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Abstract. We present a method for estimating lighting from a single
perspective image of an indoor scene. Previous methods for predicting
indoor illumination usually focus on either simple, parametric lighting
that lack realism, or on richer representations that are difficult or even
impossible to understand or modify after prediction. We propose a pipeline
that estimates a parametric light that is easy to edit and allows renderings
with strong shadows, alongside with a non-parametric texture with high-
frequency information necessary for realistic rendering of specular objects.
Once estimated, the predictions obtained with our model are interpretable
and can easily be modified by an artist/user with a few mouse clicks.
Quantitative and qualitative results show that our approach makes indoor
lighting estimation easier to handle by a casual user, while still producing
competitive results.
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1 Introduction

Mixing virtual content realistically with real imagery is required in an increasing
range of applications, from special effects to image editing and augmented reality
(AR). This has created the need for capturing the lighting conditions of a scene
with ever increasing accuracy and flexibility. In his seminal work, Debevec [6]
suggested to capture the lighting conditions with a high dynamic range light probe.
While it has been improved over the years, this technique, dubbed image-based
lighting, is still at the heart of lighting capture for high end special effects in movies
nowadayﬂ Since the democratization of virtual object insertion for consumer
image editing and AR, capturing light conditions with light probes restricts non
professional users to have access to the scene and to use specialized equipment.
To circumvent those limitations, approaches for automatically estimating the
lighting conditions directly from images have been proposed.

In this line of work, the trend has been to estimate more and more complex
lighting representations. This is exemplified by works such as Lighthouse [25],
which propose to learn a multi-scale volumetric representation from an input
stereo pair. Similarly, Li et al. [19] learn a dense 2D grid of spherical gaussians
over the image plane. Wang et al. [27] propose to learn a 3D volume of similar

3 See https://www.fxguide.com/fxfeatured/the-definitive-weta-digital-guide-to-ibl/.
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Fig. 1: Our method produces an estimation of the indoor lighting from a single
perspective image. Our lighting representation is composed of a 3D parametric
light source, a texture map and a coarse 3D layout of the scene. With this infor-
mation, it is possible to realistically insert 3D objects (like the golden armadillo
and sphere) into the scene. Because our lighting representation is interpretable
and intuitive, the user can experiment with possibilities by modifying, say, the
position of the light source in order to achieve the desired look.

spherical gaussians. While these lighting representations have been shown to
yield realistic and spatially-varying relighting results, they have the unfortunate
downside of being hard to understand: they do not lend themselves to being easily
editable by a user. This quickly becomes a source of limitation when erroneous
automatic results need to be corrected for improved accuracy or when creative
freedom is required.

In this work, we depart from this trend and propose a simple, interpretable,
and editable lighting representation (fig. . But what does it mean for a lighting
representation to be editable? We argue that an editable lighting representation
must: 1) disentangle various components of illumination; 2) allow an intuitive
control over those components; and, of course, 3) enable realistic relighting re-
sults. Existing lighting representations in the literature do not possess all three
properties. Environment maps [I124/17] can be rotated but they compound
light sources and environment textures together such that one cannot, say, easily
increase the intensity of the light source without affecting everything else. Rotat-
ing the environment map inevitably rotates the entire scene, turning walls into
ceilings, etc., when changing the elevation. Dense and/or volumetric represen-
tations [T2UT925l27] are composed of 2D (or 3D) grids containing hundreds of
parameters, which would have to be modified in a consistent way to achieve the
desired result, an unachievable task for most. Parametric representations [10]
model individual light sources with a few intuitive parameters, which can be
modified independently of the others, but cannot generate realistic reflections.

Our proposed representation is the first to offer all three desired properties
and is composed of two parts: 1) a parametric light source for modeling shading
in high dynamic range; and 2) a non-parametric texture to generate realistic
reflections off of shiny objects. Our representation builds on the hypothesis (which
we validate) that most indoor scenes can accurately be modeled by a single,
dominant directional light source. We model this in high dynamic range with a
parametric representation [10] that explicitly models the light source intensity,
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size, and 3D position. This representation is intuitive and can easily be edited by
a user simply by moving the light source around in 3D.

This light source is complemented with a spatially-varying environment map
texture, mapped onto a coarse 3D representation of the indoor scene. For this,
we rely on a layout estimation network, which estimates a cuboid-like model of
the scene from the input image. In addition, we also use a texture estimation
network, whose output is conditioned on a combination of the input image, the
scene layout and the parametric lighting representation. By explicitly tying the
appearance of the environment texture with the position of the parametric light
source, modifying the light source parameters (e.g. moving around the light) will
automatically adjust the environment in a realistic fashion.

While our representation is significantly simplified, we find that it offers several
advantages over the previous approaches. First, it renders both realistic shading
(due to the high dynamic range of the estimated parametric light) and reflections
(due to the estimated environment map texture). Second, it can efficiently be
trained on real images, thereby alleviating any domain gap that typically arise
when approaches need synthetic imagery for training [25/19)27]. Third—and
perhaps most importantly—it is interpretable and editable. Since all automatic
approaches are bound to make mistakes, it is of paramount importance in many
scenarios that their output be adjustable by a user. By modifying the light
parameters and/or the scene layout using simple user interfaces, our approach
bridges the gap between realism and editability for lighting estimation.

2 Related work

For succinctness, we focus on single-image indoor lighting estimation methods in
the section below, and refer the reader to the recent survey on deep models for
lighting estimation for a broader overview [§].

Lighting estimation Gardner et al. [IT] proposed the first deep learning-based
lighting estimation method for indoor scenes, and predicted an HDR environment
map (equirectangular image) from a single image. This representation was also
used in [I7] for both indoors and outdoors, in [24] to take into account the object
insertion position, in [23] which presented a real-time on-device approach, in [22]
for scene decomposition, and in [3] which exploited the front and back cameras in
current mobile devices. Finally, [28] propose to learn the space of indoor lighting
using environment maps on single objects.

Other works explored alternative representations, such as spherical harmon-
ics [12120034] that are useful for real-time rendering but are typically unsuitable
for modeling high-frequency lighting (such as bright light sources) and are not
ideal for non diffuse object rendering. [I0] proposed to estimate a set of 3 para-
metric lights, which can easily be edited. However, that representation cannot
generate realistic reflections. EMlight [33] propose a more expressive model by
predicting gaussians on a spherical model. Similar to us, GMlight [3T] back-
projects the spherical gaussians to an estimated 3D model of the scene. This is
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further extended in [I] by the use of graph neural networks, and in [32] through
the use of spherical wavelets dubbed “needlets”.

Recently, methods have attempted to learn volumetric lighting representations
from images. Of note, Lighthouse [25] learns multi-scale volumetric lighting from
a stereo pair, [19] predicts a dense 2D grid of spherical gaussians which is further
extended into a 3D volumetric representation by Wang et al. [27]. While these
yield convincing spatially-varying results, these representations cannot easily be
interacted by a user.

Scene decomposition Holistic scene decomposition [2] is deeply tied to lighting
estimation as both are required to invert the image formation process. Li et
al. [19] proposes to extract the scene geometry and the lighting simultaneously.
Similarly, [7] extract only the geometry of the scene by estimating the normal and
depth of the scene. These geometric representations are however non-parametric
and thus difficult to edit or comprehend. [I6] proposes a simplified parametric
model where a room layout is recovered in the camera field of view. Similarly,
[35] presents a method to estimate the layout given a panoramic image of an
indoor scene. We use the method of [16] to estimate a panoramic layout given a
perspective image, thus providing a simple cuboid representation that allows for
spatially varying textured lighting representation.

3 Editable indoor lighting representation

We begin by presenting our hybrid parametric/non-parametric lighting represen-
tation which aims at bridging the gap between realism and editability. We also
show how that representation can be fitted to high dynamic range panoramas
to obtain a training dataset, and conclude by presenting how it can be used for
virtual object relighting.

3.1 Lighting representation
Our proposed light representation, shown in fig. [2| is composed of two main

components: an HDR parametric light source p; and an LDR textured cuboid C.

Light source As in [10], the light source parameters p are defined as

P= {l,d,s,c,a}, (1)

where 1 € R? is a unit vector specifying the light direction in XYZ coordinates, d
is the distance in meters, s the radius (in meters), c,a € R? are the light source
and ambient colors in RGB, respectively. Here, 1, d and s are defined with respect
to the camera. In contrast with [10], we use a single light source.
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Fig. 2: To render a virtual object with our proposed lighting representation, the
texture is first warped according to the layout (1st column), producing a textured
mesh (2nd). This mesh is combined with an emitting sphere representing the
parametric light (3rd) for rendering. The resulting rendering (4th) closely matches
the ground truth rendering obtained with the HDR environment map (last).

Textured cuboid The cuboid C = {T,L} is represented by a texture T €
R2HXHX3 " which is an RGB spherical image of resolution 2H x H stored in
equirectangular (latitude-longitude) format, and a scene layout L € R2#>*H_ The
layout is a binary image of the same resolution, also in equirectangular format,
indicating the intersections of the main planar surfaces in the room (walls, floor,
ceiling) as an edge map [9].

3.2 Ground truth dataset

The ground truth is derived from the Laval Indoor HDR Dataset [11], which
contains 2,100 HDR panoramas (with approximate depth labels from [10]). We
extract p and C from each panorama using the following procedure. First, the
HDR panorama is clipped to LDR (we re-expose such that the 90th-percentile is
0.8 then clip to [0, 1]) and directly used as the texture T. Then the intersection
between the main surfaces are manually labelled to define the layout L. Lastly,
we extract a dominant parametric light source from the HDR panorama. In order
to determine the main light source, the N = 5 brightest individual light sources
are first detected using the region-growing procedure in [I0]. A test scene (9
diffuse spheres arranged in a 3 x 3 grid on a diffuse ground plane, seen from top
as in fig. @D is rendered with each light source independently by masking out all
other pixels—the brightest render determines the strongest light source.

An initial estimate of the light parameters p are obtained by the following.
The distance d is approximated by using the average depth of the region, direction
1 as the region centroid, the angular size from the major and minor axes of an
ellipse fitted to the same region. Finally, the light color ¢ and ambient term a
are initialized with a least-squares fit to a rendering of the test scene using the
HDR panorama. From the initial parameters, p is further refined:

P’ = arg;nin IR(P) = R(P)]2- (2)

R(x) is a differentiable rendering operator (implemented with Redner [18]) that
renders a test scene using p. The optimization is performed using gradient descent
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Fig. 3: Our method takes as input a perspective, RGB image and its scene layout
representation, passes the RGB to a CNN to predict a parametric light, and
passes the partial layout to another CNN to predict the full panorama layout.
The parametric light is converted to a binary mask panorama, which is then sent
together with the full layout prediction and the input RGB image to a third
network which outputs an LDR texture with the light at the desired location.

with Adam [I5]. Finally, the texture map T is rescaled with the estimated ambient
term a* to ensure that the texture yields the same average RGB color.

3.3 Virtual object rendering

To render a virtual object using our lighting representation, we employ the Cycles
rendering engineﬂ A scene, as shown in fig. |2| is composed of a 3D emissive
sphere for the parametric light p and the textured cuboid mesh C. The cuboid
mesh is derived by detecting the cuboid corners from the layout using high pass
filters. We use the following geometric constraints to simplify the back-projection
of the scene corners to 3D. First, the shape is limited to a cuboid, meaning that
opposing faces are parallel. Second, the panorama layouts were trained using a
camera elevation of 0° (pointing at the horizon) and height of 1.6 meter above
the ground. Using these constraints, the bottom corners can easily be projected
on the ground plane, and the top corners can be used to compute the ceiling
height (averaged from the 4 corners). A texture map can then be computed using
every planar surfaces of the cuboid. Finally, the parametric light and the texture
are rendered in two rendering passes. After rendering, the relit virtual object can
be composited into the image using differential rendering [6].

4 Approach

Our approach, illustrated in fig. [3] is composed of three main networks: light,
layout, and texture which are combined together to estimate our light represen-

* Available within Blender at https://www.blender.org.
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tation (c.f., sec.3)) from an image. We assume that the layout of the input image
is available, in practice this is obtained with an off-the-shelf solution [30].

Light network A “light” network is trained to learn the mapping from input
image I € R128X128X3 {4 estimated lighting parameters p (sec. |3)) using a sim-
ilar approach to [I0]. Specifically, the light network is composed of a headless
DenseNet-121 encoder [14] to produce a 2048-dimensional latent vector, followed
by a fully-connected layer (512 units), and ultimately with an output layer
producing the light source parameters p.

The light network is trained on light parameters fitted on panoramas from
the Laval Indoor HDR Dataset [I1] using the procedure described in sec. To
generate the input image from the panorama, we follow [I1] and extract rectified
crops from the HDR panoramas. The resulting images are converted to LDR
by re-exposing to make the median intensity equal to 0.45, clipping to 1, and
applying a v = 1/2.4 tonemapping. The same exposure factor is subsequently
applied to the color ¢ and ambient a light parameters to ensure consistency.
Note that the training process is significantly simplified compared to [11] as the
network predicts only a single set of parameters.

We employ individual loss functions on each of the parameters independently:
L2 for direction 1, depth d, size s, and ambient color a, and L1 for light color c.
In addition, we also employ an angular loss for both the ambient and light colors
a and c to enforce color consistency. The weights for each term were obtained
through a Bayesian optimization on the validation set (see supp. mat.).

Layout network The mapping from the input RGB image I and its layout
(obtained with [30]) to the estimated scene layout L (sec. [3) is learned by the
“layout” network whose architecture is that of pix2pixHD [26]. Both inputs are
concatenated channel-wise. The layout network is trained on both the Laval and
the Zillow Indoor Dataset [5], which contains 67,448 LDR indoor panoramas of
1575 unfurnished residences along with their scene layouts. To train the network,
a combination of GAN, feature matching and perceptual losses are employed [26].
The same default weights as in [26] are used in training.

Texture network Finally, the estimated environment texture T is predicted by
a “texture” network whose architecture is also that of pix2pixHD [26]. It accepts
as input a channel-wise concatenation of three images: the input RGB image I,
the estimated light parameters p projected in an equirectangular format, and the
estimated scene layout L. The equirectangular images are vertically concatenated
to the input image. Note that the p projection is performed using a subset of all
parameters (direction 1 and size s only).

The texture network is also trained on both Laval and Zillow datasets. To
obtain the required light source position from the Zillow dataset, we detect the
largest connected component whose intensity is above the 98th percentile over
the upper half of the panorama. To convert the Laval HDR panoramas to LDR,
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first a scale factor is found such as the crop taken from that panorama has its
90th percentile mapped to 0.8. This scale factor is then applied to the panorama
such as its scale matches the one of the crop. The texture network is trained with
the same combination of losses as the layout network.

25th prct. 50th prct. 75th prct.

100

96.81

82.42

60 60.95

GT

40

% of total lighting captured by 1 light

Ours

25.0 50.0 75.0
% of images

(a) (b)

Fig. 4: Validation of our 1-light approximation. I@l Cumulative distribution of
the contribution of the single strongest light with respect to the entire lighting
environment of the scene. @ Example images for different percentiles, where the
rows correspond to the environment map (top), a synthetic scene (seen from the
top) rendered with (middle) the ground truth environment map and (bottom)
our 1-light representation. As expected, scenes where the strongest light does not
contribute significantly have shadows that are less pronounced which may point
to several light sources equally contributing to the overall energy (25th prct.).
The strongest light source contributes to more than 80% of the total energy in at
least 50% of the images in our test set, which confirms our assumption that most
scenes can accurately be modeled with a single light source.

5 Experiments

5.1 Validation of our 1-light approximation

We test our hypothesis that most indoor scenes are well-approximated by a single
dominant light source with an ambient term. We render a scene with the ground
truth environment map, and compare it with the renders obtained from the
parametric lighting optimization procedure described in sec. 3] Fig. [fa] shows the
cumulative distribution of the contribution of the strongest light with respect to
the entire lighting of the scene. Note that the strongest light source contributes to
more than 95%/80%/60% of the total lighting for 25%/50%/75% of the images
in our test set. Fig. D] shows example images for each of these scenarios. We
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Table 1: Quantitative comparative metrics on (left) renderings of a diffuse scene,
and (right) on the estimated environment maps directly. Each row is color-
coded as best and second best . We also highlight the methods which produce
lighting representations that can be interpreted and edited by a user (“Edit.”).

si-RMSE;, RMSE, RGB ang., PSNR; FID, Edit.

Ours 0.081 0.209 4.13° 12.79 89.58 yes
Gardner'19 (1) [I0]  0.099  0.229 4.43° 12.25 3568  yes
Gardner’19 (3) [10] 0.105 0.508 4.58° 10.87 335.6 yes
Gardner’17 [11] 0.123 0.628 8.29° 10.24 254.8 no
Garon’19 [12] 0.096 0.254 8.04° 9.70 314.9 no
Lighthouse [25] 0.120 0.253 14.53° 9.88 195.5 no
EMLight 33 0.099 0.232 3.99° 10.38 121.09 no
EnvmapNetﬁ [23] 0.097 0.286 7.67° 11.74  201.20 no

find that even if we expect indoor scenes to have multiple light sources, the vast
majority can accurately be represented by a single dominant light.

5.2 Light estimation comparison

We now evaluate our method and compare it with recent state-of-the-art light
estimation approaches. We first validate that our model performs better on
quantitative metrics evaluated on physic-based renders of a scene using a test
set provided by [I1]. For each of the 224 panoramas in the test split, we extract
10 images using the same sampling distribution as in [I1], for a total of 2,240
images for evaluation. We also show renders in various scenes to demonstrate
how our solution is visually more appealing.

Quantitative comparison To evaluate the lighting estimates, we render a test
scene composed of an array of spheres viewed from above (sec. [3) and compute
error metrics on the resulting rendering when compared to the ground truth
obtained with the original HDR panorama. We report RMSE, si-RMSE [13],
PSNR, and RGB angular error [I7]. We also compute the FI]:ﬂ on the resulting
environment maps to evaluate the realism of reflections (similar to [23]).

We evaluate against the following works. First, two versions of [I0] are
compared: the original (3) where 3 light sources are estimated, and a version
(1) trained to predict a single parametric light. Second, we also compare to
Lighthouse [25], which expects a stereo pair as input. As a substitute, we generate
a second image with a small baseline using Synsin [29] (visual inspection confirmed
this yields reasonable results). For [12], we select the coordinates of the image
center for the object position. For [23], we implemented their proposed “Cluster

5 Only their proposed ClusterID loss and tonemapping.
5 Implementation taken from https://pypi.org/project/pytorch-fid/\
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Input [10] [11] [12] [25] |?j‘
*

0.03, 7.26°  0.52, 2.96°  0.02, 1.86°  0.24, 1.30°  0.03, 2.58° 0.03, 6.70°

0.71, 3.53°  1.27, 9.08°  0.31, 8.89°  0.11, 13.3°  0.33, 5.52° 0.11, 1.73°

B ﬁ@uﬂﬁ

0.27, 14.5°  0.13, 16.2°  0.24, 15.4°  0.15, 16.3°  0.19, 13.6°  0.20, 9.65°

0.56, 2.25°  0.35, 9.18°  0.67, 8.90°  0.40, 17.9°  0.55, 1.93°  0.39, 3.33°

Fig. 5: Qualitative lighting estimation examples from our test set. To compare the
estimated lighting, we render a simple scene composed of three spheres (diffuse,
mirror, glossy) on a diffuse ground plane with different methods. From left to right:
input image, ground truth lighting, Gardner’19 [10] (3 lights), Gardner’17 [11],
Garon’19 [12], Lighthouse [25], EMLight [33], and ours. The second row shows
the corresponding estimated lighting in equirectangular format (reprojected in
the center of the image for the spatially-varying techniques such as [I0[12/25] and
ours). Finally, error metrics (RMSE and RGB angular) are also shown below each
example for reference. Each group shows examples from different error percentiles
for our method according to the RMSE metric. More examples can be found in
the supplementary materials.

ID loss” and tonemapping (eq. 1 in [23]) but used pix2pixHD as backbone. Finally,
we also compare against [33]. Results for each metrics are reported in tab.
which shows that despite our model being simple, it achieves the best score in
every metric. We argue that it is because of its simplicity that we can achieve
competitive results. Our approach can be trained on real data (as opposed to
[12125] and does not require an elaborate 2-stage training process (compared to
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Input image
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Rendered objects

Fig. 6: Virtual object insertion in scenes with our estimated lighting. For simplicity,
we assume the scene surrounding the objects is made of a flat ground plane,
which catches shadows and is placed manually by an artist (the focus of our work
being lighting estimation). For example, the figure shows a golden armadillo and
sphere inserted into three different scenes. Note how the reflections on the objects
and the shadows cast on the ground plans appear realistic.

[10]). We also demonstrate a significantly lower FID score than other methods
thus bridging the gap between representation realism and HDR accuracy.

Qualitative comparison We also present qualitative results in fig. [5| where
predictions are rendered on 3 spheres with varying reflectance properties (diffuse,
mirror, glossy). In addition, a tonemapped equirectangular view of the estimated
light representation is provided under each render. We show an example from
each error percentiles according to the RMSE metric. Our proposed method is
perceptually better on the mirror spheres as other methods do not model high
frequency details from the scene. We also notice accurate shadow and shading
from all the spheres. We show objects realistically composited into photographs
in fig. [} Note how the reflections of the virtual objects and their cast shadows
on the ground plane perceptually match the input photograph. Finally, we also

compare against [27] in fig. [7]

5.3 Ablation study on input layout

One may consider that requiring the image layout as input may make our method
sensitive to its estimation. To show this is not the case, we perform an experiment
where we provide a black layout as input to the layout network (equivalent to
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(a) Input image  (b) Wang et al. (c) Ours

Fig. 7: Qualitative comparison against Wang et al. [27]

no layout estimate). As can be seen in fig. |8 providing a black layout as input
simply results in a different layout prediction where the texture still remains
coherent with the RGB input and estimated light direction. The FID of the
generated panoramas with no input layout is 88.68 (compared to 89.58 from
tab. , showing that this essentially has no impact.

5.4 Ablation study on the texture network

We also tested different configurations for the texture network in order to validate
our design choices. More specifically, we trained the texture network providing
as input: (1) only the RGB crop (FID of 167.39), (2) RGB crop and parametric
light (FID of 97.13), and (3) RGB crop and layout (FID of 151.04). In contrast,
our full approach obtained an FID of 89.57 (see tab. .

6 Editing the estimated lighting

Because of its intuitive nature, it is simple and natural for a user to edit our
estimated lighting representation, should the estimate not perfectly match the
background image or simply for artistic purposes. Fig. [0]shows that our approach
simultaneously disentangles various components of illumination, allows an intu-
itive control over those components, and enables realistic relighting results. First,
fig. Da] shows that a user can rotate the light source about its azimuth angle.
Note how the estimated texture (second row) is consistent with the desired light
position (third row), while preserving the same overall structure. The renders
(first row) exhibit realistic reflections and shadows that correspond to the desired
lighting directions. A similar behaviour can be observed in figs [0b] and [9d when
the elevation angle and size are modified, respectively. In fig. [0d] we show that it
is also possible to edit the scene layout and obtain an estimated texture map T
that is consistent with the users request. We also show results of compositing
virtual objects directly into a scene in fig. [} As shown in fig. [T} realistic rendering
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Layout from [30]

No layout

Layout from [30] No layout

Image

Image layout

Texture T

Layout L

Fig.8: Ablation on input image layout. We compare the output of our method
(last two rows) as a function of whether or not it is given the estimated layout of
the input image (with [30]). Our approach produces similar results in both cases.

results can intuitively be edited to achieve the desired look. To the best of our
knowledge, the only other method which allows intuitive editing of indoor lighting
estimate is that of Gardner et al. [I0]. Unfortunately, realistic renders are limited
to diffuse objects and cannot be extended to reflective objects as shown in fig.

7 Discussion

This paper proposes a lighting estimation approach which produces an intuitive,
user-editable lighting representation given a single indoor input image. By ex-
plicitly representing the dominant light source using a parametric model, and
the ambient environment map using a textured cuboid, our approach bridges
the gap between generating realistic shading (produced by HDR light sources)
and reflections (produced by textured environment maps) on rendered virtual
objects. We demonstrate, through extensive experiments, that our approach
provides competitive quantitative performance when compared to recent lighting
estimation techniques. In particular, when compared to the only other approach
which can be user-edited [I0], our approach yields significant improved results.

Limitations and future work While our proposed approach estimates a 3D
representation of the surrounding lighting environment, it does not reason about
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Fig.9: Using our representation, a user can easily edit the estimated light param-
eters and obtain relighting results consistent with their edits. For example, the
user can change the @ azimuth and @ elevation angles of the light source;
the size of the light source; or @ the layout of the scene. For all scenarios, we
show rendered virtual objects in the first row, the estimated texture T in the
second, and the representation being edited in the last (light parameters p for
(a) and layout L for |(d))).

light occlusions in the scene as opposed to other techniques such as [T2IT9127].
Incorporating these higher-order interactions while maintaining interpretability
and editability of the output representation is an interesting direction for future
research. In addition, the estimated environment textures were shown to produce
realistic reflections on shiny objects, but a close inspection reveals that they are
low resolution and contain some visual artifacts. It is likely that more recent
image-to-image translation architectures [4I21] could be used to improve realism.
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