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Abstract. Rolling shutter (RS) distortion can be interpreted as the re-
sult of picking a row of pixels from instant global shutter (GS) frames
over time during the exposure of the RS camera. This means that the
information of each instant GS frame is partially, yet sequentially, embed-
ded into the row-dependent distortion. Inspired by this fact, we address
the challenging task of reversing this process, i.e., extracting undistorted
GS frames from images suffering from RS distortion. However, since RS
distortion is coupled with other factors such as readout settings and the
relative velocity of scene elements to the camera, models that only ex-
ploit the geometric correlation between temporally adjacent images suffer
from poor generality in processing data with different readout settings
and dynamic scenes with both camera motion and object motion. In this
paper, instead of two consecutive frames, we propose to exploit a pair of
images captured by dual RS cameras with reversed RS directions for this
highly challenging task. Grounded on the symmetric and complementary
nature of dual reversed distortion, we develop a novel end-to-end model,
IFED, to generate dual optical flow sequence through iterative learning
of the velocity field during the RS time. Extensive experimental results
demonstrate that IFED is superior to naive cascade schemes, as well as
the state-of-the-art which utilizes adjacent RS images. Most importantly,
although it is trained on a synthetic dataset, IFED is shown to be ef-
fective at retrieving GS frame sequences from real-world RS distorted
images of dynamic scenes. Code is available at https://github.com/zzh-
tech/Dual-Reversed-RS.

Keywords: Rolling shutter correction, frame interpolation, dual reversed
rolling shutter, deep learning

1 Introduction

Rolling shutter (RS) cameras are used in many devices such as smartphones and
self-driving vision systems due to their low cost and high data transfer rate [19].
Compared to global shutter (GS) cameras, which capture the whole scene at
a single instant, RS cameras scan the scene row-by-row to produce an image.
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Fig. 1: Consecutive distortion-free frames extracted from a pair of im-
ages with reversed rolling shutter distortion. The 1st row presents the

distorted image I
(t)
t2b from top-to-bottom scanning at time t and the generated

optical flows to the extracted frames. The 2nd row presents the distorted image

I
(t)
b2t from bottom-to-top scanning at the same time and its corresponding optical

flows. The 3rd row presents the mixed input {I(t)t2b I
(t)
b2t} and the extracted global

shutter frames {I(ti)g } in chronological order.

This scanning mechanism may be viewed as sub-optimal because it leads to
RS distortion, also known as the jello effect, in the presence of camera and/or
object motion. However, we argue that RS photography encodes rich temporal
information through its push-broom scanning process. This property provides a
critical cue for predicting a sequence of GS images, where distorted images are
brought alive at a higher frame rate, which goes beyond the task of recovering
a single snapshot as in the RS correction task [2,39,20], as shown in Fig. 1.

Fan and Dai [7] proposed a Rolling Shutter temporal Super-Resolution (RSSR)
pipeline for this joint interpolation and correction task. Under the assumption
of constant velocity of camera motion and a static scene, RSSR combines a
neural network and a manual conversion scheme to estimate undistortion flow
for a specific time instance based on the temporal correlation of two adjacent
frames (See Fig. 2e for a variant using three consecutive frames). However, even
without object motion, the undistortion flow learned in this way tends to overfit
the training dataset, because of the intrinsic uncertainty of this setup especially
the readout time for each row. As proved in [5], the relative motion of two ad-
jacent RS frames is characterized by the generalized epipolar geometry, which
requires at least 17 point matches to determine camera motion. Even worse, it
suffers from non-trivial degeneracies, for example, when the camera translates
along the baseline direction. In practice, both the relative motion velocity and
readout setting will affect the magnitude of RS distortion, and the RSSR model
and learning-based RS correction model [20] tend to fail on samples with differ-
ent readout setups, especially on real-world data with complex camera and/or
object motion (See details in Sec. 5 and the supplementary video).
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To tackle this problem in dynamic scenes, modeling in the traditional way
is particularly difficult, and the inconsistency in readout settings between train-
ing data and real test data is also challenging. Inspired by a novel dual-scanning
setup [1] (bottom-to-top and top-to-bottom as shown in Fig. 2c) for rolling shut-
ter correction, we argue that this dual setup is better constrained and bears more
potential for dynamic scenes. Mathematically, it requires only 5 point matches
to determine camera motion, which is much less than that required by the setup
with two consecutive RS frames. The symmetric nature of the dual reversed
distortion, i.e. the start exposure times of the same row in two images are sym-
metric about the center scan line, implicitly preserves the appearance of the
latent undistorted images. Thus, this setup can also help to bypass the effects
of inconsistent readout settings. Regarding the hardware complexity and cost,
we note that synchronized dual RS camera systems can be easily realized on
multi-camera smartphones [1,36] and self-driving cars. Interpolation of dual RS
images into GS image sequences provides a promising solution to provide robust
RS distortion-free high-fps GS images instead of directly employing expensive
high-fps GS cameras. This can be further served as a high-quality image source
for high-level tasks such as SfM [38], and 3D reconstruction [20].

Despite the strong geometric constraints arising from dual reversed dis-
tortion, it is still intractable to derive a video clip without prior knowledge
from training data, as indicated in the large body of literature on video frame
interpolation (VFI) from sparse GS frames (Fig. 2a). Therefore, grounded
upon the symmetric feature of the dual-RS setup, we design a novel end-to-
end Intermediate Frames Extractor using Dual RS images with reversed dis-
tortion (IFED) to realize joint correction and interpolation. Inspired by [20], we
introduce the dual RS time cube to allow our model to learn the velocity cube
iteratively, instead of regressing directly to an optical flow cube, so as to promote
convergence. A mask cube and residual cube learned from an encoder-decoder
network are used to merge the results of two reversely distorted images after
backward warping. Taking our result in Fig. 1 as an example, the left image

in the last row shows the mixed dual inputs I
(t)
t2b (top-to-bottom scanning) and

I
(t)
b2t (bottom-to-top scanning) at time t. The rest of the row shows the extracted
undistorted and smoothly moving frames by our method in chronological order.

To evaluate our method, we build a synthetic dataset with dual reversed
distortion RS images and corresponding ground-truth sequences using high-fps
videos from the publicly available dataset [22] and self-collected videos. Besides,
we also construct a real-world test set with dual reversed distortion inputs cap-
tured by a custom-made co-axial imaging system. Although similar concept of
dual-RS [1] (stereo) setup and time field [20] (2d) were proposed separately by
previous works, we successfully combine and upgrade them to propose a simple
yet robust architecture to solve the joint RS correction and interpolation (RS
temporal super-resolution [7]) problem. The contributions of this work can be
summarized as follows: 1) This is the first work that can extract video clips from
distorted image in dynamic scenes. Besides, our solution can overcome the gen-
eralization problem caused by distinct readout settings. 2) We propose a novel
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(a) VFI (b) RSC (c) Dual-RSC

(d) BFI (e) RSCI (f) Dual-RSCI

Fig. 2: Comparison of different tasks. The first row represents the input
and the second row represents the output of each task. The x-axis and y-axis
represent the time and the row location of the captured or generated image,
respectively. (a) Video frame interpolation task (VFI). (b) RS correction task
using neighboring frames (RSC). (c) RS correction task using dual frames with
reversed RS distortion (Dual-RSC). (d) Blurry frame interpolation task (BFI).
(e) Joint RS correction and interpolation task using neighboring frames (RSCI).
(f) Joint RS correction and interpolation task using dual frames with reversed
RS distortion (Dual-RSCI).

end-to-end network architecture (IFED) that can iteratively estimate the accu-
rate dual optical flow cube using pre-defined time cube and efficiently merges
the symmetric information of the dual RS inputs for latent GS frame extrac-
tion. 3) Extensive experimental results demonstrate the superior accuracy and
robustness of IFED against the state-of-the-art both on synthetic dataset and
real-world data.

2 Related Works

In this section, we briefly review the closely related research on video frame
interpolation and rolling shutter correction.

2.1 Video Frame Interpolation

Most existing solutions to VFI utilize optical flows to predict intermediate frames
of captured images. These methods warp the input frames in a forward or back-
ward manner based on the flow estimated by off-the-shelf networks, such as
PWCNet [33], FlowNet [6,12], and RAFT [34]. The warped frame is then re-
fined by convolutional neural networks (CNNs) to obtain better visual quality.
For example, SuperSlomo [13] uses a linear combination of two bi-directional
flows from an off-the-shelf network for intermediate flow estimation and per-
forms backward warping to infer latent frames. DAIN [3] further improves the
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intermediate flow estimation by employing a depth-aware flow projection layer.
Recently, RIFE [11] achieves high-quality and real-time frame interpolation with
an efficient flow network and a leakage distillation loss for direct flow estimation.
In contrast to backward warping, Niklaus et al. [23] focuses on forward warp-
ing interpolation by proposing Softmax splatting to address the conflict of pixels
mapped to the same target location. On the other hand, some recent works [4,17]
achieve good results using flow-free methods. For example, CAIN [4] employs the
PixelShuffle operation with channel attention to replace the flow computation
module, while FLAVR [17] utilizes 3D space-time convolutions instead to im-
prove efficiency and performance on non-linear motion and complex occlusions.

VFI includes a branch task, called blurry frame interpolation [15,28,14,32],
which is analogous to our target problem. In this task, a blurry image is a tem-
poral average of sharp frames at multiple instances. The goal is to deblur the
video frame and conduct interpolation, as illustrated in Fig. 2d. Jin et al. [15] pro-
posed a deep learning scheme to extract a video clip from a single motion-blurred
image. For a better temporal smoothness in the output high-frame-rate video,
Jin et al. [14] further proposed a two-step scheme consisting of a deblurring net-
work and an interpolation network. Instead of using a pre-deblurring procedure,
BIN [32] presents a multi-scale pyramid and recurrent architecture to reduce
motion blur and upsample the frame rate simultaneously. Other works [25,18]
utilize additional information from event cameras to bring a blurry frame alive
with a high frame rate.

Existing VFI methods ignore the distortions in videos captured by RS cam-
eras. In our work, instead of considering RS distortion as a nuisance, we leverage
the information embedded in it to retrieve a sequence of GS frames.

2.2 Rolling Shutter Correction

RS correction itself is also a highly ill-posed and challenging problem. Classical
approaches [9,2,24] work under some assumptions, such as a static scene and
restricted camera motion (e.g., pure rotations and in-plane translations). Con-
secutive frames are commonly used as inputs to estimate camera motion for
distortion correction. Grundmann et al. [10] models the motion between two
neighboring frames as a mixture of homography matrices. Zhuang et al. [38]
develops a modified differential SfM algorithm for estimating the relative pose
between consecutive RS frames, which in turn recovers a dense depth map for
RS-aware warping image rectification. Vasu et al. [35] sequentially estimates
both camera motion and the structure of the 3D scene that accounts for the RS
distortion, and then infers the latent image by performing depth and occlusion-
aware rectification. Rengarajan et al. [30] corrects the RS image according to
the rule of “straight-lines-must-remain-straight”. Purkait et al.[27] assumes that
the captured 3D scene obeys the Manhattan world assumption and corrects the
distortion by jointly aligning vanishing directions.

In recent years, learning-based approaches have been proposed to address RS
correction in more complex cases. Rengarajan et al. [29] builds a CNN architec-
ture with long rectangular convolutional kernels to estimate the camera motion
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Fig. 3: RS correction ambiguity.

Table 1: Details of RS-GOPRO.

train validation test

sequences 50 13 13
RS images 3554 (×2) 945 (×2) 966 (×2)
GS images 31986 8505 8694
resolution 960×540
row exposure 1.0ms
row readout 87µs

from a single image for RS correction. Zhuang et al. [39] uses two independent
networks to predict a dense depth map and camera motion from a single RS
image, implementing RS correction as post-processing. Liu et al. [20] proposes
a DeepUnrollNet to realize end-to-end RS correction with a differentiable for-
ward warping block. SUNet [8] utilizes a symmetric consistency constraint of
two consecutive frames to achieve state-of-the-art performance.

The most relevant research to ours are [7], [1] and the previously men-
tioned [20]. [7] proposed the first learning-based solution (RSSR) for latent GS
video extraction from two consecutive RS images. On the other hand, [1] pro-
posed a stereo dual-RS setup for RS correction task that infers an undistorted
GS frame based on the geometric constraints among dual RS reversely distorted
images. However, to the best of our knowledge, there are no methods able to
achieve RS temporal super-resolution in dynamic scenes. Geometric constraints
of [7] and [1] are limited to static scenes. Besides, current learning-based meth-
ods including [20,7] suffer from the inherent ambiguity of consecutive setup. We
discover the merit of dual-RS to overcome distinct readout setups, which is not
mentioned in [1], and we upgrade the velocity field from [20] to first time realize
RS temporal SR in dynamic scenes.

3 Joint RS Correction and Interpolation

In this section, we first formulate the joint RS correction and interpolation prob-
lem. Then, we introduce the datasets for validation and comparison.

3.1 Problem Formulation

An RS camera encodes temporal visual information in an image similar to a
high-frame-rate GS camera that samples the scene rapidly but only takes one
row of the scene each time. In our case, we do not consider the presence of blur.

Formally, given an RS video ({I(t)r }) and a GS video ({I(t)g }), we can express

each row (i) in an RS image (I
(t)
r [i]) in terms of its corresponding GS image

(I
(t)
g [i]) through the following equation:

I(t)r [i] = I(t+(i−M/2)tr)
g [i], (1)
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where tr denotes the readout time for each RS row; M denotes the total number
of rows in the image; t + (i − M/2)tr is the time instant of scanning the ith

row; and I
(t+(i−M/2)tr)
g [i] is the portion of the GS image that will appear in the

RS image. Note that we define the time t of an RS image I
(t)
r as the midpoint

of its exposure period (i.e., each RS image is captured from ts to te, where
ts = t− trM/2 and te = t+ trM/2).

The objective of the joint RS correction and interpolation is to extract a

sequence of undistorted GS images (
{
I
(t)
g , t ∈ [ts, te]

}
) from the RS images. Di-

rectly feeding an RS image (I
(t)
r ) into a network F

(
I
(t)
r ;Θ

)
, parameterized by

the weight Θ, to extract a sequence of GS images is infeasible without strong
restrictions such as static scenes and known camera motions. A straightforward
approach is to use temporal constraints from neighboring frames, such that the

input is a concatenation of neighboring frames as I
(t)
inp =

{
I
(t−1/f)
r , I

(t)
r

}
, where

f denotes the video frame rate. This is the case of RSSR [7], which can eas-
ily overfit the readout setting of the training data. Theoretically, the generic
RSC problem cannot be solved by using only consecutive frames. We show a
common ambiguity of consecutive frames setup, using a toy example in Fig. 3.
Suppose there are two similar cylinders, one of them is tilted, as shown in GS
view. Then, two RS cameras moving horizontally at the same speed v but with
different readout time setups can produce the same RS view, i.e., a short read-
out time RS camera for the tilted cylinder and a long readout time RS camera
for the vertical cylinder. Therefore, the models based on consecutive frames are
biased to the training dataset. Although these models can correct RS images,
they do not know how much correction is correct facing data beyond the dataset.
Instead, we introduce another constraint setting that utilizes intra-frame spatial
constraints of dual images taken simultaneously but with reversed distortion
captured by top-to-bottom (t2b) and bottom-to-top (b2t) scanning. Formally,
the optimization process is described as:

Θ̂ = argmin
Θ

∣∣∣{I(t)g , t ∈ [ts, te]
}
−F

(
I
(t)
t2b, I

(t)
b2t;Θ

)∣∣∣ , (2)

where Θ̂ are optimized parameters for the joint task. I
(t)
t2b denotes the t2b RS

frame at time t, while I
(t)
b2t denotes the b2t RS frame at the same time. We find

that the dual-RS setup can avoid ambiguity because the correct correction pose
can be estimated based on the symmetry, as shown in the dual-RS view.

3.2 Evaluation Datasets

Synthetic Dataset. For the pure RS correction task, the Fastec-RS [20] dataset
uses a camera mounted on a ground vehicle to capture high-fps videos with only
horizontal motion. Then, RS images are synthesized by sequentially copying a
row of pixels from consecutive high-fps GS frames. We synthesized a dataset
for the joint RS correction and interpolation task in a similar way, but with
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more motion patterns and multiple ground truths for one input. High-fps GS
cameras with sufficient frame rate to synthesize RS-GS pairs are expensive and
cumbersome to operate. Thus, we chose a GoPro (a specialized sports camera)
as a trade-off. Empirically, the GoPro’s tiny RS effect causes negligible impact
on the learning process of our task. Specifically, we utilize the high-fps (240 fps)
videos from the publicly available GOPRO [22] dataset and self-collected videos
using a GoPro HERO9 to synthesize the dataset, which we refer to as RS-
GOPRO. We first interpolated the original GS videos to 15 360 fps by using an
off-the-shelf VFI method (RIFE [11]), and then followed the pipeline of [20] to
synthesize RS videos. RS-GOPRO includes more complex urban scenes (e.g.,
streets and building interiors) and more motion patterns, including object-only
motion, camera-only motion, and joint motion. We created train/validation/test
sets (50, 13, and 13 sequences) by randomly splitting the videos while avoiding
images of a video from being assigned into different sets. Regarding input and
target pairs, there are two kinds of input RS images which have reversed distor-
tion, and nine consecutive GS frames are taken as ground truth for the extracted
frame sequence. The image resolution is 960×540. The readout time for each row
is fixed as 87 µs. Please see the details of RS-GOPRO in Table 1.
Real-world Test Set. Inspired by [37] and [1], we built a dual-RS image acqui-
sition system using a beam-splitter and two RS cameras that are upside down
from each other to collect real-world data for validation. The readout setting of
the proposed dual-RS system can be changed by replacing the type of RS cam-
era (e.g., FL3-U3-13S2C, BFS-U3-63S4C). Please see details of our acquisition
system in supplementary materials. We collect samples of various motion pat-
terns, such as camera-only motion, object-only motion like moving cars and a
rotating fan, and mixed motion. Each sample includes two RS distorted images
with reversed distortion but without a corresponding ground truth sequence.

4 Methodology

We present the proposed architecture and implementation details in this section.

4.1 Pipeline of IFED

The proposed IFED model utilizes an architecture inherited from existing suc-
cessful VFI methods [13,11], including a branch to estimate the optical flow
for backward warping and an encoder-decoder branch to refine the output (see
Fig. 4). However, directly estimating optical flow from the latent GS image to
the input RS image is challenging due to the intra-frame temporal inconsistency
of an RS image. The optical flow from GS to RS is dependent on two variables:
the time difference and relative velocity of motion. As we already know the
scanning mechanism of the RS camera, we are able to obtain the time difference
between the input RS image and the target GS image. Thus, we propose a dual
time cube as an RS prior to decouple this problem, and let the model regress
the dual velocity cube to indirectly estimate the corresponding dual optical flow
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Fig. 4: Network architecture of IFED. Note that the color annotation of
the dual RS time cube is different from optical flow and velocity. It represents
the relative time gap between each row and the time instance of the latent GS
image. This architecture first utilizes dual RS along with time cube to iteratively
estimate velocity cube for better optical flow learning. Then, the warped dual
frames are combined together as complementary information through the mask
and residual cube learned from the encoder-decoder network to make inferences
for the underlying GS image sequences.

cube. The number of time instances per dual cube is twice the number of ex-
tracted GS frames. These time instances are sampled uniformly from the entire
RS exposure time (e.g., Fig. 4 shows the extraction of 5 GS frames). There is
an implicit assumption that the velocity field of each row of the extracted frame
is constant. Considering the short exposure time of the actual RS image and
the short percentage of time corresponding to the extracted GS frames, this as-
sumption can be basically satisfied in most scenarios. Besides, the dual warped
features can be further adjusted and merged by the interpolation branch, which
enables our method to handle the challenging cases of the spinning fans and
wheels with row-wise non-uniform velocity.

Specifically, assuming our target latent sequence has N images, the target
optical flow cube for one RS image can be expressed as follows:

F(t)
g→r =

{
F (tn)
g→r

}
, n ∈ {1, · · · , N} , (3)

where tn = t − trM
(
1
2 − n

N

)
and F

(tn)
g→r denotes the optical flow from the GS

image at time tn to the distorted RS input I
(t)
r . Regarding the time cube, the

values at row m of the time map P
(t)
g→r are given by:

P (tn)
g→r[m] =

m− 1

M − 1
− n− 1

N − 1
,m ∈ [1..M ], n ∈ [1..N ]. (4)
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Then, the RS time cube P
(t)
g→r =

{
P

(tn)
g→r

}
can be expressed in the same format

as F
(t)
g→r. To obtain the optical flow cube, we need the network to generate a

velocity cube V
(t)
g→r =

{
V

(tn)
g→r

}
and multiply it with the RS time cube as follows:{

F (tn)
g→r

}
=

{
P (tn)
g→rV

(tn)
g→r

}
. (5)

Our flow branch uses several independent subnetworks (VelocityNet) to itera-

tively take dual RS images I
(t)
inp and previously estimated dual optical flow cube

as inputs for dual velocity cube V
(t)
g→t2b estimation. The input scale (resolu-

tion) of the subnetwork are scaled sequentially in an iterative order following a
coarse-to-fine manner (adjusted by bilinear interpolation). These sub-networks
share the same structure, starting with a warping of the inputs, followed by a
series of 2d convolutional layers. The initial scale velocity cube estimation is
realized without the estimated optical flow cube. This branch is shown in the
upper part of Fig. 4.

After obtaining the optical flow cube, we can generate a series of warped

features and the warped dual RS images W (t) =
{
W

(t)
b2t,W

(t)
t2b

}
as multi-scale

inputs to an encoder-encoder network with skip connections for merging results.

Specifically, a residual cube I
(t)
res and a dual mask cube M (t) are generated to

produce the final frame sequence (See the bottom part of Fig. 4) as follows:

I
(t)
out = I(t)res +M (t)W

(t)
t2b +

(
1−M (t)

)
W

(t)
b2t. (6)

4.2 Implementation Details

We implement the method using PyTorch [26]. There are three 4 sub-networks
in the flow network branch for velocity cube learning, each with eight 3 × 3
convolutional layers. The inputs scale is gradually adjusted from 1/8 to original
size as the channel size is reduced. The network is trained in 500 epochs. The
batch size and learning rate are equal to 8 and 1×10−4 separately. AdamW [21]
is used to optimize the weights with a cosine annealing scheduler. The learning
rate is gradually reduced to 1 × 10−8 throughout the whole process. 256 × 256
cropping is applied for both dual RS images and the time cube. Because the
relative time difference between the same row of adjacent crops is constant,
training with cropping does not affect the full frame inference. More details of
the sub-networks and cropping are in supplementary materials. The loss function
to train the model is given by:

L = Lchar + λpLperc + λvLvar, (7)

where Lchar and Lperc denote the Charbonnier loss and perceptual loss [16] for
the extracted frame sequence; while Lvar denotes the total variation loss for the
estimated flows, to smooth the warping. λp and λv are both set to 0.1.
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Fig. 5: Visual results on RS-GOPRO. Zoom-in results are shown chronolog-
ically on the right side of the mixed input. IFED restores the smooth moving
sequence with clearer details while cascaded scheme introduced unclear artifacts.

Fig. 6: Generalization ability on distinct readout time settings. Both
our IFED and DUN [20] are trained on fixed readout setting, while IFED can
successfully generalize to different readout settings from 65µs to 195µs.

5 Experimental Results

In this section, we first present comparison experiments on the synthesized
dataset RS-GOPRO in Sec. 5.1. Next, we show the generality of our method
on real-world data in Sec. 5.2. Finally, we present the ablation study in Sec. 5.3.
Please see more additional experimental results in our appendix.

5.1 Results on Synthetic Dataset

We implemented cascade schemes with RSC model DUN (DeepUnrollNet [20])
and a VFI model RIFE [11] using adjacent frames as inputs. Both orderings were
examined, i.e., DUN+RIFE and RIFE+DUN ((b)+(a) and (a)+(b) in Fig. 2).
We retrained DUN and RIFE on our dataset for extracting 1, 3, 5, and 9 frames
for fair comparison. Quantitative results are shown in Table 2. Over the different
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Table 2: Quantitative results on
RS-GOPRO. f# denotes # of frames
extracted from the input RS images.

PSNR ↑ SSIM ↑ LPIPS ↓

DUN (f1) 26.37 0.836 0.058
DUN + RIFE (f3) 25.38 0.788 0.159
DUN + RIFE (f5) 25.45 0.798 0.111
DUN + RIFE (f9) 25.31 0.795 0.102
RIFE + DUN (f3) 23.05 0.719 0.124
RIFE + DUN (f5) 22.28 0.692 0.118
RIFE + DUN (f9) 21.88 0.677 0.113

IFED (f1) 32.07 0.934 0.028
IFED (f3) 28.48 0.872 0.058
IFED (f5) 29.79 0.897 0.049
IFED (f9) 30.34 0.910 0.046

Fig. 7: Image mean squared er-
rors based on row number in the
case of IFED (f5).

extracted frame settings, IFED shows superiority over the cascade schemes. The
average performance of IFED is worst when the number of extracted frames is
3. Our interpretation is that the task degrades to a relatively easy RS correction
task when the number of extracted frames is 1, while the greater continuity
between extracted frames is better for convergence when the number of extracted
frames is greater than 3. Qualitative results are shown in Fig. 5. With the cascade
schemes, the details are blurry, while ours are much clearer.

To verify the generalization on distinct readout settings, we synthesized RS
images with distinct readout settings such as 65µs, 130µs, and 195µs. As illus-
trated in Fig. 6, both our IFED and DUN [20] are trained on fixed readout
setting, while our IFED can successfully generalize to different readout settings
without introducing artifacts and undesired distortions.

Besides, an row-wise image error analysis (f5) is shown in Fig. 7 in terms
of MSE. It indicates that the performance of a given row index depends on the
minimum time (the smaller the better) between the row of that extracted GS
frame and the corresponding rows of dual RS frames.

5.2 Results on Real-world Data

We also compare our method to the only existing work on extracting a GS se-
quence from RS images RSSR [7] and the only work for dual reversed RS image
correction [1]. Since the source codes of these two works are not publicly avail-
able, we sent our real-world samples from different type of cameras to the authors
for testing. The comparison results with RSSR [7] are shown in Fig. 8. RSSR
cannot generalize to either the case of camera-only motion (the left example)
or the case of object-only motion (the right example), while IFED is robust to
different motion patterns. The visual results of IFED and [1] are illustrated in
Fig. 9. It demonstrates the ability of IFED to go beyond [1] by being able to
extract a sequence of GS images in dynamic scenes, rather than just a single GS
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Fig. 8: Comparison with Fan and Dai [7] on real data. Our results (the 2nd

row) are significantly better than Fan and Dai’s for objects under both horizontal
and rotational movements. Please refer to our supplementary videos.

Fig. 9: Comparison with Albl et al. [1] on real data. Both our method and
Albl et al.’s use the same dual inputs (the 1st column). Our method brings the
dual input alive by creating a sequence of images (Frame 1 ∼ 5), compared to
one static image from Albl et al.’s.

image in static scenes, from a dual reversed RS image. More results of IFED on
the real dataset can be found in the supplementary materials.

5.3 Ablation Study

Table 3 shows the results of our ablation study on the RS time cube prior. It
shows that IFED without the prior generally leads to worse results, and the
difference increases with a larger number of frames. Note that when the number
of extracted frames equals 1, IFED w/o pr can achieve better performance.
The reason is that the task simply becomes the RSC task in this case, and the
model can directly learn a precise flow for the middle time instance using dual
RS inputs. When the number of extracted frames increases, the model needs
the time cube to serve as an “anchor” for each time instance to improve the
temporal consistency of the learned flow. We show visualizations of the flow and
velocity cube with RS time cube prior and the flow cube without the prior in
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Fig. 10: Visualization of optical flow and velocity cube. Equally with dual
RS frames as input, using RS time cube prior to learn velocity cube can reduce
the difficulty of optical flow learning and ultimately improve the flow quality.

Fig. 10. The flow sequence estimated without the RS time cube prior exhibits
poor quality and consistency in time.

6 Conclusions

Table 3: Ablation study for the
prior. w/o pr denotes “without RS
time cube prior”.

PSNR ↑ SSIM ↑ LPIPS ↓
Refer to IFED (f#)

IFED w/o pr (f1) +0.50 +0.006 -0.003
IFED w/o pr (f3) -0.40 -0.008 0.000
IFED w/o pr (f5) -0.50 -0.009 +0.001
IFED w/o pr (f9) -0.70 -0.012 +0.001

In this paper, we addressed a challenging
task of restoring consecutive distortion-
free frames from RS distorted images in
dynamic scenes. We designed an end-to-
end deep neural network IFED for the
dual-RS setup, which has the advantages
of being able to model dynamic scenes
and not being affected by distinct readout
times. The proposed dual RS time cube
for velocity cube learning improves per-
formance by avoiding direct flow estima-
tion from the GS image to the RS image.
Compared to the cascade scheme with existing VFI and RSC models as well as
RSSR which takes temporally adjacent frames as inputs to do the same task, our
IFED shows more impressive accuracy and robustness for both synthetic data
and real-world data with different motion patterns.
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Fig. 11: Beam-splitter-based dual-RS acquisition system. (a) is system
schematic diagram. (b) shows real system used to collect dual-RS videos.

A More Details

A.1 Dual-RS Camera System

To evaluate our method and related works [7,1] on real-world data, we built a
beam-splitter-based dual-RS camera system like [37,31], as illustrated in Fig. 11.
One camera is installed upside down, such that the two RS cameras have reversed
scanning directions. One system with two FL3-U3-13S2C rolling shutter cam-
eras, and the other with two BFS-U3-63S4C rolling shutter cameras have been
implemented, with different readout settings. The row-wise exposure time was
properly adjusted to avoid motion blur.

A.2 Structure of VelocityNet

The details of the subnetwork (VelocityNet) to estimate velocity cube is illus-
trated in Fig. 12. We totally use 4 subnetworks to iteratively take dual RS images

I
(t)
inp and previously estimated dual optical flow cube F

(t−1)
g→r as inputs for dual

velocity cube V
(t)
g→t2b estimation. The final velocity cube is equal to the sum of

each subnetwork. These sub-networks share the same structure, starting with a
warping of the inputs, followed by a series of 2d convolutional layers. All sub-
networks have 8 convolutional layers. Before convolution, the scale (resolution)
of the warped dual images and optical flow are scaled by linear interpolation.
The scale ratio follows a coarse-to-fine manner from the first subnetwork to the
last subnetwork, as 1/8, 1/4, 1/2, and 1, respectively. While the dimension of
channel is set as 192, 128, 96 and 48, respectively. Note that the initial scale
velocity cube estimation is realized without the estimated optical flow cube.

A.3 Training with Cropping

We train the proposed IFED using 256×256 random cropping for data augmen-
tation. Taking the example of extracting 5 frames, the corresponding dual time
cube prior will be cropped at the same position, as illustrated in Fig. 13.
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Fig. 12: Structure of VelocityNet for velocity cube estimation.

Fig. 13: Illustration of random cropping for training IFED (f5).

B Additional Results

B.1 Video Results

This work targets extracting undistorted image sequences from rolling shutter
images with dual reversed distortion. The closest research to ours is Fan and
Dai [7], in which the RSSR algorithm was proposed to extract undistorted frames
from two consecutive rolling shutter images. The authors did not release their
source code of RSSR, yet kindly agreed to run a few real-world samples for fair
comparison. For RSSR, we used two consecutive frames from one camera as
input, while for our IFED, we used two dual reserved images (one from each
camera) as input. Note that, although RSSR was not trained on our training
set, we believe the comparison is fair and meaningful, in the sense that, both
algorithms were trained on their own synthetic data, and both were tested on
images captured by third-party cameras beyond the training set.

We present video results as results.mp4, including results of IFED on RS-
GOPRO, as well as results of RSSR and IFED on real-world data. The video clips
generated by IFED are more natural and visually appealing, while RSSR cannot
generalize on real-world data. RSSR failed because their model only works when
there are no moving objects in the scene, a restrictive assumption that rarely
holds in practice. Also, the fact that the readout settings are not consistent
between the training data and the real test data also poses challenges to RSSR.
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Fig. 14: Comparison with cascade schemes on real data. Zoom-in results
are shown on the left side of the input. Note that IFED uses the dual mixed
inputs and the rest two methods use the temporal mixed inputs.

IFED (f1) IFED (f3) IFED (f5) IFED (f9)

Parameters 28.38M 28.75M 29.12M 29.86M
Runtime 15.11ms / 8.70 fps 7.26ms / 13.77 fps 5.95ms / 16.81 fps 4.16ms / 24.04 fps

Table 4: The average inference cost for one frame (960×540) of IFED.
f# denotes the number of frames extracted by the model in a single inference.

B.2 Comparison with Cascaded Schemes on Real-world Data

We show visual results for cascade schemes and IFED on real-world data in
Fig. 14 for the case of f3. The results are consistent with those on synthetic data
where IFED produces sharper details than RIFE+DUN and DUN+RIFE. Note
that IFED even correctly recovers the rotation of the wheel.

B.3 The Effects of The Number Frames Extracted

We show the cost of each IFED variant to infer a frame of size 960×540 in Ta-
ble 4. When we implement models that extract different number of frames, we
keep the parameters at almost the same level. The test hardware is a GeForce
RTX 3090. IFED (f9) can achieve an inference speed of about 24 fps. The quality
performance in terms of PSNR/SSIM of each IFED variant calculated on differ-
ent number of frames is listed in Table 5. When the number of extracted frames
is larger than 1, IFED (f9) is able to outperform other variants both in speed
and accuracy. One possible reason for this is that training with more continuous
ground-truth provides more time continuity to support learning.
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IFED (f1) IFED (f3) IFED (f5) IFED (f9)

1 frame 32.07 / 0.934 30.99 / 0.915 31.21 / 0.919 31.11 / 0.920
3 frames - 28.48 / 0.87 28.66 / 0.876 28.70 / 0.880
5 frames - - 29.79 / 0.897 29.93 / 0.901
9 frames - - - 30.34 / 0.910

Table 5: Performance of different variants of IFED in terms of
PSNR/SSIM.

Fig. 15: Effectiveness of IFED with clock misalignment.

Fig. 16: Reconstruction performance. 3D model from our corrected and in-
terpolated RS images is closer to the model from GS.

B.4 Synchronization of Dual-RS Cameras

Today’s clock synchronization circuits usually have errors below 10 µs. In Fig. 15,
we show that our method is still effective when frames are misaligned by two
rows to simulate out of synchronization.

B.5 3D Reconstruction Evaluation

In this section, we present the evaluation of method on 3D reconstruction task.
We implemented SfM (OpenSfM) to generate 3D models using images in the
presence of camera rotations and translations as illustrated in Fig. 16. The struc-
ture built by using our RS corrected and interpolated images is closer to the one
built by GS image sequence, which validates that our method can further serve
to high-level tasks.

https://github.com/mapillary/OpenSfM
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Fig. 18: The merit of dual-RS setup
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B.6 Ablation Studies for Dual-RS Setup

We further show experiments of training our network using consecutive frames
on RS-GOPRO, denoted as IFEN. The results also include whether to use time
cube prior, as shown in Fig. 17. We can see dual-RS setup bring huge perfor-
mance gain, and the time cube prior is more helpful in consecutive frame setup.
When testing on real images with inconsistent readout settings with the training
dataset, the advantage of dual-RS further extends because it avoids the unde-
sired distortion caused by ambiguity, as shown in Fig. 18.

C Limitations

We have succeeded in handling an electric fan with a spinning speed of up
to 500 rpm. However, it is likely to fail for larger objects at the same angular
velocity, or smaller objects with faster angular velocity, as both have a faster
linear speed around the outer edges.
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