Skip to main content

Boosting Event Stream Super-Resolution with a Recurrent Neural Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Abstract

Existing methods for event stream super-resolution (SR) either require high-quality and high-resolution frames or underperform for large factor SR. To address these problems, we propose a recurrent neural network for event SR without frames. First, we design a temporal propagation net for incorporating neighboring and long-range event-aware contexts that facilitates event SR. Second, we build a spatiotemporal fusion net for reliably aggregating the spatiotemporal clues of event stream. These two elaborate components are tightly synergized for achieving satisfying event SR results even for 16\(\times \) SR. Synthetic and real-world experimental results demonstrate the clear superiority of our method. Furthermore, we evaluate our method on two downstream event-driven applications, i.e., object recognition and video reconstruction, achieving remarkable performance boost over existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amir, A., et al.: A low power, fully event-based gesture recognition system. In: CVPR (2017)

    Google Scholar 

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  3. Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., Andreopoulos, Y.: Graph-based object classification for neuromorphic vision sensing. In: ICCV (2019)

    Google Scholar 

  4. Brandli, C., Berner, R., Yang, M., Liu, S.C., Delbruck, T.: A 240\(\times \) 180 130 db 3 \(\mu \)s latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circuits 49(10), 2333–2341 (2014)

    Article  Google Scholar 

  5. Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: CVPR (2017)

    Google Scholar 

  6. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: Basicvsr: the search for essential components in video super-resolution and beyond. In: CVPR (2021)

    Google Scholar 

  7. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR (2004)

    Google Scholar 

  8. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  9. Choi, J., Yoon, K.J., et al.: Learning to super resolve intensity images from events. In: CVPR (2020)

    Google Scholar 

  10. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  11. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  12. Duan, P., Wang, Z.W., Zhou, X., Ma, Y., Shi, B.: Eventzoom: learning to denoise and super resolve neuromorphic events. In: CVPR (2021)

    Google Scholar 

  13. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3008413

  14. Gallego, G., Lund, J.E., Mueggler, E., Rebecq, H., Delbruck, T., Scaramuzza, D.: Event-based, 6-DOF camera tracking from photometric depth maps. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2402–2412 (2017)

    Article  Google Scholar 

  15. Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In: CVPR (2018)

    Google Scholar 

  16. Gehrig, D., Gehrig, M., Hidalgo-Carrió, J., Scaramuzza, D.: Video to events: recycling video datasets for event cameras. In: CVPR (2020)

    Google Scholar 

  17. Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. In: ICCV (2019)

    Google Scholar 

  18. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  19. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)

    Google Scholar 

  20. Gu, C., Learned-Miller, E., Sheldon, D., Gallego, G., Bideau, P.: The spatio-temporal poisson point process: a simple model for the alignment of event camera data. In: ICCV (2021)

    Google Scholar 

  21. Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: CVPR (2019)

    Google Scholar 

  22. He, W., et al.: Timereplayer: unlocking the potential of event cameras for video interpolation. In: CVPR (2022)

    Google Scholar 

  23. Heist, S., Zhang, C., Reichwald, K., Kühmstedt, P., Notni, G., Tünnermann, A.: 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Opt. Express 26(18), 23366–23379 (2018)

    Article  Google Scholar 

  24. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  25. Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with recurrent structure-detail network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 645–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_38

    Chapter  Google Scholar 

  26. Isobe, T., Zhu, F., Jia, X., Wang, S.: Revisiting temporal modeling for video super-resolution. In: BMVC (2020)

    Google Scholar 

  27. Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning event-based motion deblurring. In: CVPR (2020)

    Google Scholar 

  28. Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: CVPR (2018)

    Google Scholar 

  29. Kiani Galoogahi, H., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: a benchmark for higher frame rate object tracking. In: ICCV (2017)

    Google Scholar 

  30. Kim, H., Leutenegger, S., Davison, A.J.: Real-time 3D reconstruction and 6-DoF tracking with an event camera. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 349–364. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_21

    Chapter  Google Scholar 

  31. Kim, M.H., et al.: 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. (TOG) 31(4), 1–11 (2012)

    Google Scholar 

  32. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  33. Li, H., Li, G., Shi, L.: Super-resolution of spatiotemporal event-stream image. Neurocomputing 335, 206–214 (2019)

    Article  Google Scholar 

  34. Li, S., Feng, Y., Li, Y., Jiang, Y., Zou, C., Gao, Y.: Event stream super-resolution via spatiotemporal constraint learning. In: ICCV (2021)

    Google Scholar 

  35. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: CVPR (2019)

    Google Scholar 

  36. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017)

    Google Scholar 

  37. Lin, S., et al.: Learning event-driven video deblurring and interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 695–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_41

    Chapter  Google Scholar 

  38. Liu, D., Parra, A., Chin, T.J.: Globally optimal contrast maximisation for event-based motion estimation. In: CVPR (2020)

    Google Scholar 

  39. Messikommer, N., Gehrig, D., Loquercio, A., Scaramuzza, D.: Event-based asynchronous sparse convolutional networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 415–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_25

    Chapter  Google Scholar 

  40. Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benosman, R.: Hfirst: a temporal approach to object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2028–2040 (2015)

    Article  Google Scholar 

  41. Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: CVPR (2019)

    Google Scholar 

  42. Paredes-Vallés, F., Scheper, K.Y., de Croon, G.C.: Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: from events to global motion perception. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2051–2064 (2019)

    Article  Google Scholar 

  43. Patrick, L., Posch, C., Delbruck, T.: A 128x 128 120 db 15\(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008)

    Article  Google Scholar 

  44. Rebecq, H., Gallego, G., Scaramuzza, D.: EMVS: event-based multi-view stereo. In: BMVC (2016)

    Google Scholar 

  45. Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: High speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1964–1980 (2019)

    Article  Google Scholar 

  46. Schaefer, S., Gehrig, D., Scaramuzza, D.: AEGNN: asynchronous event-based graph neural networks. In: CVPR (2022)

    Google Scholar 

  47. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: CVPR (2018)

    Google Scholar 

  48. Tian, Y., Zhang, Y., Fu, Y., Xu, C.: TDAN: temporally-deformable alignment network for video super-resolution. In: CVPR (2020)

    Google Scholar 

  49. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: ICCV (2013)

    Google Scholar 

  50. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: ACCV (2014)

    Google Scholar 

  51. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV (2017)

    Google Scholar 

  52. Tulyakov, S., Bochicchio, A., Gehrig, D., Georgoulis, S., Li, Y., Scaramuzza, D.: Time lens++: event-based frame interpolation with parametric non-linear flow and multi-scale fusion. In: CVPR (2022)

    Google Scholar 

  53. Wang, B., He, J., Yu, L., Xia, G.-S., Yang, W.: Event enhanced high-quality image recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 155–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_10

    Chapter  Google Scholar 

  54. Wang, L., Ho, Y.S., Yoon, K.J., et al.: Event-based high dynamic range image and very high frame rate video generation using conditional generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  55. Wang, L., Kim, T.K., Yoon, K.J.: Eventsr: from asynchronous events to image reconstruction, restoration, and super-resolution via end-to-end adversarial learning. In: CVPR (2020)

    Google Scholar 

  56. Wang, T.C., Zhu, J.Y., Kalantari, N.K., Efros, A.A., Ramamoorthi, R.: Light field video capture using a learning-based hybrid imaging system. ACM Trans. Graph. (TOG) 36(4), 1–13 (2017)

    Google Scholar 

  57. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: CVPRW (2019)

    Google Scholar 

  58. Wang, Z.W., Duan, P., Cossairt, O., Katsaggelos, A., Huang, T., Shi, B.: Joint filtering of intensity images and neuromorphic events for high-resolution noise-robust imaging. In: CVPR (2020)

    Google Scholar 

  59. Weng, W., Zhang, Y., Xiong, Z.: Event-based video reconstruction using transformer. In: ICCV (2021)

    Google Scholar 

  60. Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slow-mo: fast and accurate one-stage space-time video super-resolution. In: CVPR (2020)

    Google Scholar 

  61. Xiao, Z., Fu, X., Huang, J., Cheng, Z., Xiong, Z.: Space-time distillation for video super-resolution. In: CVPR (2021)

    Google Scholar 

  62. Xiao, Z., Xiong, Z., Fu, X., Liu, D., Zha, Z.J.: Space-time video super-resolution using temporal profiles. In: ACM MM (2020)

    Google Scholar 

  63. Xu, G., Xu, J., Li, Z., Wang, L., Sun, X., Cheng, M.M.: Temporal modulation network for controllable space-time video super-resolution. In: CVPR (2021)

    Google Scholar 

  64. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008)

    Google Scholar 

  65. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yao, M., Xiong, Z., Wang, L., Liu, D., Chen, X.: Spectral-depth imaging with deep learning based reconstruction. Opt. Express 27(26), 38312–38325 (2019)

    Article  Google Scholar 

  67. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  68. Zhang, X., Liao, W., Yu, L., Yang, W., Xia, G.S.: Event-based synthetic aperture imaging with a hybrid network. In: CVPR (2021)

    Google Scholar 

  69. Zhang, X., Yu, L.: Unifying motion deblurring and frame interpolation with events. In: CVPR (2022)

    Google Scholar 

  70. Zhou, Y., Gallego, G., Rebecq, H., Kneip, L., Li, H., Scaramuzza, D.: Semi-dense 3D reconstruction with a stereo event camera. In: ECCV (2018)

    Google Scholar 

  71. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: CVPR (2019)

    Google Scholar 

  72. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets V2: more deformable, better results. In: CVPR (2019)

    Google Scholar 

  73. Zihao Zhu, A., Atanasov, N., Daniilidis, K.: Event-based visual inertial odometry. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from National Key R &D Program of China under Grant 2017YFA0700800, National Natural Science Foundation of China under Grants 61901435, 62131003 and 62021001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyi Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 36213 KB)

Supplementary material 1 (pdf 11595 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weng, W., Zhang, Y., Xiong, Z. (2022). Boosting Event Stream Super-Resolution with a Recurrent Neural Network. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics