete shape
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Fig. 1. Given a fractured shape, our approach infers latent codes for an underlying
complete shape and a break surface. We use the codes to generate a restoration shape
that repairs the input fracture shape.

values from the latent code. Different from partial shape completion, DeepMend
addresses the challenge that, unlike a partial shape that is a subset of a complete
shape, the fractured shape contains a novel break region missing in a complete
shape, as shown in Figure[I] To restore fractured shapes, our main contribution
is a novel representation that represents the occupancy of a fractured shape as
the logical conjunction of occupancy values for a complete shape and a break
surface. We use T-norms to relax the logical conjunction into arithmetic op-
erations. We represent the complete and break surface occupancy as functions
parametrized on latent codes and modeled using deep neural networks.

Given an input fractured shape, we use the learned functions to automatically
estimate latent codes for the complete shape and break surface after sampling oc-
cupancy values from the fractured shape. Our second contribution is to augment
the inference loss for latent code estimation with two penalty terms—(i) a non-
empty restoration term that penalizes the mean restoration occupancy against
being zero to avoid empty restorations, and (ii) a proximity term that encourages
the mean distance between the complete and restoration occupancy to be low
to prevent voluminous restorations. Our work naturally yields the restoration
occupancy as the conjunction of the complete occupancy and the negation of
the break occupancy, enabling its reconstruction using Marching Cubes .

We train and test our approach on synthetically fractured meshes from 8
classes from the ShapeNet dataset, and on the Google Scanned Objects
dataset which contains 1,032 scanned real-world objects. We use ShapeNet-
trained networks to restore synthetically fractured meshes from the QP Cul-
tural Heritage dataset , and to generate restorations for physically fractured
and scanned real-world mugs. We compare our work to 3D-ORGAN , the
only existing automated fracture restoration approach, and to two baselines. We
show state-of-the-art results in overall accuracy and avoiding inaccurate arti-
facts over non-fracture regions. Our code is available at https://github.com/
Terascale-All-sensing-Research-Studio/DeepMend.
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2 Related Work

Restoration of Fractured Shapes. Most existing approaches to generate
restoration shapes from fractured shapes rely on shape symmetry [16,34]. They
restore shapes by reflecting non-fractured regions of the shape onto fractured
regions and computing the subtraction. These approaches fail to restore asym-
metrical shapes or shapes that have non-symmetric fractures. Lamb et al. [24]
perform repair without relying on symmetries. However, they require that the
complete counterpart be provided as input alongside the fractured shape. The
complete shape may not always be available, e.g., in the case of a rare object.
Our work only requires the fractured shape as input. 3D-ORGAN |[21] performs
shape restoration in voxel space by using a voxelized representation of an in-
put fractured shape as input to a generative adversarial network. 3D-ORGAN
operates at a resolution of 32x32x32, which is insufficient to accurately repre-
sent the geometric complexity of the fracture region. Scaling 3D-ORGAN to a
voxel resolution necessary to represent fracture is impractical at current dataset
volumes and hardware. DeepMend overcomes the challenges of 3D-ORGAN by
using networks that represent point samples of the occupancy function.

Completion of Partial Shapes. Though not directly related to our work,
a large body of prior work focuses on completing shapes from partial shape
representations, e.g. depth maps or color images. Recent approaches hypothe-
size complete shapes from partial shapes using deep networks. Approaches that
use point clouds as input [1}/10}/19,29}33}|40 |44, 57] lack an intrinsic surface
representation. Some approaches predict 3D meshes [17,[56] to incorporate sur-
faces. These approaches are limited in the complexity of meshes reliably pre-
dicted [32], and cannot represent arbitrary topologies. Most approaches using
voxels [34114349] struggle to predict high-resolution outputs while being compu-
tationally tractable. Some voxel approaches address computational inefficiency
by employing hierarchical models [8}|9] or sparse convolutions [8,55]. However,
voxel approaches pre-discretize the domain, making it challenging to use them
to represent arbitrarily fine resolutions needed for geometric detail, especially
for the problem of fracture surface representation considered in this work.

A large body of recent work focuses on using neural networks to represent
point samples of values that implicitly define surfaces, e.g., occupancy [6}7,[14.
22},26},28,|32},136},37./46L|52L[53], signed distance field (SDF) [41/13}2027,/31}35,/42,
4811501/511/54,58], unsigned distance field [47], or level sets [15]. These approaches
show high reconstruction fidelity due to their ability to represent the continu-
ous domain of points, while remaining computationally tractable. In contrast to
traditional encoder-decoder architectures, approaches based on the autodecoder
introduced by DeepSDF [35] use maximum a posteriori estimation to obtain a
latent code for a give shape. The approach enables reconstruction of a complete
shape using a latent code estimated using incomplete shape observations. Later
approaches provide improvements to the autodecoder by using meta-learning
and post-training optimization [42,/54], and by learning increasingly complex
shape representations during training [11], deformation of implicit shape tem-
plates [58], and reconstruction of shapes at multiple resolutions [20].
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A potential approach for fractured shape restoration is to convert the frac-
tured shape into a partial shape by removing the fracture surface, perform shape
completion, and subtract the fractured shape from the completed shape to ob-
tain the restoration. We demonstrate in Section [5| that subtraction approaches
yield surface artifacts that extend over the non-fracture regions of the fractured
shape. Our approach mitigates non-fracture artifacts by learning the interplay
between the complete shape and break surface.

3 Representing Fractured Shapes

We represent the complete, fractured, and restoration shapes as point sets C,
F, and R. For § € {C, F, R} the occupancy os(x) € {0,1} of a point x is 1
if x is inside the shape, and 0 if it is on the boundary or outside the shape.
The original shapes are closed surfaces. However, we exclude boundary points
from the definitions of the sets C, F, and R to ensure that a point does not
simultaneously belong to two sets, e.g., F' and R. Exclusion of boundary points
makes the sets C, F', and R open and bounded. We define the break surface as
a 2D surface that intersects the fracture region of F. Points on the side of the
break surface corresponding to the fractured shape receive an occupancy of 1.
Points on the side corresponding to the restoration shape have an occupancy
of 0. We use the open unbounded set B, termed the ‘break set’ to represent
the set of points with an occupancy og(x) of 1. In principle, the break surface
is infinite. In practice, we limit the region containing the shape and break sets
to be a cube of finite length to make point sampling for network training and
inference tractabldll

As shown in Figure au)7 we represent the fractured shape set as the inter-
section of the sets for the complete shape and the break set, i.e, as F = C N B.
The set relationship implies that for a point x, occupancy or(x) is the logical
conjunction of the occupancy values oc(x) and op(x) of the complete shape
C and break set B, i.e., op(x) = oc(x) A op(x). We represent the restoration
shape as the intersection of the complete shape and the complement of the break
set, i.e, as R = C'N B’. The relationship implies that occupancy og(x) of the
restoration R is expressed as the logical conjunction of oc(x) with the nega-
tion of 0p(x), i.e., 0r(x) = 0c(x) A —0op(x). The logical relationships are shown
in Figure (b) To use the expressions in neural networks, we relax the logical
relationships using the product T-norm (18], as

or(x) = oc(x)op(x) and (1)
or(x) = oc(x)(1 — 0p(x)). (2)
We represent the occupancy functions for the complete shape C and break set B
respectively using neural networks fg and gg, such that oc(x) = fe(zc,x) and

o0p(x) = ga(zp,x). © and @ are the network weights, zc € R? is a latent code
of size p corresponding to the complete shape, and zg € R? is a latent code of

! Hereafter, we drop ‘set’ from references to C, F, and R, and refer to them as shapes.
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Fig. 2. (a) We represent the fractured and restoration shape sets F' and R as inter-
sections of the complete shape set C' with the break set B and its complement B’.
(b) Logical expressions for occupancy at points x; in F and x2 in R expressed in terms
of occupancy for C and B.

size q corresponding to the break surface. We use the autodecoder architecture
introduced by Park et al. [35] for fe and ge. Figure a) shows our network
structure. We provide network details in the supplementary.

3.1 Network Training

During training, we use a dataset containing multiple training samples to opti-
mize for network parameters @ and @, and the latent codes zg and z¢ for each
training sample. Each sample consists of a tuple (F,C, R, B) representing the
fractured, complete, and restoration shapes F', C, and R, and the break set B
for the sample. We define the training loss as

L= ZZCEZC7ZB€ZB Lr+ ‘CC + ‘CR +Lp+ /\YCgEYCg (3)

where Z¢ is the set of all training complete latent codes, and Zp is the set of
all training break latent codes. The term Lp, represented as

Lp = (1/[X]) Xoxex BCE (fo(zc,X)g2(25,%), 0r(x)), (4)

models the reconstruction of the fracture shape occupancy values. BC'E repre-
sents the binary cross-entropy loss function. The first argument to BC'E repre-
sents the occupancy expression from Equation (2), with the expressions for the
complete and break occupancy values in terms of fg and gg substituted in. The
second argument represents fractured shape ground truth occupancy values. X
represents the set of point samples used to probe the ground truth occupancy
values. We include terms Lo, £Lp, and Lr to improve the representation ca-
pability of the network by using ground truth occupancy values from training
complete shapes, break surfaces, and restorations. We define L& and Lp as

Lo = (1/|X]) Yex BCE (fo(zc.x), 00(x)) and (5)
L5 = (1/|X]) Yyex BOE (fol(zp.%).05(x)) (6)
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Fig. 3. (a) Networks fe and gs represent the complete and break occupancy in terms
of input point x and latent codes z¢ and zg. The fractured and restoration occupancy
values are composed using the product T-norm relaxations of logical operations for
occupancy. Backpropagation updates network weights and latent codes during train-
ing. (b) Predicted restoration shape with high non-empty penalty (c) and with high
proximity penalty. (d) Functions used for the non-empty penalty term Lner and the
proximity penalty term Lprox during inference. (e) Predicted restoration with balanced
penalties. Restoration shapes (red) shown with ground truth fractured shapes (gray).

In Equations (5) and (6), the first argument to BC'E represents the occupancy
for the complete shape and break set respectively expressed in terms of fo
and gg. The second argument represents ground truth occupancy values for the
complete shape C' and break set B. We define Ly as

Lr = (1/IX]) Xoxex BCE (fo(zc,x)(1 — g#(z5,%)),0r(x)) . (7)

The first argument to BC'E in Equation (7)) represents the occupancy expression
for restoration shapes from Equation (2)), with expressions for complete and
break occupancy in terms of fg and gg substituted in. The second argument
represents ground truth restoration occupancy values. Lreg = |zcl|; + |25,
regularizes latent code estimation by imposing a zero-mean Laplacian prior on
the latent codes. We set the weight Ay on Lreg to be le — 4.

3.2 Inference of Latent Codes

During inference, we estimate optimal latent codes zc and zg for point obser-
vations of occupancy op(x) from a novel input fractured shape F. With knowl-
edge of the fractured shape occupancy, the inference loss is given as Ly =
LF 4 AregLreg- By itself, the loss does not prevent the break surface from being
predicted outside or on the boundary of the complete shape. This may result
in an empty restoration shape as shown in Figure b). The loss also does not
constrain the restoration shape from growing arbitrarily large. Gradient descent
on the loss may generate a locally optimal latent code that yields a plausible
complete shape, but a large restoration as shown in Figure d). We introduce
two penalty terms that encourage point occupancy values for the restoration
that constrain its structure. The non-empty penalty term L, given as

Luer = —log ((1/|1X]) Xye x fo(zc, x)(1 = ga(25,%))) (®)
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penalizes the mean restoration occupancy against being zero. The term encour-
ages the complete shape to have a non-empty intersection with the break set on
the restoration side of the break surface. The proximity loss, Lprox, given as

Lprox = —log (1 = (1/|X]) Yy x (o2, %) — 0r(%))?) | (9)

penalizes the network from predicting complete shapes that are not in close prox-
imity to the fractured shape. The term discourages voluminous restorations. As
shown in Figure a), the negative log functions for Ly, and Ly,0x strongly pe-
nalize the mean occupancy from being too low or the mean complete-restoration
occupancy distance from being too high. Using the non-empty and proximity
penalties, we express the augmented inference loss Linfaug as

[/infaug = £inf + /\nerﬁner + )\proxﬁprox + )\regﬁreg (10)

where Aner and Aprox are weights on the non-empty and proximity penalties.
During code estimation, we use Aper = 1le—5, Aprox = 5e—3, and A\jeg = le—4. We
optimize Linfaug to estimate the complete and break codes z¢ and zg. We use the
estimated codes to reconstruct restoration occupancy values using Equation ,
and obtain the restoration shape as a 3D mesh using Marching Cubes [30].

4 Datasets and Data Preparation

We evaluate our work using 3D object models from four datasets.

1. ShapeNet. We use 3D meshes from 8 classes in the ShapeNet dataset [5]
of synthetic 3D models: airplanes, bottles, cars, chairs, jars, mugs, sofas,
and tables. Each class has between 1,345 to 5,324 shapes, with an average of
3,084 shapes per class. We create one network per class, and use an 80%/20%
train/test split of the meshes within each class.

2. Google Scanned Objects Dataset. The dataset [39] contains 1,032 digi-
tally scanned common objects such as cups, bowls, plates, baskets, and shoes.
We train a network with an 80%/20% train/test split of the dataset.

3. QP Cultural Heritage Object Dataset. The QP dataset [23] contains
317 meshes computer-modeled in the style of ancient Greek pottery. We use
all models for testing using the network trained on ShapeNet jars.

4. Real-World Fractured Mugs. We perform in-house fractures of 4 real-
world mugs, and scan the fractured mugs for testing. We use all mug models
for testing using the network trained on ShapeNet mugs.

Data Preparation. We center meshes and scale them to lie within a unit
cube. ShapeNet and QP models come pre-oriented to be consistent. Though
meshes for Google Scanned Objects have a common ground plane, they are
not oriented in a consistent direction. We augment the training set for Google
Scanned Objects by randomly rotating meshes by 90° around the ground plane
normal. We orient all real-world mugs to line up with ShapeNet mugs. We wa-
terproof meshes using the approach of Stutz and Geiger [45].
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Fig. 4. Ground truth fractured shapes shown with fitted thin-plate splines (TPS) corre-
sponding to the surface of the break surface, and with ground truth restoration shapes.
Fractured shapes and TPS are shown in gray, restoration shapes are shown in red.

The ShapeNet, Google Scanned Objects, and QP Cultural Heritage datasets
lack fractures. We synthetically fracture meshes in these datasets by repeatedly
subtracting a randomized geometric primitive from each mesh. We use the frac-
ture approach from Lamb et al. [25], except that we fracture each mesh such that
between 5% and 20% of the surface area of the mesh is removed by the fracture.
We show example fractured shapes, restorations, and break surfaces in Figure
We remove shapes from the test set with more than one connected component.
The mugs, jars, and bottles classes from ShapeNet have fewer than 600 meshes.
We fracture meshes belonging to these classes 10, 3, and 3 times respectively.
We augment the mugs set by requiring that 3 fractures for each complete mesh
only remove parts of the handle. We fracture meshes in the remaining ShapeNet
classes and the QP and Google Scanned Objects datasets once.

We obtain point samples for the set X by randomly sampling a unit cube
around the object and the surface of the mesh as described in the supplementary.
To generate the break surface for each training sample, we fit a thin-plate spline
(TPS) [12] to the fracture vertices, such that the spline domain corresponds to
the closest fitting plane to the fracture region vertices. We use the spline to
partition sample points in the interior of the fractured and restoration meshes
into two groups. We denote the side of the spline that contains the most fractured
shape sample points as belonging to the break set B.

5 Results

Metrics. We perform evaluations using the chamfer distance (CD), percent-
age of non-empty restorations (NE%), and non-fracture region error (NFRE).
NFRE measures the degree to which the restoration surface incorrectly contains
geometry close to the non-fracture region of the fractured shape. To compute
NFRE, we sample n points on the surfaces of the predicted restoration, ground
truth restoration, and non-fractured region of the fractured shape, the predicted
restoration. We count points on the predicted restoration that have a nearest
neighbor in the non-fracture region of the fractured shape closer than n and a
nearest neighbor in the ground truth restoration farther than 7. We normalize
the count by n. We use n = 0.02 and n = 30,000. For all metrics, we report
means over all classes as weighted to overcome class imbalances.
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Fig.5. (a) Predicted break surface and predicted complete shape, predicted break
surface and fractured shape, predicted restoration shape and fractured shape, and
ground truth fractured and restoration shape for three objects. (b) Predicted restora-
tion shapes, shown with ground truth fractured shapes in joined form and opened to
show the fracture surface. Fractured shapes are in gray, restoration shapes in red.

5.1 Results using ShapeNet

Figure a) shows DeepMend-generated complete shapes, and predicted break
surfaces and restoration shapes joined to input fractured shapes synthesized from
ShapeNet objects models. The break surfaces predicted by DeepMend mimic the
fracture region at the join, resulting in accurate connections between the input
fractured shape and the predicted restoration shape. Figure (b) shows restora-
tions joined to corresponding ground truth fractured shapes and opened to show
the fracture region. DeepMend restoration shapes match closely to the fractured
shape, and avoid surface artifacts that may otherwise prevent the restoration
shape from being physically joined to the fractured shape. DeepMend regener-
ates complex missing geometry, such as the tails of the planes in Figure b) and
the car spoiler in Figure [I] It restores complex fractures such as the hole in the
back of the lawn chair in Figure[f|b). In contrast to symmetry approaches [16]34],
DeepMend repairs asymmetrical shapes or shapes with asymmetrical fractures
such as the sofa, planes with broken tails on left, bottle, armchair, lawn chair,
and plastic chair in Figure [6] and the car, mug, sofa, and airplane in Figure
Effect of Penalties on Restoration Shape During Inference. We eval-
uate the impact of our augmented inference loss Linaug in Equation versus
adding no penalty terms, adding solely the non-empty term L,e;, and adding
solely the proximity term Lprox. We also evaluate alternative penalties given as

Luerp = —(1/1X]) >y x log (fo(zc, x)(1 — ga(zp,%))) and (11)
Liroxp = (1/1X]) Xoxex BOE(fo(zc, %), 0r(x)), (12)

that penalize individual points rather than mean occupancy or distance. Lyerp
discourages individual points from being 0. L,0xp encourages individual occu-
pancy values in C' to be similar to F.

We summarize results in the bar plots in Figure[6} Using no penalties predicts
large restoration shapes, or generates multiple empty restorations as shown by
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Fig. 6. Percentage of non-empty restorations (NE%, left) and chamfer distance (CD,
right) for our approach with various combinations of penalties for the inference loss.
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Fig. 7. Predicted restoration shapes (red) shown with ground truth fractured shapes
using (gray) using various combinations of penalty terms.

the jar in Figure m(a). Mean NE% and CD with L;j,¢ are 91.5% and 0.096.
Including Lyerp raises mean NE% to 99.7%. However, since the penalty is applied
to individual points, restorations appear splayed out and non-smooth as shown
by the jar in Figure El(b) Mean CD is the highest with Lnep at 0.275. By
penalizing mean occupancy, Ly remedies the splaying by keeping occupancy
values concentrated, improves restoration quality, and lowers CD to a mean of
0.159. However, restorations may now appear bulkier as shown by the mug in
Figure EKC) Mean CD is higher than when no penalty term is used.

When comparing the effect of the proximity penalties on inference, we find
that including Lp;0xp improves mean CD to 0.055. However, it considerably
drops the percentage of non-empty restorations to a mean of 73.4%. The per-
point penalty induces individual points to approach the fracture surface, causing
restorations to lose volume and become non-smooth as shown in Figure E(d) In-
clusion of the non-empty restoration term L., improves NE% to 97.0% with
minimal impact on CD. However, it fails to remedy the non-smooth shape as
shown by the jar in Figure Eke). Several individual points still show zero occu-
pancy values. By using the penalty on the mean complete-restoration proximity
Lprox, per-point distances remain concentrated and NE% is higher than with
Lproxp. Combining both proposed penalties improves NE% over solely using
Lprox from 80.1% to 97.6%, without compromising on the mean CD at 0.064.
As shown by Figure Ekg), using penalties on the mean occupancy and proximity
values provides balanced, concentrated, and smooth restorations.
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[Metric[airplanes bottles cars chairs jars mugs sofas tables[Mean

CD | 0.194 0146 - 0195 0282 - 0329 0352]0.250
3D-ORGAN \NpRE| 0192 0066 - 0585 0036 -  0.199 0.137 | 0.203
SuhOee CD [ 0044 0.034 0.019 0.096 0.128 0.037 0.062 0.118 |0.067
NFRE| 0.089 0.058 0.115 0.239 0.133 0.055 0.160 0.175|0.128

Sub Lo CD [ 0.080 0.032 0.037 0.073 0.077 0.121 0.044 0.087]0.069
NFRE| 0294 0085 0.217 0.296 0.259 0.487 0.168 0.193 |0.250

DeepMend (Ours)| CD_| 0-040 0.017 0.095 0.071 0.055 0.036 0.053 0.1300.063
NFRE| 0.009 0.010 0.017 0.009 0.007 0.008 0.012 0.012|0.011

Table 1. Chamfer (CD) distance and NFRE when comparing 3D-ORGAN, Sub-Occ,
Sub-Lamb, and DeepMend. For 3D-ORGAN, we do not report results for cars and
mugs, as it only restores 21.7% cars and 1.8% mugs. Overall mean values provided over
classes for which we report individual class means. Bold values correspond to the best
performing metric value within a class.

5.2 Comparing DeepMend Restorations to 3D-ORGAN & Baselines

We compare DeepMend restorations using ShapeNet to 3D-ORGAN |[21], the
only publicly available approach to restore fractured inputs. We also compare to
two baseline approaches.

3D-ORGAN. 3D-ORGAN [21] takes a voxelized fractured shape at a reso-
lution of 32 x 32 x 32 as input and predicts the corresponding complete voxelized
shape. We adapt 3D-ORGAN to generate restoration shapes by computing the
restoration shape as the element-wise difference between the complete voxels
predicted by 3D-ORGAN and the input fractured voxels. We train 3D-ORGAN
on fractured shapes from 8 classes from ShapeNet. During training, we com-
pute the fractured shapes randomly by removing voxel regions from each shape
according to the original implementation. During testing, we predict complete
shapes using voxelized ShapeNet fractured shapes generated as described in Sec-
tion 4l As recommended by the authors, we use a two-step approach to predict
complete shapes by feeding the complete shape predicted in the first iteration
as input to 3D-ORGAN for a second iteration.

Baselines of Performing Subtraction from Complete Shape. Since
no approach exists to automatically generate high-resolution restoration shapes
directly from a fractured shape, we adapt partial shape completion to generate
a complete shape from which the fractured shape can be subtracted to create a
restoration. We generate a partial shape from the fractured shape by removing
points detected by a fracture/non-fracture classifier as being fracture points.
We train a PointNet+-+ [38] classifier to classify points as fracture versus non-
fracture. The classifier provides a test accuracy of 85.6%. We remove detected
fracture points to generate the partial shape. We train DeepSDF [35] on complete
shapes for the 8 ShapeNet classes studied in this work. We use DeepSDF to
complete the partial shape using the shape completion method discussed by the
authors. We use the following two approaches for subtraction as baselines.

1. Sub-Occ. We convert SDF values for the input fractured shape and DeepSDF-
predicted complete shape into occupancy values. We take the difference of
the complete and fractured occupancy, and extract the 0-level isosurface. To
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Fig. 8. Pictorial results of restorations using 3D-ORGAN, baselines Sub-Occ and Sub-
Lamb, and DeepMend, together with ground truth restorations.
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Fig. 9. Histograms of chamfer distance (CD, first four plots) and non-fracture region
error (NFRE, last four plots) for 3D-ORGAN, Sub-Occ, Sub-Lamb, and Ours.

remove artifacts, we discard closed surfaces with a volume less than n = 0.01.
If this step removes all closed surfaces, we retain the largest surface.

2. Sub-Lamb. We use the approach of Lamb et al. to perform subtrac-
tion. Unlike our approach, Lamb et al. require a complete counterpart to
be provided alongside the fractured shape as input. We use the complete
shape predicted using DeepSDF as the complete counterpart. We repair self-
intersections at the fracture-restoration join using MeshFix [2].

Table [1] summarizes results of CD and NFRE using 3D-ORGAN, Sub-Occ,
Sub-Lamb, and DeepMend. 100% restorations are generated by Sub-Occ and
Sub-Lamb for all classes, and by 3D-ORGAN for all classes except cars and
mugs. We report results for over all shapes where DeepMend returns non-empty
restorations for all classes where Sub-Occ, Sub-Lamb, and 3D-ORGAN provide
100% restorations. For 3D-ORGAN, we exclude metrics for cars and mugs, as
3D-ORGAN only produces restorations for 6 out of 331 or 1.8% of mug shapes
and 103 out of 474 or 21.7% car shapes. Figure |§ shows visualizations of the
results produced using 3D-ORGAN, Sub-Occ, Sub-Lamb, and DeepMend.

DeepMend shows state-of-the-art results compared to 3D-ORGAN and the
two baselines in terms of overall CD and NFRE, and in terms of per-class mean
NFRE. DeepMend also shows lower CD for all classes than 3D-ORGAN, 6 out
of 8 classes in comparison to Sub-Occ, and 5 out of 8 classes when compared
to Sub-Lamb. 3D-ORGAN predicts small restoration shapes, as shown for the
table, sofa, and car in Figure [8] or disparate voxels surrounding the fractured
shape, as shown for the airplane, bottle, and jar in Figure [§| The histogram on
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Fig. 10. Results using (a) synthetic breaks on Greek pottery from QP [23], (b) synthetic
fractures on 3D scans from Google Scanned Objects [39], and (c) 3D scans for real-world
fractured mugs. Ground truth restoration shapes shown when applicable.

the left of Figure [9] shows that 3D-ORGAN predicts 0.5% restorations with a
chamfer distance less than 0.025, compared to 63.1% with DeepMend.

Restoration shapes generated using Sub-Occ exhibit artifacts on the surface
of the fractured shape as shown in Figure[§] The histogram of the NFRE values
for Sub-Occ in Figure El shows that 23.3% of restorations have NFRE lower
than 0.025, as opposed to 88.3% by DeepMend. The fracture classifier may not
reliably remove the entire fracture region to create a partial shape that is a
precise subset of the complete shape. As such, Sub-Occ generates restorations
that exhibit elements of the fracture, e.g., the sofa, car, and bottle in Figure
or predicts the restoration in the wrong location, e.g., the table in Figure [8

As shown in Figure [0] Sub-Lamb is effective at removing artifacts for some
objects, as 60.8% of restoration shapes have NFRE lower than 0.025. However,
for complex geometries, Sub-Lamb incorrectly marks the exterior region of the
fractured shape as belonging to the fracture, causing the entirety of the fractured
shape to be merged with the restoration as, e.g., in case of the airplane and jar
in Figure |8 The NFRE histogram for Sub-Lamb demonstrates that 18.9% of
restoration shapes have a NFRE between 0.975 and 1. As shown in Figure [0}
88.3% of DeepMend restorations show NFRE lower than 0.025.

5.3 Results with Google Scanned Objects, QP, and Fractured Mugs

We show results of training and testing DeepMend with the Google Scanned
Objects dataset in Figure [10(a). We obtain a test chamfer distance of 0.112.
DeepMend generates closely fitting restorations for objects that are prone to
fracture such as the plate, the pot, and the bowls in Figure a), and reasonable
restoration shapes for complex shapes with high intra-class variety such as shoes.

We demonstrate the generalizability of our approach to novel datasets by
using ShapeNet-trained jars and mugs networks to restore synthetically fractured
shapes for objects from the QP dataset as shown in Figure b), and for 3D
scans of 4 real-world fractured mugs as shown in Figure . We achieve a
mean chamfer distance of 0.047 for QP objects. DeepMend generates plausible
restorations for shapes that resemble modern bowls, such as the effigy bowl in
Figure b), and for uncommon shapes, such as the psykter vase in Figure (b)
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The restoration process for real-world mugs is particularly challenging. Prim-
itives used to synthesize breaks in the ShapeNet dataset are simplistic. The
fractured and non-fracture regions in synthetic breaks have a clear edge. In real-
world mugs, the break structure is far more complex with sharp curvature and
smoothed out edges as seen in Figure ¢). Scanning limitations may cause
the fracture surface geometry to be less finely captured in comparison to the
synthetically-generated roughness of simulated fractures. Despite the challenges,
our approach shows the capability to reconstruct the restoration by generating
break surfaces that approach the fracture surface of real broken mugs.

6 Conclusion

We provide DeepMend, an approach to auto- ;
matically restore fractured shapes by learning to =
represent complete shapes, break surfaces, and
their interplay. We contribute penalty functions
for inference that penalize mean occupancy val- <=\~ <
ues against being too high or low, thereby ensur- . 1
ing well-structured restorations. DeepMend does
not require ground truth knowledge of the frac-
ture region, making it amenable for rapid repair.

One limitation of our work is that it
may predict multiple components for single-
component fractures, especially for thin structures, e.g., the chair in Figure [IT]
which are a common problem for learned functions that represent implicit surface
fields. Since the components are on the restoration side of the surface, NFRE
remains lower than with the baseline methods. In many cases, e.g. the table in
Figure multiple components yield plausible restorations. For the table class,
these components together with the high intra-class variance contribute to an
increased CD as shown by the results in Table [T} Multiple small component pre-
diction arises as the break surface lacks constraints during inference, and can
adopt arbitrarily complex geometries. As part of future work, data-driven pri-
ors can be incorporated on the structure of shapes and break surfaces. Future
work can use massive datasets to learn prior probability distributions of occu-
pancy of 3D objects. The learned shape representation can be strengthened with
intra-object structural constraints, e.g., symmetries and planarity.

While not explored in this work, the ability of DeepMend to naturally pre-
dict multiple components enables it to be leveraged for future work in restoring
multiple broken parts of an object. Novel scanned datasets of objects of diverse
materials containing varying levels of damage, e.g., chipping, shearing, splin-
tering, and ductile versus brittle fractures can benefit the study of the damage
process and impact on fracture surface geometry. Our work contributes a geomet-
ric foundation for the study of fractured shape repair using closed 3D surfaces.
The work opens the scope for future research on automated shape repair using
depth and color images, to facilitate democratization of the repair process.

Input Predicted Ground Truth

Fig. 11. Restorations with mul-
tiple components.



DeepMend: Learning Occupancy Functions to Represent Shape for Repair 15

References

10.

11.

12.

13.

14.

15.

16.

Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: International Conference On Ma-
chine Learning. PMLR (2018)

Attene, M.: A lightweight approach to repairing digitized polygon meshes. The
visual computer 26(11), 1393-1406 (2010)

Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Generative and discriminative voxel
modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236
1(1), 1-9 (2016)

Chabra, R., Lenssen, J.E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., New-
combe, R.: Deep local shapes: Learning local sdf priors for detailed 3d reconstruc-
tion. In: ECCV. pp. 608-625. Springer, Berlin, Germany (2020)

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet:
An Information-Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Technological Institute at
Chicago (2015)

Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Proc. CVPR. pp. 5939-5948. IEEE, Piscataway, NJ (2019)

Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for
3d shape reconstruction and completion. In: Proc. CVPR. pp. 6970-6981. IEEE,
Piscataway, NJ (2020)

Dai, A., Diller, C., Niefiner, M.: Sg-nn: Sparse generative neural networks for self-
supervised scene completion of rgb-d scans. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 849-858 (2020)
Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., Nieiner, M.: Scancomplete:
Large-scale scene completion and semantic segmentation for 3d scans. In: Proc.
CVPR. pp. 4578-4587. IEEE, Piscataway, NJ (2018)

Dai, A., Ruizhongtai Qi, C., NieBiner, M.: Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 5868-5877 (2017)

Duan, Y., Zhu, H., Wang, H., Yi, L., Nevatia, R., Guibas, L..J.: Curriculum deepsdf.
In: European Conference on Computer Vision. pp. 51-67. Springer (2020)
Duchon, J.: Splines minimizing rotation-invariant semi-norms in sobolev spaces. In:
Constructive theory of functions of several variables, pp. 85-100. Springer (1977)
Duggal, S., Wang, Z., Ma, W.C., Manivasagam, S., Liang, J., Wang, S., Urtasun,
R.: Mending neural implicit modeling for 3d vehicle reconstruction in the wild. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. pp. 1900-1909 (2022)

Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: Proc. CVPR. pp. 4857-4866. IEEE, Piscataway, NJ
(2020)

Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learn-
ing shape templates with structured implicit functions. In: Proc. CVPR. pp. 7154—
7164. IEEE, Piscataway, NJ (2019)

Gregor, R., Sipiran, I., Papaioannou, G., Schreck, T., Andreadis, A., Mavridis, P.:
Towards automated 3d reconstruction of defective cultural heritage objects. In:
GCH. pp. 135-144. EUROGRAPHICS, Geneva, Switzerland (2014)



16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

N. Lamb et al.

Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-méaché
approach to learning 3d surface generation. In: Proc. CVPR. pp. 216-224. IEEE,
Piscataway, NJ (2018)

Gupta, M.M., Qi, J.: Theory of t-norms and fuzzy inference methods. Fuzzy sets
and systems 40(3), 431-450 (1991)

Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape comple-
tion using deep neural networks for global structure and local geometry inference.
In: Proceedings of the IEEE international conference on computer vision. pp. 85-93
(2017)

Hao, Z., Averbuch-Elor, H., Snavely, N., Belongie, S.: Dualsdf: Semantic shape
manipulation using a two-level representation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7631-7641 (2020)
Hermoza, R., Sipiran, I.: 3d reconstruction of incomplete archaeological objects
using a generative adversarial network. In: Proceedings of Computer Graphics
International, pp. 5-11. ACM, New York, NY (2018)

Jia, M., Kyan, M.: Learning occupancy function from point clouds for surface
reconstruction. arXiv preprint arXiv:2010.11378 1(1), 1-11 (2020)

Koutsoudis, A., Pavlidis, G., Arnaoutoglou, F., Tsiafakis, D., Chamzas, C.: Qp: A
tool for generating 3d models of ancient greek pottery. Journal of Cultural Heritage
10(2), 281-295 (2009)

Lamb, N., Banerjee, S., Banerjee, N.K.: Automated reconstruction of smoothly
joining 3d printed restorations to fix broken objects. In: Proc. SCF. pp. 1-12.
ACM, New York, NY (2019)

Lamb, N., Wiederhold, N., Lamb, B., Banerjee, S., Banerjee, N.K.: Using learned
visual and geometric features to retrieve complete 3d proxies for broken objects.
In: Proc. SCF. pp. 1-15. ACM, New York, NY (2021)

Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: Learning explicit surface
representations. In: Proc. CVPR. pp. 2916-2925. IEEE, Piscataway, NJ (2018)
Lin, C.H., Wang, C., Lucey, S.: Sdf-srn: Learning signed distance 3d object recon-
struction from static images. arXiv preprint arXiv:2010.10505 1(1), 1-17 (2020)
Lionar, S., Emtsev, D., Svilarkovic, D., Peng, S.: Dynamic plane convolutional
occupancy networks. In: Proc. WACV. pp. 1829-1838. IEEE, Piscataway, NJ (2021)
Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network
for dense point cloud completion. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 34, pp. 11596-11603. AAAI, Menlo Park, CA (2020)
Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM SIGGRAPH Computer Graphics 21(4), 163169 (1987)
Ma, B., Han, Z., Liu, Y.S., Zwicker, M.: Neural-pull: Learning signed distance
functions from point clouds by learning to pull space onto surfaces. arXiv preprint
arXiv:2011.13495 1(1), 1-12 (2020)

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proc. CVPR. pp. 4460—
4470. IEEE, Piscataway, NJ (2019)

Pan, L., Chen, X., Cai, Z., Zhang, J., Zhao, H., Yi, S., Liu, Z.: Variational rela-
tional point completion network. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 8524-8533 (2021)

Papaioannou, G., Schreck, T., Andreadis, A., Mavridis, P., Gregor, R., Sipiran, 1.,
Vardis, K.: From reassembly to object completion: A complete systems pipeline.
Journal on Computing and Cultural Heritage 10(2), 1-22 (2017)



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

DeepMend: Learning Occupancy Functions to Represent Shape for Repair 17

Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proc. CVPR. pp.
165-174. IEEE, Piscataway, NJ (2019)

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional oc-
cupancy networks. In: Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part III 16. pp. 523-540. Springer,
Berlin, Germany (2020)

Poursaeed, O., Fisher, M., Aigerman, N., Kim, V.G.: Coupling explicit and implicit
surface representations for generative 3d modeling. In: European Conference on
Computer Vision. pp. 667-683. Springer (2020)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proc. CVPR. pp. 652-660. IEEE, Piscataway,
NJ (2017)

Research, G.: Google scanned objects. https://fuel.ignitionrobotics.org/1.0/
GoogleResearch/fuel /collections/Google Scanned Objects (August 2021)

Sarmad, M., Lee, H.J., Kim, Y.M.: Rl-gan-net: A reinforcement learning agent
controlled gan network for real-time point cloud shape completion. In: Proc. CVPR.
pp. 5898-5907. IEEE, Piscataway, NJ (2019)

Sharma, A., Grau, O., Fritz, M.: Vconv-dae: Deep volumetric shape learning with-
out object labels. In: ECCV. pp. 236-250. Springer, Berlin, Germany (2016)
Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: Metasdf: Meta-
learning signed distance functions. arXiv preprint arXiv:2006.09662 1(1), 1-17
(2020)

Smith, E.J., Meger, D.: Improved adversarial systems for 3d object generation and
reconstruction. In: Conference on Robot Learning. pp. 87-96. PMLR, Cambridge,
UK (2017)

Son, H., Kim, Y.M.: Saum: Symmetry-aware upsampling module for consistent
point cloud completion. In: Proc. ACCV. pp. 1-17. Springer, Berlin, Germany
(2020)

Stutz, D., Geiger, A.: Learning 3d shape completion under weak supervision. CoRR
abs/1805.07290 (2018), http://arxiv.org/abs/1805.07290

Sulzer, R., Landrieu, L., Boulch, A., Marlet, R., Vallet, B.: Deep surface reconstruc-
tion from point clouds with visibility information. arXiv preprint arXiv:2202.01810
(2022)

Tang, J., Lei, J., Xu, D., Ma, F., Jia, K., Zhang, L.: Sign-agnostic conet: Learn-
ing implicit surface reconstructions by sign-agnostic optimization of convolutional
occupancy networks. arXiv preprint arXiv:2105.03582 1(1), 1-16 (2021)
Tretschk, E., Tewari, A., Golyanik, V., Zollhofer, M., Stoll, C., Theobalt, C.: Patch-
nets: Patch-based generalizable deep implicit 3d shape representations. In: Proc.
ECCV. pp. 293-309. Springer, Berlin, Germany (2020)

Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a prob-
abilistic latent space of object shapes via 3d generative-adversarial modeling. In:
Proc. NeurIPS. pp. 82-90. Neural Information Processing Systems, San Diego, CA
(2016)

Xiao, Y., Xu, J., Gao, S.: Taylorimnet for fast 3d shape reconstruction based on
implicit surface function. arXiv preprint arXiv:2201.06845 (2022)

Xu, Y., Fan, T., Yuan, Y., Singh, G.: Ladybird: Quasi-monte carlo sampling for
deep implicit field based 3d reconstruction with symmetry. In: European Confer-
ence on Computer Vision. pp. 248-263. Springer (2020)


http://arxiv.org/abs/1805.07290

18

52.

53.

54.

55.

56.

57.

58.

N. Lamb et al.

Yan, S., Yang, Z., Li, H., Guan, L., Kang, H., Hua, G., Huang, Q.: Implicit au-
toencoder for point cloud self-supervised representation learning. arXiv preprint
arXiv:2201.00785 (2022)

Yan, X., Lin, L., Mitra, N.J., Lischinski, D., Cohen-Or, D., Huang, H.: Shape-
former: Transformer-based shape completion via sparse representation. arXiv
preprint arXiv:2201.10326 (2022)

Yang, M., Wen, Y., Chen, W., Chen, Y., Jia, K.: Deep optimized priors for 3d shape
modeling and reconstruction. In: Proc. CVPR. pp. 3269-3278. IEEE, Piscataway,
NJ (2021)

Yi, L., Gong, B., Funkhouser, T.: Complete & label: A domain adaptation approach
to semantic segmentation of lidar point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 15363-15373 (2021)
Yu, Q., Yang, C., Wei, H.: Part-wise atlasnet for 3d point cloud reconstruction
from a single image. Knowledge-Based Systems p. 108395 (2022)

Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion net-
work. In: 2018 International Conference on 3D Vision (3DV). pp. 728-737. IEEE
(2018)

Zheng, Z., Yu, T., Dai, Q., Liu, Y.: Deep implicit templates for 3d shape represen-
tation. In: Proc. CVPR. pp. 1429-1439. IEEE, Piscataway, NJ (2021)



	DeepMend: Learning Occupancy Functions to Represent Shape for Repair

