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Abstract. In keypoint estimation tasks such as human pose estimation,
heatmap-based regression is the dominant approach despite possessing
notable drawbacks: heatmaps intrinsically suffer from quantization error
and require excessive computation to generate and post-process. Moti-
vated to find a more efficient solution, we propose to model individual
keypoints and sets of spatially related keypoints (i.e., poses) as objects
within a dense single-stage anchor-based detection framework. Hence, we
call our method KAPAO (pronounced “Ka-Pow”), for Keypoints And
Poses As Objects. KAPAO is applied to the problem of single-stage
multi-person human pose estimation by simultaneously detecting hu-
man pose and keypoint objects and fusing the detections to exploit the
strengths of both object representations. In experiments we observe that
KAPAO is faster and more accurate than previous methods, which suffer
greatly from heatmap post-processing. The accuracy-speed trade-off is
especially favourable in the practical setting when not using test-time
augmentation. Source code: https://github.com/wmcnally/kapao.
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1 Introduction

Keypoint estimation is a computer vision task that involves localizing points of
interest in images. It has emerged as one of the most highly researched topics in
the computer vision literature [1, 9, 11, 15, 18, 19, 37–40, 47, 49, 55, 60, 63, 67, 70].
The most common method for estimating keypoint locations involves generating
target fields, referred to as heatmaps, that center 2D Gaussians on the target
keypoint coordinates. Deep convolutional neural networks [26] are then used to
regress the target heatmaps on the input images, and keypoint predictions are
made via the arguments of the maxima of the predicted heatmaps [57].

While strong empirical results have positioned heatmap regression as the
de facto standard method for detecting and localizing keypoints [3, 5–7, 12, 24,
35,37,43,54,57,66,68], there are several known drawbacks. First, these methods
suffer from quantization error: the precision of a keypoint prediction is inherently
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Fig. 1. Accuracy vs. Inference Speed: KAPAO compared to state-of-the-art single-stage
multi-person human pose estimation methods DEKR [12], HigherHRNet [7], HigherHR-
Net + SWAHR [35], and CenterGroup [3] without test-time augmentation (TTA), i.e.,
excluding multi-scale testing and horizontal flipping. The raw data are provided in
Table 1. The circle size is proportional to the number of model parameters.

limited by the spatial resolution of the output heatmap. Larger heatmaps are
therefore advantageous, but require additional upsampling operations and costly
processing at higher resolution [3, 7, 12, 35, 37]. Even when large heatmaps are
used, special post-processing steps are required to refine keypoint predictions,
slowing down inference [6,7,35,43]. Second, when two keypoints of the same type
(i.e., class) appear in close proximity to one another, the overlapping heatmap
signals may be mistaken for a single keypoint. Indeed, this is a common failure
case [5]. For these reasons, researchers have started to investigate alternative,
heatmap-free keypoint detection methods [27,29,30,38,67].

In this paper, we introduce a new heatmap-free keypoint detection method
and apply it to single-stage multi-person human pose estimation. Our method
builds on recent research showing how keypoints can be modeled as objects
within a dense anchor-based detection framework by representing keypoints at
the center of small keypoint bounding boxes [38]. In preliminary experimentation
with human pose estimation, we found that this keypoint detection approach
works well for human keypoints that are characterized by local image features
(e.g., the eyes), but the same approach is less effective at detecting human key-
points that require a more global understanding (e.g., the hips). We therefore
introduce a new pose object representation to help detect sets of keypoints that
are spatially related. Furthermore, we detect keypoint objects and pose objects
simultaneously and fuse the results using a simple matching algorithm to exploit
the benefits of both object representations. By virtue of detecting pose objects,
we unify person detection and keypoint estimation and provide a highly efficient
single-stage approach to multi-person human pose estimation.
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As a result of not using heatmaps, KAPAO compares favourably against
recent single-stage human pose estimation models in terms of accuracy and in-
ference speed, especially when not using test-time augmentation (TTA), which
represents how such models are deployed in practice. As shown in Figure 1,
KAPAO achieves an AP of 70.6 on the Microsoft COCO Keypoints validation
set without TTA while having an average latency of 54.4 ms (forward pass +
post-processing time). Compared to the state-of-the-art single-stage model High-
erHRNet + SWAHR [35], KAPAO is 5.1× faster and 3.3 AP more accurate when
not using TTA. Compared to CenterGroup [3], KAPAO is 3.1× faster and 1.5
AP more accurate. The contributions of this work are summarized as follows:

– A new pose object representation is proposed that extends the conventional
object representation by including a set of keypoints associated with the
object.

– A new approach to single-stage human pose estimation is developed by si-
multaneously detecting keypoint objects and pose objects and fusing the de-
tections. The proposed heatmap-free method is significantly faster and more
accurate than state-of-the-art heatmap-based methods when not using TTA.

2 Related Work

Heatmap-free keypoint detection. DeepPose [58] regressed keypoint coor-
dinates directly from images using a cascade of deep neural networks that iter-
atively refined the keypoint predictions. Shortly thereafter, Tompson et al. [57]
introduced the notion of keypoint heatmaps, which have since remained prevalent
in human pose estimation [5–7,12,24,37,43,54,65,66,68] and other keypoint de-
tection applications [9,15,18,59,63]. Remarking the computational inefficiencies
associated with generating heatmaps, Li et al. [30] disentangled the horizontal
and vertical keypoint coordinates such that each coordinate was represented us-
ing a one-hot encoded vector. This saved computation and permitted an expan-
sion of the output resolution, thereby reducing the effects of quantization error
and eliminating the need for refinement post-processing. Li et al. [27] introduced
the residual log-likelihood (RLE), a novel loss function for direct keypoint re-
gression based on normalizing flows [53]. Direct keypoint regression has also been
attempted using Transformers [29].

Outside the realm of human pose estimation, Xu et al. [67] regressed anchor
templates of facial keypoints and aggregated them to achieve state-of-the-art
accuracy in facial alignment. In sports analytics, McNally et al. [38] encountered
the issue of overlapping heatmap signals in the development of an automatic
scoring system for darts and therefore opted to model keypoints as objects using
small square bounding boxes. This keypoint representation proved to be highly
effective and serves as the inspiration for this work.

Single-stage human pose estimation. Single-stage human pose estimation
methods predict the poses of every person in an image using a single forward
pass [5, 7, 12, 14, 25, 42, 44]. In contrast, two-stage methods [6, 10, 24, 27, 37, 46,
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54, 66] first detect the people in an image using an off-the-shelf person detector
(e.g., Faster R-CNN [52], YOLOv3 [51], etc.) and then estimate poses for each
detection. Single-stage methods are generally less accurate, but usually perform
better in crowded scenes [28] and are often preferred because of their simplicity
and efficiency, which becomes particularly favourable as the number of people in
the image increases. Single-stage approaches vary more in their design compared
to two-stage approaches. For instance, they may: (i) detect all the keypoints in
an image and perform a bottom-up grouping into human poses [3,5,7,16,17,22,
25,35,42,48]; (ii) extend object detectors to unify person detection and keypoint
estimation [14, 36, 64, 70]; or (iii) use alternative keypoint/pose representations
(e.g., predicting root keypoints and relative displacements [12,44,45]). We briefly
summarize the most recent state-of-the-art single-stage methods below.

Cheng et al. [7] repurposed HRNet [54] for bottom-up human pose estima-
tion by adding a transpose convolution to double the output heatmap resolution
(HigherHRNet) and using associative embeddings [42] for keypoint grouping.
They also implemented multi-resolution training to address the scale variation
problem. Geng et al. [12] predicted person center heatmaps and 2K offset maps
representing offset vectors for the K keypoints of a pose candidate centered on
each pixel using an HRNet backbone. They also disentangled the keypoint regres-
sion (DEKR) using separate regression heads and adaptive convolutions. Luo et
al. [35] used HigherHRNet as a base and proposed scale and weight adaptive
heatmap regression (SWAHR), which scaled the ground-truth heatmap Gaussian
variances based on the person scale and balanced the foreground/background loss
weighting. Their modifications provided significant accuracy improvements over
HigherHRNet and comparable performance to many two-stage methods. Again
using HigherHRNet as a base, Brasó et al. [3] proposed CenterGroup to match
keypoints to person centers using a fully differentiable self-attention module that
was trained end-to-end together with the keypoint detector. Notably, all of the
aforementioned methods suffer from costly heatmap post-processing and as such,
their inference speeds leave much to be desired.

Extending object detectors for human pose estimation. There is signifi-
cant overlap between the tasks of object detection and human pose estimation.
For instance, He et al. [14] used the Mask R-CNN instance segmentation model
for human pose estimation by predicting keypoints using one-hot masks. Wei et
al. [64] proposed Point-Set Anchors, which adapted the RetinaNet [32] object
detector using pose anchors instead of bounding box anchors. Zhou et al. [70]
modeled objects using heatmap-based center points with CenterNet and repre-
sented poses as a 2K-dimensional property of the center point. Mao et al. [36]
adapted the FCOS [56] object detector with FCPose using dynamic filters [21].
While these methods based on object detectors provide good efficiency, their ac-
curacies have not competed with state-of-the-art heatmap-based methods. Our
work is most similar to Point-Set Anchors [64]; however, our method does not re-
quire defining data-dependent pose anchors. Moreover, we simultaneously detect
individual keypoints and poses and fuse the detections to improve the accuracy
of our final pose predictions.



KAPAO: Keypoints and Poses as Objects 5

3 KAPAO: Keypoints and Poses as Objects

KAPAO uses a dense detection network to simultaneously predict a set of key-
point objects {Ôk ∈ Ôk} and a set of pose objects {Ôp ∈ Ôp}, collectively
Ô = Ôk

⋃
Ôp. We introduce the concept behind each object type and the rele-

vant notation below. All units are assumed to be in pixels unless stated otherwise.
A keypoint object Ok is an adaptation of the conventional object representa-

tion in which the coordinates of a keypoint are represented at the center (bx, by)
of a small bounding box b with equal width bw and height bh: b = (bx, by, bw, bh).
The hyperparameter bs controls the keypoint bounding box size (i.e., bs = bw =
bh). There are K classes of keypoint objects, one for each type in the dataset [38].

Generally speaking, a pose object Op is considered to be an extension of the
conventional object representation that additionally includes a set of keypoints
associated with the object. While we expect pose objects to be useful in related
tasks such as facial and object landmark detection [20, 67], they are applied
herein to human pose estimation via detection of human pose objects, comprising
a bounding box of class “person,” and a set of keypoints z = {(xk, yk)}Kk=1 that
coincide with anatomical landmarks.

Both object representations possess unique advantages. Keypoint objects are
specialized for the detection of individual keypoints that are characterized by
strong local features. Examples of such keypoints that are common in human
pose estimation include the eyes, ears and nose. However, keypoint objects carry
no information regarding the concept of a person or pose. If used on their own
for multi-person human pose estimation, a bottom-up grouping method would
be required to parse the detected keypoints into human poses. In contrast, pose
objects are better suited for localizing keypoints with weak local features as they
enable the network to learn the spatial relationships within a set of keypoints.
Moreover, they can be leveraged for multi-person human pose estimation directly
without the need for bottom-up keypoint grouping.

Recognizing that keypoint objects exist in a subspace of a pose objects, the
KAPAO network was designed to simultaneously detect both object types with
minimal computational overhead using a single shared network head. During
inference, the more precise keypoint object detections are fused with the human
pose detections using a simple tolerance-based matching algorithm that improves
the accuracy of the human pose predictions without sacrificing any significant
amount of inference speed. The following sections provide details on the network
architecture, the loss function used to train the network, and inference.

3.1 Architectural Details

A diagram of the KAPAO pipeline is provided in Figure 2. It uses a deep convo-
lutional neural network N to map an RGB input image I ∈ Rh×w×3 to a set of
four output grids Ĝ = {Ĝs | s ∈ {8, 16, 32, 64}} containing the object predictions

Ô, where Ĝs ∈ Rh
s ×

w
s ×Na×No :

N (I) = Ĝ. (1)
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Fig. 2. KAPAO uses a dense detection network N trained using the multi-task loss
L to map an RGB image I to a set of output grids Ĝ containing the predicted pose
objects Ôp and keypoint objects Ôk. Non-maximum suppression (NMS) is used to
obtain candidate detections Ôp′ and Ôk′, which are fused together using a matching
algorithm φ to obtain the final human pose predictions P̂. The Na and No dimensions
in Ĝ are not shown for clarity.

Na is the number of anchor channels and No is the number of output chan-
nels for each object. N is a YOLO-style feature extractor that makes extensive
use of Cross-Stage-Partial (CSP) bottlenecks [62] within a feature pyramid [31]
macroarchitecture. To provide flexibility for different speed requirements, three
sizes of KAPAO models were trained (i.e., KAPAO-S/M/L) by scaling the num-
ber of layers and channels in N .

Due to the nature of strided convolutions, the features in an output grid cell
Ĝs
i,j are conditioned on the image patch Ip = Isi:s(i+1),sj:s(j+1). Therefore, if the

center of a target object (bx, by) is situated in Ip, the output grid cell Ĝs
i,j is

responsible for detecting it. The receptive field of an output grid increases with
s, so smaller output grids are better suited for detecting larger objects.

The output grid cells Ĝs
i,j contain Na anchor channels corresponding to an-

chor boxes As = {(Awa
, Aha

)}Na
a=1. A target object O is assigned to an anchor

channel via tolerance-based matching of the object and anchor box sizes. This
provides redundancy such that the grid cells Ĝs

i,j can detect multiple objects and
enables specialization for different object sizes and shapes. Additional detection
redundancy is provided by also allowing the neighbouring grid cells Ĝs

i±1,j and

Ĝs
i,j±1 to detect an object in Ip [23, 61].

The No output channels of Ĝs
i,j,a contain the properties of a predicted ob-

ject Ô, including the objectness p̂o (the probability that an object exists),
the intermediate bounding boxes t̂′ = (t̂′x, t̂

′
y, t̂

′
w, t̂

′
h), the object class scores

ĉ = (ĉ1, ..., ĉK+1), and the intermediate keypoints v̂′ = {(v̂′xk, v̂′yk)}Kk=1 for the
human pose objects. Hence, No = 3K + 6.

Following [23, 61], an object’s intermediate bounding box t̂ is predicted in
the grid coordinates and relative to the grid cell origin (i, j) using:

t̂x = 2σ(t̂′x)− 0.5 t̂y = 2σ(t̂′y)− 0.5 (2)

t̂w =
Aw

s
(2σ(t̂′w))

2 t̂h =
Ah

s
(2σ(t̂′h))

2. (3)
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Fig. 3. Sample targets for training, including a human pose object (blue), keypoint
object (red), and no object (green). The “?” values are not used in the loss computation.

This detection strategy is extended to the keypoints of a pose object. A pose ob-
ject’s intermediate keypoints v̂ are predicted in the grid coordinates and relative
to the grid cell origin (i, j) using:

v̂xk =
Aw

s
(4σ(v̂′xk)− 2) v̂yk =

Ah

s
(4σ(v̂′yk)− 2). (4)

The sigmoid function σ facilitates learning by constraining the ranges of the
object properties (e.g., v̂xk and v̂yk are constrained to ±2Aw

s and ±2Ah

s , respec-

tively). To learn t̂ and v̂, losses are applied in the grid space. Sample targets t
and v are shown in Figure 3.

3.2 Loss Function

A target set of grids G is constructed and a multi-task loss L(Ĝ,G) is applied
to learn the objectness p̂o (Lobj), the intermediate bounding boxes t̂ (Lbox), the
class scores ĉ (Lcls), and the intermediate pose object keypoints v̂ (Lkps). The
loss components are computed for a single image as follows:

Lobj =
∑
s

ωs

n(Gs)

∑
Gs

BCE(p̂o, po · IoU(t̂, t)) (5)

Lbox =
∑
s

1

n(O ∈ Gs)

∑
O∈Gs

1− IoU(t̂, t) (6)

Lcls =
∑
s

1

n(O ∈ Gs)

∑
O∈Gs

BCE(ĉ, c) (7)

Lkps =
∑
s

1

n(Op ∈ Gs)

∑
Op∈Gs

K∑
k=1

δ(νk > 0)||v̂k − vk||2 (8)
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where ωs is the grid weighting, BCE is the binary cross-entropy, IoU is the
complete intersection over union (CIoU) [69], and νk are the keypoint visibility
flags. When Gs

i,j,a represents a target object O, the target objectness po = 1
is multiplied by the IoU to promote specialization amongst the anchor channel
predictions [50]. When Gs

i,j,a is not a target object, po = 0. In practice, the losses
are applied over a batch of images using batched grids. The total loss L is the
weighted summation of the loss components scaled by the batch size Nb:

L = Nb(λobjLobj + λboxLbox + λclsLcls + λkpsLkps). (9)

3.3 Inference

The predicted intermediate bounding boxes t̂ and keypoints v̂ are mapped back
to the original image coordinates using the following transformation:

b̂ = s(t̂+ [i, j, 0, 0]) ẑk = s(v̂k + [i, j]). (10)

Ĝs
i,j,a represents a positive pose object detection Ôp if its confidence p̂o ·max(ĉ)

is greater than a threshold τcp and argmax(ĉ) = 1. Similarly, Ĝs
i,j,a represents a

positive keypoint object detection Ôk if p̂o ·max(ĉ) > τck and argmax(ĉ) > 1,
where the keypoint object class is argmax(ĉ)−1. To remove redundant detections

and obtain the candidate pose objects Ôp′ and the candidate keypoint objects
Ôk′, the sets of positive pose object detections Ôp and positive keypoint object
detections Ôp are filtered using non-maximum suppression (NMS) applied to
the pose object bounding boxes with the IoU thresholds τbp and τbk:

Ôp′ = NMS(Ôp, τbp) Ôk′ = NMS(Ôk, τbk). (11)

It is noted that τck and τbk are scalar thresholds used for all keypoint ob-
ject classes. Finally, the human pose predictions P̂ = {P̂i ∈ RK×3} for i ∈
{1...n(Ôp′)} are obtained by fusing the candidate keypoint objects with the can-
didate pose objects using a distance tolerance τfd. To promote correct matches
of keypoint objects to poses, the keypoint objects are only fused to pose objects
with confidence p̂o ·max(ĉ) > τfc:

P̂ = φ(Ôp′, Ôk′, τfd, τfc). (12)

The keypoint object fusion function φ is defined in Algorithm 1, where the
following notation is used to index an object’s properties: x̂ = Ôx (e.g., a pose
object’s keypoints ẑ are referenced as Ôp

z).

3.4 Limitations

A limitation of KAPAO is that pose objects do not include individual keypoint
confidences, so the human pose predictions typically contain a sparse set of
keypoint confidences P̂i[:, 3] populated by the fused keypoint objects (see Al-
gorithm 1 for details). If desired, a complete set of keypoint confidences can
be induced by only using keypoint objects, which is realized when τck → 0.
Another limitation is that training requires a considerable amount of time and
GPU memory due to the large input size used.
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Algorithm 1: Keypoint object fusion (φ)

Input: Ôp′, Ôk′, τfd, τfc
Output: P̂
if n(Ôp′) > 0 then

P̂← {0K×3 | ∈ {1...n(Ôp′)}} // initialize poses

ζ ← {0 | ∈ {1...n(Ôp′)}} // initialize pose confidences

for (i, Ôp) ∈ enumerate(Ôp′) do

ζi = Ôp
po ·max(Ôp

c)
for k ∈ {1...K} do

P̂i[k]← (Ôp
xk

, Ôp
yk , 0) // assign pose object keypoints

P̂∗ ← {P̂i ∈ P̂ | ζi > τfc} // poses above confidence threshold

if n(P̂∗) > 0 ∧ n(Ôk′) > 0 then

for Ôk ∈ Ôk′ do

k ← argmax(Ôk
c )− 1 // keypoint index

Ck ← Ôk
po max(Ôk

c ) // keypoint object confidence

di ← ||P̂∗
i [k, [1, 2]]− (Ôk

bx , Ô
k
by )||2 // distances

m← argmin(d) // match index

if dm < τfd ∧ P̂∗
m[k, 3] < Ck then

P̂∗
m[k] = (Ôk

bx , Ô
k
by , Ck) // assign keypoint object to pose

else

P̂ = ∅ // empty set

4 Experiments

We evaluate KAPAO on two multi-person human pose estimation datasets:
COCO Keypoints [33] (K = 17) and CrowdPose [28] (K = 14). We report the
standard AP/AR detection metrics based on Object Keypoint Similarity [33] and
compare against state-of-the-art methods. All hyperparameters are provided in
the source code.

4.1 Microsoft COCO Keypoints

Training. KAPAO-S/M/L were all trained for 500 epochs on COCO train2017

using stochastic gradient descent with Nesterov momentum [41], weight decay,
and a learning rate decayed over a single cosine cycle [34] with a 3-epoch warm-
up period [13]. The input images were resized and padded to 1280×1280, keeping
the original aspect ratio. Data augmentation used during training included mo-
saic [2], HSV color-space perturbations, horizontal flipping, translations, and
scaling. Many of the training hyperparameters were inherited from [23, 61], in-
cluding the anchor boxes A and the loss weights w, λobj , λbox, and λcls. Others,
including the keypoint bounding box size bs and the keypoint loss weight λkps,
were manually tuned using a small grid search. The models were trained on four
V100 GPUs with 32 GB memory each using batch sizes of 128, 72, and 48 for
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Method TTA Input Size(s)
Params
(M)

FP
(ms)

PP
(ms)

Lat.
(ms)

AP AR

HigherHRNet-W32 [7] N 512 28.6 46.1 50.1 96.2 63.6 69.0
+ SWAHR [35] N 512 28.6 45.1 86.6 132 64.7 70.3

HigherHRNet-W32 [7] N 640 28.6 52.4 71.4 124 64.9 70.3
HigherHRNet-W48 [7] N 640 63.8 75.4 59.2 135 66.6 71.5

+ SWAHR [35] N 640 63.8 86.3 194 280 67.3 73.0
DEKR-W32 [12] N 512 29.6 62.6 34.9 97.5 62.4 69.6
DEKR-W48 [12] N 640 65.7 109 45.8 155 66.3 73.2
CenterGroup-W32 [3] N 512 30.3 98.9 16.0 115 66.9 71.6
CenterGroup-W48 [3] N 640 65.5 155 14.5 170 69.1 74.0
KAPAO-S N 1280 12.6 14.7 2.80 17.5 63.0 70.2
KAPAO-M N 1280 35.8 30.7 2.88 33.5 68.5 75.5
KAPAO-L N 1280 77.0 51.3 3.07 54.4 70.6 77.4

HigherHRNet-W32 [7] Y 256, 512, 1024 28.6 365 372 737 69.9 74.3
+ SWAHR [35] Y 256, 512, 1024 28.6 389 491 880 71.3 75.9

HigherHRNet-W32 [7] Y 320, 640, 1280 28.6 431 447 878 70.6 75.0
HigherHRNet-W48 [7] Y 320, 640, 1280 63.8 643 436 1080 72.1 76.1

+ SWAHR [35] Y 320, 640, 1280 63.8 809 781 1590 73.0 77.6
DEKR-W32 [12] Y 256, 512, 1024 29.6 552 137 689 70.5 76.2
DEKR-W48 [12] Y 320, 640, 1280 65.7 1010 157 1170 72.1 77.8
CenterGroup-W32 [3] Y 256, 512, 1024 30.3 473 13.8 487 71.9 76.1
CenterGroup-W48 [3] Y 320, 640, 1280 65.5 1050 11.8 1060 73.3 77.6
KAPAO-S Y 1024, 1280, 1536 12.6 61.5 3.70 65.2 64.4 71.5
KAPAO-M Y 1024, 1280, 1536 35.8 126 3.67 130 69.9 76.8
KAPAO-L Y 1024, 1280, 1536 77.0 211 3.70 215 71.6 78.5

Table 1. Accuracy and speed comparison with state-of-the-art single-stage human
pose estimation models on COCO val2017, including the forward pass (FP) and post-
processing (PP). Latencies (Lat.) averaged over val2017 using a batch size of 1 on a
TITAN Xp GPU.

KAPAO-S, M, and L, respectively. Validation was performed after every epoch,
saving the model weights that provided the highest validation AP.

Testing. The six inference parameters (τcp, τck, τbp, τbk, τfd, and τfc) were
manually tuned on the validation set using a coarse grid search to maximize
accuracy. The results were not overly sensitive to the inference parameter values.
When using TTA, the input image was scaled by factors of 0.8, 1, and 1.2, and
the unscaled image was horizontally flipped. During post-processing, the multi-
scale detections were concatenated before running NMS. When not using TTA,
rectangular input images were used (i.e., 1280 px on the longest side), which
marginally reduced the accuracy but increased the inference speed.

Results. Table 1 compares the accuracy, forward pass (FP) time, and post-
processing (PP) time of KAPAO with state-of-the-art single-stage methods High-
erHRNet [7], HigherHRNet + SWAHR [35], DEKR [12], and CenterGroup [3] on
val2017. Two test settings were considered: (1) without any test-time augmen-
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tation (using a single forward pass of the network), and (2) with multi-scale and
horizontal flipping test-time augmentation (TTA). It is noted that with the ex-
ception of CenterGroup, no inference speeds were reported in the original works.
Rather, FLOPs were used as an indirect measure of computational efficiency.
FLOPs are not only a poor indication of inference speed [8], but they are also
only computed for the forward pass of the network and thus do not provide an
indication of the amount of computation required for post-processing.

Due to expensive heatmap refinement, the post-processing times of High-
erHRNet, HigherHRNet + SWAHR, and DEKR are at least an order of magni-
tude greater than KAPAO-L when not using TTA. The post-processing time of
KAPAO depends less on the input size so it only increases by approximately 1 ms
when using TTA. Conversely, HigherHRNet and HigherHRNet + SWAHR gen-
erate and refine large heatmaps during multi-scale testing and therefore require
more than two orders of magnitude more post-processing time than KAPAO-L.

CenterGroup requires significantly less post-processing time than HigherHR-
Net and DEKR because it skips heatmap refinement and directly encodes pose
center and keypoint heatmaps as embeddings that are fed to an attention-based
grouping module. When not using TTA, CenterGroup-W48 provides an improve-
ment of 2.5 AP over HigherHRNet-W48 and has a better accuracy-speed trade-
off. Still, KAPAO-L is 3.1× faster than CenterGroup-W48 and 1.5 AP more ac-
curate due to its efficient network architecture and near cost-free post-processing.
When using TTA, KAPAO-L is 1.7 AP less accurate than CenterGroup-W48,
but 4.9× faster. KAPAO-L also achieves state-of-the-art AR, which is indicative
of better detection rates.

We suspect that KAPAO is more accurate without TTA compared to pre-
vious methods because it uses larger input images; however, we emphasize that
KAPAO consumes larger input sizes while still being faster than previous meth-
ods due to its well-designed network architecture and efficient post-processing.
For the same reason, TTA (multi-scale testing in particular) doesn’t provide as
much of a benefit; input sizes >1280 are less effective due to the dataset images
being limited to 640 px.

In Table 2, the accuracy of KAPAO is compared to single-stage and two-
stage methods on test-dev. KAPAO-L achieves state-of-the-art AR and falls
within 1.7 AP of the best performing single-stage method HigherHRNet-W48 +
SWAHR while being 7.4× faster. Notably, KAPAO-L is more accurate than the
early two-stage methods G-RMI [46] and RMPE [10] and popular single-stage
methods like OpenPose [4,5], Associative Embeddings [42], and PersonLab [45].
Compared to other single-stage methods that extend object detectors for human
pose estimation (Mask R-CNN [14], CenterNet [70], Point-Set Anchors [64], and
FCPose [36]), KAPAO-L is considerably more accurate. Among all the single-
stage methods, KAPAO-L achieves state-of-the-art AP at an OKS threshold
of 0.50, which is indicative of better detection rates but less precise keypoint
localization. This is an area to explore in future work.
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Method Lat. (ms) AP AP.50 AP.75 APM APL AR

G-RMI [46]† - 64.9 85.5 71.3 62.3 70.0 69.7

RMPE [10]† - 61.8 83.7 69.8 58.6 67.6 -

CPN [6]† - 72.1 91.4 80.0 68.7 77.2 78.5

SimpleBaseline [66]† - 73.7 91.9 81.1 70.3 80.0 79.0

HRNet-W48 [54]† - 75.5 92.5 83.3 71.9 81.5 80.5

EvoPose2D-L [37]† - 75.7 91.9 83.1 72.2 81.5 81.7

MIPNet [24]† - 75.7 - - - - -

RLE [27]† - 75.7 92.3 82.9 72.3 81.3 -

OpenPose [4, 5] 74* 61.8 84.9 67.5 57.1 68.2 66.5
Mask R-CNN [14] - 63.1 87.3 68.7 57.8 71.4 -
Associative Embeddings [42] - 65.5 86.8 72.3 60.6 72.6 70.2
PersonLab [45] - 68.7 89.0 75.4 64.1 75.5 75.4
SPM [44] - 66.9 88.5 72.9 62.6 73.1 -
PifPaf [25] - 66.7 - - 62.4 72.9 -
HGG [22] - 67.6 85.1 73.7 62.7 74.6 71.3
CenterNet [70] - 63.0 86.8 69.6 58.9 70.4 -
Point-Set Anchors [64] - 68.7 89.9 76.3 64.8 75.3 -
HigherHRNet-W48 [7] 1080 70.5 89.3 77.2 66.6 75.8 74.9

+ SWAHR [35] 1590 72.0 90.7 78.8 67.8 77.7 -
FCPose [36] 93* 65.6 87.9 72.6 62.1 72.3 -
DEKR-W48 [12] 1170 71.0 89.2 78.0 67.1 76.9 76.7
CenterGroup-W48 [3] 1060 71.4 90.5 78.1 67.2 77.5 -
KAPAO-S 65.2 63.8 88.4 70.4 58.6 71.7 71.2
KAPAO-M 130 68.8 90.5 76.5 64.3 76.0 76.3
KAPAO-L 215 70.3 91.2 77.8 66.3 76.8 77.7

Table 2. Accuracy comparison with two-stage (†) and single-stage methods on COCO
test-dev. Best results reported (i.e., including TTA). DEKR results use a model-
agnostic rescoring network [12]. Latencies (Lat.) taken from Table 1. *Latencies re-
ported in original papers [4, 36] and measured using an NVIDIA GTX 1080Ti GPU.

4.2 CrowdPose

KAPAO was trained on the trainval split with 12k images and was evaluated
on the 8k images in test. The same training and inference settings as on COCO
were used except the models were trained for 300 epochs and no validation was
performed during training. The final model weights were used for testing. Table 3
compares the accuracy of KAPAO against state-of-the-art methods. It was found
that KAPAO excels in the presence of occlusion, achieving competitive results
across all metrics compared to previous single-stage methods and state-of-the-
art accuracy for AP.50. The proficiency of KAPAO in crowded scenes is clear
when analyzing APE , APM , and APH : KAPAO-L and DEKR-W48 [12] perform
equally on images with easy Crowd Index (less occlusion), but KAPAO-L is 1.1
AP more accurate for both medium and hard Crowd Indices (more occlusion).
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Method Lat. (ms) AP AP.50 AP.75 APE APM APH

Mask R-CNN [14] - 57.2 83.5 60.3 69.4 57.9 45.8

AlphaPose [10]† - 61.0 81.3 66.0 71.2 61.4 51.1

SimpleBaseline [66]† - 60.8 81.4 65.7 71.4 61.2 51.2
SPPE [28] - 66.0 84.2 71.5 75.5 66.3 57.4

MIPNet [24]† - 70.0 - - - - -

OpenPose [5] 74* - - - 62.7 48.7 32.3
HigherHRNet-W48 [7] 1080 67.6 87.4 72.6 75.8 68.1 58.9
DEKR-W48 [12] 1170 68.0 85.5 73.4 76.6 68.8 58.4
CenterGroup-W48 [3] 1060 70.0 88.9 75.7 77.3 70.8 63.2
KAPAO-S 65.2 63.8 87.7 69.4 72.1 64.8 53.2
KAPAO-M 130 67.1 88.8 73.4 75.2 68.1 56.9
KAPAO-L 215 68.9 89.4 75.6 76.6 69.9 59.5

Table 3. Comparison with single-stage and two-stage (†) methods on CrowdPose test,
including TTA. DEKR results use a model-agnostic rescoring network [12]. HigherHR-
Net + SWAHR [35] not included due to issues reproducing the results reported in the
paper using the source code. Latencies (Lat.) taken from Table 1. *Latency reported
in original paper [4] and measured using NVIDIA GTX 1080Ti GPU on COCO.
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Fig. 4. Left: The influence of keypoint object bounding box size on learning. Each
KAPAO-S model was trained for 50 epochs. Right: Keypoint object fusion rates for
each keypoint type. Evaluated on COCO val2017 using KAPAO-S without TTA.

4.3 Ablation Studies

The influence of the keypoint bounding box size bs, one of KAPAO’s important
hyperparameters, was empirically analyzed. Five KAPAO-S models were trained
on COCO train2017 for 50 epochs using normalized keypoint bounding box
sizes bs/max(w, h) ∈ {0.01, 0.025, 0.05, 0.075, 0.1}. The validation AP is plotted
in Figure 4 (left). The results are consistent with the prior work of McNally
et al. [38]: bs/max(w, h) < 2.5% destabilizes training leading to poor accuracy,
and optimal bs/max(w, h) is observed around 5% (used for the experiments
in previous section). In contrast to McNally et al., the accuracy in this study
degrades quickly for bs/max(w, h) > 5%. It is hypothesized that large bs in this
application interferes with pose object learning.

The accuracy improvements resulting from fusing the keypoint objects with
the pose objects are provided in Table 4. Keypoint object fusion adds no less
than 1.0 AP and over 3.0 AP in some cases. Moreover, keypoint object fusion
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Method TTA
∆ Lat. (ms) / ∆AP
(COCO val2017)

∆ Lat. (ms) / ∆AP
(CrowdPose test)

KAPAO-S N +1.2 / +2.4 +3.3 / +2.9
KAPAO-M N +1.2 / +1.1 +3.5 / +3.2
KAPAO-L N +1.7 / +1.2 +4.2 / +1.0

KAPAO-S Y +1.7 / +2.8 +3.9 / +3.2
KAPAO-M Y +1.6 / +1.5 +4.4 / +3.5
KAPAO-L Y +1.4 / +1.1 +4.5 / +1.0

Table 4. Accuracy improvement when fusing keypoint object detections with human
pose detections. Latencies averaged over each dataset using a batch size of 1 on a
TITAN Xp GPU.

is fast; the added post-processing time per image is ≤ 1.7 ms on COCO and ≤
4.5 ms on CrowdPose. Relative to the time required for the forward pass of the
network (see Table 1), these are small increases.

The fusion of keypoint objects by class is also studied. Figure 4 (right) plots
the fusion rates for each keypoint type for KAPAO-S with no TTA on COCO
val2017. The fusion rate is equal to the number of fused keypoint objects divided
by the number of keypoints of that type in the dataset. Because the number of
human pose predictions is generally greater than the actual number of person
instances in the dataset, the fusion rate can be greater than 1. As originally
hypothesized, keypoints that are characterized by distinct local image features
(e.g., the eyes, ears, and nose) have higher fusion rates as they are detected more
precisely as keypoint objects than as pose objects. Conversely, keypoints that
require a more global understanding (e.g., the hips) are better detected using
pose objects, as evidenced by lower fusion rates.

5 Conclusion

This paper presents KAPAO, a heatmap-free keypoint estimation method based
on modeling keypoints and poses as objects. KAPAO is effectively applied to
the problem of single-stage multi-person human pose estimation by detecting
human pose objects. Moreover, fusing jointly detected keypoint objects improves
the accuracy of the predicted human poses with minimal computational over-
head. When not using test-time augmentation, KAPAO is significantly faster and
more accurate than previous single-stage methods, which are impeded greatly by
heatmap post-processing and bottom-up keypoint grouping. Moreover, KAPAO
performs well in the presence of heavy occlusion as evidenced by competitive
results on CrowdPose.
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A Supplementary Material

A.1 Hyperparameters

For convenience, the KAPAO hyperparameters used to generate the results in
this paper are provided in Table 5 in the order they appear in the text. Other
hyperparameters not referenced in the text (e.g., augmentation settings) are
included in the code. Many of the hyperparameters are inherited from [23],
where an evolutionary algorithm was used to search for optimal values for object
detection on COCO. Some hyperparameters, such as the keypoint bounding box
size bs and the keypoint loss weight λkps, were manually tuned using a small
grid search. The influence of bs is studied in Section 4.3. Relative to KAPAO-L,
the number of layers and channels in KAPAO-M were scaled by 2/3 and 3/4,
respectively. Similarly, the number of layers and channels in KAPAO-S were
scaled by 1/3 and 1/2, respectively.

Hyperparameter Description Symbol Value(s)

output grid scales s {8, 16, 32, 64}
keypoint object bounding box size (px) bs 64
input image height, width (px) h, w 1280, 1280
G8 anchor boxes (width, height) (px) A8 {(19, 27), (44, 40), (38, 94)}
G16 anchor boxes (width, height) (px) A16 {(96, 68), (86, 152), (180, 137)}
G32 anchor boxes (width, height) (px) A32 {(140, 301), (303, 264), (238, 542)}
G64 anchor boxes (width, height) (px) A64 {(436, 615), (739, 380), (925, 792)}
loss weights for G8, G16 G32, and G64 ω {4.0, 1.0, 0.25, 0.06}
objectness loss weight λobj 0.7× (w/640)2 × 3/n(s)
bounding box loss weight λbox 0.05× 3/n(s)
class loss weight λcls 0.3× (K + 1)/80× 3/n(s)
pose object keypoints loss weight λkps 0.025× 3/n(s)
batch sizes for KAPAO-S, M, and L Nb 128, 72, 48
pose, keypoint obj. conf. thresholds τcp, τck 0.001, 0.2
pose, keypoint obj. IoU thresholds τbp, τbk 0.65, 0.25
maximum fusion distance (px) τfd 50
pose obj. conf. threshold for fusion τfc 0.3

Table 5. The hyperparameters used in the KAPAO experiments. n(s) is the number
of output grids.

A.2 Influence of input size on accuracy and speed

The trade-off between accuracy and inference speed was investigated for vari-
ous input sizes. The AP on COCO val2017 was computed without TTA for
max(w, h) ∈ {640, 768, 896, 1024, 1152, 1280}. Figure 5 plots the results for each
model. For all three models, reducing the input size to 1152 had a negligible effect
on the accuracy but provided a meaningful latency reduction. For KAPAO-M
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Fig. 5. Accuracy-speed trade-off for input sizes ranging from 640 to 1280. Evaluated
on COCO val2017 using a batch size of 1 on a TITAN Xp GPU.

and KAPAO-L, using an input size of 1024 reduced the accuracy marginally but
also reduced the latency by ∼30%.

A.3 Video Inference Demos

The source code includes five video inference demos. The first four demos run
inference on RGB video clips sourced from YouTube to demonstrate the practical
use of KAPAO under various inference settings. The final demo demonstrates
the generalization of KAPAO by running inference on a depth video converted to
RGB. All reported inference speeds include all processing (i.e., including image
loading, resizing, inference, graphics plotting, etc.).

Shuffle. KAPAO runs fastest on low resolution video with few people in the
frame. This demo runs KAPAO-S on a single-person 480p dance video using
an input size of 1024. The inference speed is ∼9.5 FPS on a workstation CPU
(Intel Core i7-8700K), and ∼65 FPS on the TITAN Xp GPU. A screenshot of
the inference is provided in Figure 6 (top-left).

Flash Mob. KAPAO-S was run on a 720p flash mob dance video using an input
size of 1280. A screenshot of the inference is shown in Figure 6 (top-right). On
a workstation housing a TITAN Xp GPU, the inference speed was ∼35 FPS.

Red Light, Green Light. This demo runs KAPAO-L on a 480p video clip
from the TV show Squid Game using an input size of 1024. For this demo, in-
complete poses were plotted using keypoint objects only by setting τck = 0.01
(see Section 3.4 for details). A screenshot of the inference is provided in Fig-
ure 6 (bottom-left). The GPU inference speed varied between 15 and 30 FPS
depending on the number of people in the frame.

Squash. KAPAO-S was run on a 1080p slow-motion squash video using an
input size of 1280. A simple player tracking algorithm was implemented based
on the frame-to-frame pose differences. The inference speed was ∼22 FPS on the
TITAN Xp GPU. A screenshot is provided in Figure 6 (bottom-right).

Depth Videos. Finally, the robustness and generalization capabilities of KA-
PAO are demonstrated by running inference with KAPAO-S on depth videos
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obtained from a fencing action recognition dataset [A1]. The depth information
was converted to RGB format in a 480p video. A screenshot from the inference
video, which ran at ∼60 FPS on the TITAN Xp GPU, is displayed in Figure 7.
Despite the marked difference in appearance between the depth images and the
KAPAO training images, human poses were still detected with high confidence.
This interesting test result can be attributed to pose object representation learn-
ing, where spatial relations between human keypoints are learned using large-
scale features and high-level context (e.g., like the edges making up the human
shape). This is further supported by the fact that fewer keypoint objects were
detected in the depth images. Zhu et al. [A2] use KAPAO to extract 2D pose
information from depth videos and predict fine-grained footwork in fencing.

Fig. 6. KAPAO video inference demo screenshots. Top-left: shuffling demo. Top-right:
flash mob demo. Bottom-left: red light, green light demo. Bottom-right: squash demo.
All video clips were sourced from YouTube.

A.4 Error Analysis

While the AP and AR metrics are robust and perceptually meaningful (i.e., al-
gorithms with higher AP/AR are generally more accurate), they can hide the
underlying causes of error and are not sufficient for truly understanding an al-
gorithm’s behaviour. For example, the results presented in the previous section
showed that KAPAO consistently provides higher AR than previous single-stage
methods and higher AP at lower OKS thresholds (e.g., AP.50). The exact cause
for this result cannot be understood through analysis of the AP/AR metrics
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Fig. 7. Pose objects generalize well and can even be detected in depth video. Shown
here is a screenshot of KAPAO-S running inference on a depth video obtained from a
fencing action recognition dataset [A1,A2].

alone, but a potential explanation is that KAPAO provides more precise per-
son/pose detection (i.e., more true positives and fewer false positives and false
negatives), but less precise keypoint localization. To investigate this further, this
section provides a more in-depth analysis of the error using the error taxonomy
and analysis code provided by Ronchi and Perona [A3].

Ronchi and Perona propose an error taxonomy for multi-person human pose
estimation on COCO that includes four error categories: Background False Pos-
itives, False Negatives, Scoring, and Localization. Scoring errors are due to sub-
optimal confidence score assignment; they occur when two detections are in the
proximity of a ground-truth annotation and the one with the highest confidence
has the lowest OKS. Localization errors are due to poor keypoint localization
within a detected instance; they are further categorized into four types: Jitter :
small localization error (0.5 ≤ exp(−d2i /2s

2k2i ) < 0.85); Miss: large localization
error (exp(−d2i /2s

2k2i ) < 0.5); Inversion: left-right keypoint flipping within an
instance; and Swap: keypoint swapping between instances. The reader may refer
to [A3] for a more detailed description of the error classifications.

Figure 8 plots the precision-recall curves for HigherHRNet-W48 [7],
HigherHRNet-W48 + SWAHR [35], DEKR-W48 [12], CenterGroup-W48 [3],
and KAPAO-L at an OKS threshold of 0.85 using the results without TTA. Re-
calling that APα is equal to the area under the precision-recall curve generated
at OKS = α, the coloured regions in Figure 8 reflect the theoretical improvement
in AP.85 as a result of sequentially rectifying the aforementioned error types.

KAPAO-L provides the highest original AP.85 (represented by the white re-
gion). Furthermore, KAPAO-L is less prone to Swap and Inversion errors, which
can be attributed to the pose object representation that models cohesive pose
instances and eliminates the need for bottom-up keypoint grouping algorithms
that are prone to such errors. This is further supported by DEKR having lower
Swap error than the other three methods, which all perform bottom-up keypoint
grouping. Interestingly, DEKR has the most room for improvement in assigning
optimal confidence scores, which could be the motivation behind using a model-
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Fig. 8. Error type analysis on COCO val2017 for HigherHRNet-W48 [7],
HigherHRNet-W48 + SWAHR [35], DEKR-W48 [12], CenterGroup-W48 [3], and
KAPAO-L for an OKS threshold of 0.85 (without TTA). Plots generated using the
coco-analyze toolbox [A3]. AP.85 values in legends given in decimals as opposed to
percent.

agnostic scoring regression network to improve the AP in the original paper (not
included in these results). As previously hypothesized, KAPAO has more Jitter
error than some of the other methods as a result of having less precise keypoint
localization. Conversely, KAPAO-L provides better detection as shown by less
improvement after correcting the false positive and false negative errors. It is
speculated that since KAPAO was designed using an object detection network
as its backbone, it is more optimized for person/pose object detection and less
optimized for keypoint localization compared to the other single-stage human
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pose estimation methods. Rebalancing KAPAO to focus more on keypoint local-
ization is thus a recommended area for future work.

A.5 Qualitative Comparisons

KAPAO-L predictions from COCO val2017 are qualitatively compared with
CenterGroup-W48 without TTA. To systematically review cases where KAPAO-
L performs better than CenterGroup-W48, and vice versa, the maximum OKS
was found for each ground-truth instance (OKSmax) using the top-20 scoring
pose detections for each model. For each validation image, the difference between
the summations of the OKS maxima was computed:

∆OKS = ΣOKSKAPAO−L
max −ΣOKSCenterGroup−W48

max (13)

∆OKS is positive for images where KAPAO-L performs better than
CenterGroup-W48. Conversely, ∆OKS is negative for images where
CenterGroup-W48 performs better than KAPAO-L. To plot partial poses us-
ing KAPAO-L, the keypoint object confidence threshold τck was lowered to 0.01
to promote the fusion of keypoint objects and increase the frequency of keypoint
confidences in the predicted poses P̂ (see Section 3.4 for details). The τck of
0.01 lowered the AP from 70.4 to 70.1. It also increased the post-processing time
from approximately 3 ms to 5 ms per image due to the increased number of
keypoint objects that are fused in Algorithm 1. Using these inference settings,
KAPAO-L is still 1.0 AP more accurate and 3.0× faster than CenterGroup-W48
on val2017.

It is observed that extreme values of ∆OKS are associated with crowded
images (> 20 people) containing a limited number of annotations (< 20 annota-
tions). For these images, ΣOKSmax is contingent on whether the ground-truth
instances are predicted by the top-20 scoring detections and therefore an ele-
ment of chance is involved. Figure 9 illustrates such a scenario. The top-left im-
age shows the ground-truth pose annotations (white); the top-right image shows
the top-20 scoring CenterGroup-W48 detections (orange); the bottom-left im-
age shows the top-20 scoring KAPAO-L detections (green); and the bottom-right
image shows the same KAPAO-L detections but only plots the fused keypoint ob-
jects (light green). The top-20 KAPAO-L detections contain 8 of the 10 ground-
truth instances whereas the top-20 CenterGroup-W48 predictions contain 6. As
a result, ∆OKS = 2.06. Because all the COCO keypoint metrics are computed
using the 20 top-scoring detections, false negatives are artificially inflated while
true positives are artificially deflated. While it is perplexing that the COCO
metrics possess an element of randomness, it is conceivable that over many im-
ages the randomness averages out and does not favour one model over another.
Moreover, the COCO dataset is sparsely populated with crowded images so these
rare cases likely have a negligible influence on AP/AR. The implications of only
using 20 detections on datasets like CrowdPose may be more severe and worth
investigating, however.
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Fig. 9. Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO
image 24021, ∆OKS = 2.06). Top-left: ground-truth. Top-right: top-20 scoring Cen-
terGroup predictions. Bottom-left: top-20 scoring KAPAO predictions (all keypoints).
Bottom-right: top-20 scoring KAPAO-L predictions (fused keypoint objects).

To avoid the aforementioned issues with comparing OKS in crowded scenes,
the following comparisons consist of images where OKSmax > 0.5 for all ground-
truth instances using both models. Figure 10 shows an example where KAPAO-L
performs better than CenterGroup-W48 (∆OKS = +0.68). The keypoint group-
ing module of CenterGroup-W48 severely mixes up the keypoint identities (swap
error). Swap error is a common failure case for CenterGroup but an uncommon
failure case for KAPAO due to its detection of holistic pose objects (quantitative
errors provided in Figure 8). Figure 11 shows the image with the lowest ∆OKS
(−0.66). For three of the ground-truth instances situated near the top of the
frame, KAPAO predicts the locations of the nose, eyes, and ears significantly
lower than the ground-truth locations, resulting in lower OKS for these poses.
These errors are the result of the keypoint object bounding boxes being cut-off
by the edge of the frame such that the center of the keypoint object bounding
box no longer coincides with the actual keypoint locations. These errors could be
rectified with relatively simple alterations to the inference code in future work.
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Fig. 10. Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO
image 49759, ∆OKS = +0.68). Top-left: ground-truth. Top-right: top-20 scoring Cen-
terGroup predictions. Bottom-left: top-20 scoring KAPAO predictions (all keypoints).
Bottom-right: top-20 scoring KAPAO-L predictions (fused keypoint objects).
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Fig. 11. Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO
image 326248, ∆OKS = −0.66). Top-left: ground-truth. Top-right: top-20 scoring Cen-
terGroup predictions. Bottom-left: top-20 scoring KAPAO predictions (all keypoints).
Bottom-right: top-20 scoring KAPAO-L predictions (fused keypoint objects).
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