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Abstract. We present a frame interpolation algorithm that synthesizes
an engaging slow-motion video from near-duplicate photos which often
exhibit large scene motion. Near-duplicates interpolation is an interesting
new application, but large motion poses challenges to existing methods.
To address this issue, we adapt a feature extractor that shares weights
across the scales, and present a “scale-agnostic” motion estimator. It
relies on the intuition that large motion at finer scales should be similar
to small motion at coarser scales, which boosts the number of available
pixels for large motion supervision. To inpaint wide disocclusions caused
by large motion and synthesize crisp frames, we propose to optimize
our network with the Gram matrix loss that measures the correlation
difference between features. To simplify the training process, we further
propose a unified single-network approach that removes the reliance on
additional optical-flow or depth network and is trainable from frame
triplets alone. Our approach outperforms state-of-the-art methods on
the Xiph large motion benchmark while performing favorably on Vimeo-
90K, Middlebury and UCF101. Source codes and pre-trained models are
available at https://film-net.github.io.

Keywords: video synthesis, interpolation, optical flow, feature pyramid

1 Introduction

Frame interpolation – synthesizing intermediate images between a pair of input
frames – is an important problem with increasing reach. It is often used for
temporal up-sampling to increase refresh rate or create slow-motion videos.

Recently, a new use case has emerged. Digital photography, especially with
the advent of smartphones, has made it effortless to take several pictures within
a few seconds, and people naturally do so often in their quest for just the right
photo that captures the moment. These “near duplicates” create an exciting
opportunity: interpolating between them can lead to surprisingly engaging videos
that reveal scene (and some camera) motion, often delivering an even more
pleasing sense of the moment than any one of the original photos.

Unlike video, however, the temporal spacing between near duplicates can
be a second or more, with commensurately large scene motion, posing a ma-
jor challenge for existing interpolation methods. Frame interpolation between
consecutive video frames, which often exhibit small motion, has been studied

https://film-net.github.io
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Near-duplicate photos 

blended with 50% ABME FILM

Fig. 1. Near-duplicate photos interpolation with ABME [23], showing large ar-
tifacts, and our FILM, showing improvements.

extensively, and recent methods [18,3,23,8] show impressive results for this sce-
nario. However, little attention has been given to interpolation for large scene
motion, commonly present in near duplicates. The work of [28] attempted to
tackle the large motion problem by training on an extreme motion dataset, but
its effectiveness is limited when tested on small motion [23].

In this work, we instead propose a network that generalizes well to both
small and large motion. Specifically, we adapt a multi-scale feature extractor
from [31] that shares weights across the scales and present a “scale-agnostic” bi-
directional motion estimation module. Our approach relies on the intuition that
large motion at finer scales should be similar to small motion at coarser scales,
thus increasing the number of pixels (as finer scale is higher resolution) available
for large motion supervision. We found this approach to be surprisingly effective
in handling large motion by simply training on regular frames (see Figure 1).

We also observed that, while the state-of-the-art methods score well on bench-
marks [16,2,34], the interpolated frames often appear blurry, especially in large
disoccluded regions that arise from large motions. Here, we propose to optimize
our models with the Gram matrix loss, which matches the auto-correlation of the
high-level VGG features, and significantly improves the realism and sharpness
of frames (see Figure 4b).

Another drawback of recent interpolation methods [18,3,23,35] is training
complexity, because they typically rely on scarce data to pre-train additional
optical flow, depth, or other prior networks. Such data scarcity is even more
critical for large motion. The DAIN approach [3], for example, incorporates a
depth network, and the works in [18,23] use additional networks to estimate per-
pixel motion. To simplify the training process, another contribution of this work
is a unified architecture for frame interpolation, which is trainable from regular
frame triplets alone.

In summary, the main contributions of our work are:
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– We expand the scope of frame interpolation to a novel near-duplicate photos
interpolation application, and open a new space for the community to tackle.

– We adapt a multi-scale feature extractor that shares weights, and propose
a scale-agnostic bi-directional motion estimator to handle both small and
large motion well, using regular training frames.

– We adopt a Gram matrix-based loss function to inpaint large disocclusions
caused by large scene motion, leading to crisp and pleasing frames.

– We propose a unified, single-stage architecture, to simplify the training pro-
cess and remove the reliance on additional optical flow or depth networks.

2 Related Work

Various CNN-based frame interpolation methods [11,3,20,18,6,8,35,13,22,23,32]
[26,15] have been proposed to up-scale frame rate of videos. To our knowledge,
no prior work exists on near-duplicate photos interpolation. We, however, sum-
marize frame interpolation methods related to our approach.

Large Motion. Handling large motion is an important yet under-explored topic
in frame interpolation. The work in [28] handles large motion by training on
4K sequences with extreme motion. While this is a viable approach, it does
not generalize well on regular footage as discussed in [23]. Similarly, other ap-
proaches [18,23] perform poorly when the test motion range deviates from the
training motion range. We adapt a multi-scale shared feature extractor [31,9,10],
and present a “scale-agnostic” motion estimation module, which allows us to
learn large and small motion with equal priority, and show favorable generaliza-
tion ability in various benchmarks.

Image Quality. One of our key contributions is high quality frame synthesis, es-
pecially in large disoccluded regions caused by large motion. Prior work [20,19,21]
improves image quality by learning a per-pixel kernel instead of an offset vector,
which is then convolved with the inputs. While effective at improving quality,
they cannot handle large motion well. Other approaches optimize models with
perceptual losses [20,18]. Some consider an adversarial loss [1], albeit with a
complex training process. Our work proposes to adopt the Gram matrix loss [7],
which builds up on the perceptual loss and yields high quality and pleasing
frames.

Single-Stage Networks. The first CNN-based supervised frame interpolators
propose UNet-like networks, trained from inputs and target frames [16,11]. Re-
cent work [3] introduces a depth network to handle occlusions, [18,23] incorporate
motion estimation modules, and [30,22,35] rely on pre-trained HED [33] features.
While impressive results are achieved, multiple networks can make training pro-
cesses complex. It may also need scarce data to pre-train the prior networks.
Pre-training datasets, e.g. optical flows, are even more scarce for large motion.
Our work introduces a single unified network, trainable from regular frame triples
alone, without additional priors, and achieves state-of-the-art results.
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Brian Curless, 51 min
looking it over now

Fitsum Reda, 51 min, Edited
I actually like this figure. If the 'flow' boxes are shaded with a different 
color, would help too.

Janne Kontkanen, 50 min
What I like about our current one is that it explains the feature extractor

Fitsum Reda, 50 min
that is true

Janne Kontkanen, 50 min
feature extractor is the one that really needs to be explained with the 
figure

Fitsum Reda, 50 min
right, nvm

Janne Kontkanen, 50 min
I can try to produce some sort of hybrid of these two
I started playing with something like this:
the one below looks a bit like just a shadow though

Brian Curless, 44 min
Make it colorful, but still darker?

Brian Curless, 41 min
The older diagram does do a better job of explaining the flow part, which 
significantly improves my understanding. Two flows, and the coarser 
flows feed into the finer ones.

Janne Kontkanen, 41 min
Ok, I will try to incorporate some of that

Brian Curless, 37 min
I also didn't realize the input image pyarmids are warped as well and I 
guess concatenated to the warped features. Does the flow estimator see 
these pyramids as well?

Janne Kontkanen, 35 min
yes, the same feature pyramids are input to the flow estimator and are 
then warped

Brian Curless, 35 min
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addition to the feature pyramids?

Janne Kontkanen, 34 min
after warped they are concatenated with input images that are also 
warped, plus the two flow fields (which don't need to be warped since 
they are already in the desired view)
Sorry -- let me double check
There's been some back and forth on that
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I actually find the code more readable than the diagram or the text: 
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me_interpolation/models/fusion_net/interpolator.py;rcl=409293413;l=174
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readable
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Brian Curless, 19 min
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images (in color), the flow (hue) maps, and the (warped) feature blocks 
in a way that avoids adding some of the arrows.
And "aligned features" would be "flow + aligned input and feature 
pyramids"
Also, the right side of the figure can be squished together horizontally to 
remove the white space. I know that doesn't fit the usual "U" aesthetic, 
but seems ok.

Janne Kontkanen, 1 min
Fwiw, the left side columns are actually U-net encoders and there is no 
U-shape in there either

Brian Curless, Now
We need to come up with another letter to describe it. 
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Fig. 2. FILM architecture. Our flow estimation module computes “scale ag-
nostic” bi-directional flows based on the feature pyramids, extracted by shared
weights.

3 Method

Given two input images (I0, I1), with large in-between motion, we synthesize a

mid-image Ît, with time t ∈ (0, 1), as:

Ît = M
(
I0, I1

)
, (1)

where M is our FILM network trained with a ground-truth It. During training,
we supervise at t = 0.5 and we predict more in-between images by recursively
invoking FILM.

A common approach to handle large motion is to employ feature pyramids,
which increases receptive fields. However, a standard pyramid learning has two
difficulties: 1) small fast-moving objects disappear at coarse levels, and 2) the
number of pixels is drastically smaller at coarse levels (i), (H2i×

W
2i ), which means

there are fewer pixels to provide large motion supervision. To overcome these
challenges, we propose to share the convolution weights across the scales. Based
on the intuition that large motion at finer scales should be the same as small
motion at coarser scales, sharing weights allows us to boost the number of pixels
available for large motion supervision.

FILM has three main stages: Shared feature extraction, scale-agnostic motion
estimation, and a fusion stage that outputs the resulting color image. Figure 2
shows an overview of FILM.

Feature Extraction.We adapt a feature extractor from [31], that allows weight
sharing across the scales, to create a “scale-agnostic” feature pyramid. It is
constructed in three steps as follows.

First, we create image pyramids {Il0} and {Il1} for the two input images,
where l ∈ [1, 7] is the pyramid level.
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Second, starting at the image at each l-th pyramid level, we build feature
pyramids (the columns in Figure 2) using a shared UNet encoder. Specifically,

we extract multi-scale features {fl,d0 } and {fl,d1 }, with d ∈ [1, 4] being the depth
at that l-th level (Figure 2 only uses d ∈ [1, 3] for illustration). Mathematically,

fl,d0 = Hd
(
Il0
)
, (2)

where Hd is a stack of convolutions, shown in Figure 2 with the green arrow for

d=1, red for d=2, and dark-blue for d=3. Note that, the same θ(H
d) convolution

weights are shared for the same d-th depth at each pyramid level, to create
compatible multiscale features. Each Hd is followed by an average pooling with
a size and stride of 2.

As a third and final step of our feature extractor, we construct our scale-
agnostic feature pyramids, {Fl

0} and {Fl
1}, by concatenating the feature maps

with different depths, but the same spatial dimensions, as:

Fl
0 =

(
fl−2,d=3
0 , fl−1,d=2

0 , fl,d=1
0

)
, (3)

and the scale-agnostic feature, Fl
1 of I1, at the l-th pyramid level, can be given in

a similar way by Equation 3. As shown in Figure 2, the finest level feature (green)
can only aggregate one feature map, the second finest level two (green+red), and
the rest can aggregate three shared feature maps.

Flow Estimation. Once we extract the feature pyramids, {Fl
0} and {Fl

1}, we
use them to calculate a bi-directional motion at each pyramid level. Similar
to [30], we start the motion estimation from the coarsest level (in our case l = 7).
However, in contrast to other methods, we directly predict task oriented [34,16]
flows, Wt→0 and Wt→1, from the mid-frame to the inputs.

We compute the task oriented flow at each levelWl
t→1 as the sum of predicted

residual and the upsampled flow from the coarser level l+1, based on the intuition
that large motion at finer scales should be the same as small motion at coarser
scales, as:

Wl
t→1 =

(
Wl+1

t→1

)
×2 + Gl

(
Fl

0, F̂
l

t←1

)
, (4)

where (•)×2 is a bilinear up-sampling, Gl is a stack of convolutions that estimates

the residual, and F̂
l

t←1 is the backward warped scale-agnostic feature map at t=1,
obtained by bilinearly warping Fl

1 with the upsampled flow estimate, as,

F̂
l

t←1 = T
(
Fl

1,
(
Wl+1

t→1

)
×2

)
, (5)

with T being a bilinear resample (warp) operation. Figure 2 depicts Gl by the
blue or white arrows, depending on the pyramid level. Note that, the same

residual convolution weights θ(G
l) are shared by levels l ∈ [3, 7].

Finally, we create the feature pyramid at the intermediate time t, {Fl
t←1}

and {Fl
t←0}, by backward warping the feature pyramid, at t=1 and t=0, with

the flows given by Equation 4, as:

Fl
t←1 = T

((
Fl

1, I
l
1

)
,Wl

t→1

)
, (6)
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Fl
t←0 can be given in a similar way as Equation 6.

Fusion. The final stage of FILM concatenates, at each l-th pyramid, the scale-
agnostic feature maps at t and the bi-directional motions to t, which are then fed
to a UNet-like [27] decoder to synthesize the final mid-frame Ît. Mathematically,
the fused input at each l-th decoder level is given by,(

Fl
t←1,F

l
t←0,W

l
t→0,W

l
t→1

)
. (7)

Figure 2 illustrates the decoder’s convolutions and resulting activations with a
white arrow and gray boxes, respectively.

3.1 Loss Functions

We use only image synthesis losses to supervise the final output of our FILM
network; we do not use auxiliary losses tapped into any intermediate stages. Our
image synthesis loss is a combination of three terms.

First, we use the L1 reconstruction loss that minimizes the pixel-wise RGB
difference between the interpolated frame Ît and the ground-truth frame It, given
by:

L1 = ∥Ît − It∥1. (8)

The L1 loss captures the motion between the inputs (I0, I1) and yields inter-
polation results that score well on benchmarks, as is discussed in Section 5.2.
However, the interpolated frames are often blurry.

Second, to enhance image details, we add a perceptual loss, using the L1
norm of the VGG-19 features [29]. The perceptual loss, also called VGG-loss,
LVGG, is given by,

LVGG =
1

L

L∑
l=1

αl

∥∥∥Ψl(Ît)− Ψl(It)
∥∥∥
1
, (9)

where Ψl(Ii) ∈ RH×W×C is the features from the l-th selected layer of a pre-
trained Imagenet VGG-19 network for Ii ∈ RH×W×3, L is the number of the
finer layers considered, and αl is an importance weight of the l-th layer.

Finally, we employ the Style loss [7,25,14] to further expand on the benefits
of LVGG. The style loss LGram, also called Gram matrix loss, is the L2 norm of
the auto-correlation of the VGG-19 features [29]:

LGram =
1

L

L∑
l=1

αl

∥∥∥Ml(Ît)−Ml(It)
∥∥∥
2
, (10)

where the Gram matrix of the interpolated frame at the l-th layer, Ml(Ît) ∈
RC×C, is given by:

Ml(Ît) =
(
Ψl(Ît)

)⊺(
Ψ

l
(Ît)

)
, (11)

and the Gram matrix of the ground-truth image, Ml(It), can be given in a similar
way as Equation 11.
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To our knowledge, this is the first work that applies the Gram matrix loss
to frame interpolation. We found this loss to be effective in synthesizing sharp
images with rich details when inpainting large disocclusion regions caused by
large scene motion.

To achieve high benchmark scores as well as high quality frame synthesis,
we train our models with an optimally weighted combination of the RGB, VGG
and Gram matrix losses. The combined loss, which we denote LS , is defined as,

LS = wlL1 + wVGGLVGG + wGramLGram, (12)

with the weights (wl, wVGG, wGram) determined empirically, as detailed in the
Supplementary Materials.

3.2 Large Motion Datasets

To study FILM’s ability to handle large motion, we created a “bracketed” dataset
containing five training sub-sets. Each containing examples with motion dispar-
ity in the following ranges, in pixels: 0-40, 0-60, 0-80, 0-100, and 0-120.

We procedurally mine 512×512 image triplets from publicly available videos,
extending the method described in [5]. We apply this procedure to generate
several motion brackets, i.e.: 0-20, 20-40, ..., 100-120. The motion distribution
histograms of these brackets are shown overlapped in Figure 3. The effect of
training using blends with increasing motion range is analyzed in Section 5.3.

(a) Vimeo motion
magnitude.

(b) Xiph motion
magnitude.

(c) Bracketed motion magnitude.

Fig. 3. Motion magnitude histograms of datasets Vimeo-90K (3a), Xiph-4K (3b)
and Bracketed (3c).

4 Implementation Details

We implemented our model in TensorFlow 2. As training data, we use either
Vimeo-90K or one of our large motion datasets described in Section 3.2.

For the Vimeo-90K dataset, we use a batch size of 8, with a 256×256 random
crop size, distributed over 8 NVIDIA V100 GPUs. We apply data augmentation:
Random rotation with [-45◦,45◦], rotation by multiples of 90◦, horizontal flip,
and reversing triplets. We use Adam [12] optimizer with β1=0.9 and β2=0.999,
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without weight decay. We use an initial learning rate of 1e−4 scheduled (piece-
wise linear) with exponential decay rate of 0.464, and decay steps of 750K, for
3M iterations.

For comparison with the recent state-of-the-art models, we trained two ver-
sions: One optimized using L1 loss alone, which achieves higher benchmark
scores, and another, that favours image quality, trained with our proposed style
loss, LS . Our style loss optimally combines L1, LVGG, and LGram.

To perform our qualitative evaluations, we also implement the SoftSplat [18]
in TensorFlow 2, since pre-trained models were not available at the time of
writing. In the Supplementary Materials, we show our faithful implementations
on a DAVIS [24] image sample rendered in [18]. We found that renderings with
our implementation to be quite comparable to the ones provided in the original
paper. We provide additional implementation details in the Supplementary.

5 Results

Using existing benchmarks, we quantitatively compare FILM to recent meth-
ods: DAIN [3], AdaCoF [13], BMBC [22], SoftSplat [18], and ABME [23]. We
additionally provide qualitative comparisons (to SoftSplat and ABME) on near-
duplicate interpolation, for which no benchmarks currently exist.

Metrics. We use common quantitative metrics: Peak Signal-To-Noise Ratio
(PSNR) and Structural Similarity Image Metric (SSIM). High PSNR and SSIM
scores indicate better quality.

Datasets. We report metrics on Vimeo-90K [34], UCF101[16], Middlebury [2],
and on a 4K large motion dataset Xiph [17,18]. Figure 3 shows motion magnitude
histograms for Vimeo-90K and Xiph. Vimeo-90K (3a) motion is limited to 25
pixels, while the Xiph (3b) has a long-tailed distribution extending to 80 pixels.

In this comparison, all methods are with the Vimeo-90K dataset. To evaluate
visual quality, we use a new challenging near-duplicate photos as the testing
dataset. For ablation studies on large motion, we use our “bracketed” dataset
(see Section 3.2) as the training dataset.

5.1 Quantitative Comparisons

Small-to-Medium Motion. Table 1 shows midpoint frame interpolation com-
parisons with DAIN [3], AdaCoF [13], BMBC [22], SoftSplat [18], and ABME [23]
on small-to-medium motion datasets: Vimeo-90K, Middlebury, and UCF101.

The SoftSplat method reports two sets of results, one set trained with color
loss (LLap), which performs better on standard benchmarks, and another trained
with a perceptually-sensitive loss (LF ), which leads to perceptually higher qual-
ity frames. The rest report results obtained by training with various color or
low-level loss functions.

Based on color losses, ABME outperforms all other methods on Vimeo-90K.
On Middlebury and UCF101, SoftSplat trained with color loss has the highest



FILM: Frame Interpolation for Large Motion 9

Vimeo-90K [34] Middlebury [2] UCF101 [16]
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DAIN 34.70 0.964 36.70 0.965 35.00 0.950
AdaCoF 34.35 0.973 35.72 0.978 34.90 0.968
BMBC 35.01 0.976 n/a n/a 35.15 0.969
SoftSplat-LLap 36.10 0.970 38.42 0.971 35.39 0.952
ABME 36.18 0.981 n/a n/a 35.38 0.970
Our FILM-L1 36.06 0.970 37.52 0.966 35.32 0.952

SoftSplat-LF 35.48 0.964 37.55 0.965 35.10 0.948
Our FILM-LVGG 35.76 0.967 37.43 0.966 35.20 0.950
Our FILM-LS 35.87 0.968 37.57 0.966 35.16 0.949

Table 1. Comparison on small-to-medium motion benchmarks. Best scores for
color losses are in blue, for perceptually-sensitive losses in red. In this compar-
ison, all methods are trained on Vimeo-90K.

PSNR. We note that ABME and SoftSplat are complex to train, each con-
sisting of multiple sub-networks dedicated to motion estimation, refinement, or
synthesis. Their training processes involve multiple datasets and stage-wise pre-
training. Data scarcity, which is even more critical in large motion, could also
complicate pre-training. Our unified, single-stage, FILM network achieves com-
petitive PSNR scores.

The perception-distortion tradeoff [4] proved that minimizing distortion met-
rics alone, like PSNR or SSIM, can have a negative effect on the perceptual qual-
ity. As such, we also optimize our model with our proposed Gram Matrix-based
loss, LS , which optimally favours both color differences and perceptual quality.

When including perceptually-sensitive losses, FILM outperforms the state-
of-the-art SoftSplat on Vimeo-90K. We also achieve the highest scores on Mid-
dlebury and UCF101. In the next Subsection 5.2, we show visual comparisons
that support the quantitative gains in PSNR with gains in image quality.

Large Motion. Table 2 presents midpoint frame interpolation comparisons on
Xiph-2K and Xiph-4K, all methods (including FILM) trained on Vimeo-90K.
FILM outperforms all other models for color-based losses. Note that (not shown
in the table) when training FILM on a custom large motion dataset, detailed
in Section 3.2, we can achieve an additional performance gain of +0.5dB on
Xiph-4K, the benchmark with the largest motions.

When including perceptually-sensitive losses, FILM outperforms SoftSplat-
LF in PSNR on Xiph-2K and both PSNR and SSIM on the larger motion Xiph-
4K. Thus, FILM is better able to generalize from the small motions in the
Vimeo-90K training datasets to the larger motions present in the Xiph test sets.
We hope these findings will interest the greater research community, where large
motion is often challenging. In the next Subsection 5.2, we provide visual results
that support the effectiveness of our method in samples with motion ranges as
large as 100 pixels.
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Xiph-2K [17] Xiph-4K [17]
PSNR↑ SSIM↑ PSNR↑ SSIM↑

DAIN 35.95 0.940 33.49 0.895
ToFlow 33.93 0.922 30.74 0.856
AdaCoF 34.86 0.928 31.68 0.870
BMBC 32.82 0.928 31.19 0.880
ABME 36.53 0.944 33.73 0.901
SoftSplat-LLap 36.62 0.944 33.60 0.901
Our FILM-L1 36.66 0.951 33.78 0.906

SoftSplat-LF 35.74 0.944 32.55 0.865
Our FILM-LS 36.38 0.942 33.29 0.882

Table 2. Comparison on large motion benchmarks. Best scores for color losses
in (blue), and for perceptually-sensitive losses in (red). In this comparison, all
methods are trained on Vimeo-90K

.

5.2 Qualitative Comparisons

We provide visual results that support our quantitative results. We use the ver-
sion of the model that yields high image quality, i.e.: our FILM-LS and SoftSplat-
LF . For ABME 3, we create visual results using the released pre-trained models.
For SoftSplat4 [18], we use our faithful implementation, since neither source code
nor pre-trained model was publicly available at the time of writing.

Sharpness. To evaluate the effectiveness of our GramMatrix-based loss function
(Equation 11) in preserving image sharpness, we visually compare our results
against images rendered with other methods. As seen in Figure 4a, our method
synthesizes visually superior results, with crisp image details on the face and
preserving the articulating fingers.

Disocclusion Inpainting. To effectively inpaint disoccluded pixels, models
must learn appropriate motions or hallucinate novel pixels, this is especially
critical in large scene motion, which causes wide disocclusions. Figure 4b shows
different methods, including ours, inpainting large disocclusions. Compared to
the other approaches, FILM correctly paints the pixels while maintaining high
fidelity. It also preserves the structure of objects, e.g. the red toy car, while
SoftSplat [18] shows deformation, and ABME [23] creates blurry inpainting.

Large Motion. Large motion is one of the most challenging aspects of frame
interpolation. Figure 5 shows results for different methods on a sample with
100 pixels disparity. Both SoftSplat [18] and ABME [23] were able to capture
motions near the dog’s nose, however they create large artifacts on the ground.
FILM’s strength is seen capturing the motion well and keeping the background
details. Please see our Supplementary Materials for more visual results.

3 https://github.com/JunHeum/ABME
4 https://github.com/sniklaus/softmax-splatting

https://github.com/JunHeum/ABME
https://github.com/sniklaus/softmax-splatting
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Blend SoftSplat-LF ABME FILM-LS

(a) Sharpness.

Blend SoftSplat-LF ABME FILM-LS

(b) Inpainting disocclusions.

Fig. 4. Qualitative comparison on sharpness and large disocclusion inpainting.
(4a) FILM produces sharp images and preserves the fingers. SoftSplat [18] shows
artifacts (fingers) and ABME [23] has blurriness (the face). (4b) Our method
inpaints large disocclusions well, because of our proposed Gram Matrix-based
(Style) loss. SoftSplat [18] and ABME [23] produce blurry inpaintings or un-
natural deformations.

5.3 Ablations

In this section, we present ablation studies to analyze the design choices of FILM.

Weight Sharing. We compare our shared feature extractor with a regular
UNet-like encoder [27] that uses independent weights at all scales, forcing us
to also learn independent flows. Table 3 presents mid-frame results in PSNR. It
is not straightforward to construct models that are fair to compare: one could
either match the total number of weights or the number of filters at each level.
We chose to use a UNet encoder that starts from the same number of filters as
ours and then doubles the number at each level. The FILM-model we have used
in this paper starts with 64 filters, so this leads to a UNet with feature counts:
[64, 128, 256...]. We find that training with this configuration does not converge
without weight sharing. To study this further, we construct two simpler variants
of our model, starting from 32 filters. We are able to train these two models with
a small loss in PSNR as compared to the equivalent model that shares weights.

To conclude, weight sharing allows training a more powerful model, reaching
a higher PSNR. Additionally, sharing may be important for fitting models in
GPU memory in practical applications. Further, the model with weight sharing
is visually superior with substantially better generalization when testing on pairs
with motion magnitude beyond the range in the training data (see Figure 6).
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Blend SoftSplat-LF ABME FILM-LS

100p

Fig. 5. Qualitative comparison on large motion. Inputs with 100pixels disparity
overlaid (left). Although both SoftSplat [18], ABME [23] capture the motion on
the dog’s nose, they appear blurry, and create a large artifact on the ground.
FILM’s strength is seen capturing the motion well and maintaining the back-
ground details.

Gram Matrix (Style) Loss. Figure 7 presents qualitative results of FILM
trained with L1, adding LV GG, and with our proposed style loss LS , given by
Equation 12. Using L1 alone leads to blurry images (red box), while adding
LV GG loss reduces blurry artifacts (orange box). Our proposed loss (green box)
significantly improves sharpness of our FILM method.

Motion Ranges. We study the effect of the training dataset motion range on
the model’s ability to handle different motions at test time, using the “bracketed
dataset” (see Section 3.2). For this study, we use a reduced FILM-med to save
compute resources. FILM-med is trained on motion ranges of 0-40, 0-60, 0-80,
0-100 and 0-120 pixels. They are evaluated on Vimeo-90K (0-25 range) and Xiph-

model PSNR (w/ sharing) PSNR (w/o sharing)

FILM 36.06 N/A
FILM-med 35.30 35.28
FILM-lite 35.09 34.93

Table 3. Weight sharing ablation study. A model without multi-scale feature
sharing achieves results that are slightly lower than those achieved with shared
features, e.g. FILM-med and FILM-lite. We have not been able to train our high-
est quality model (FILM) without weight sharing as the training gets unstable
(indicated with N/A).
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Fig. 6. The visual impact of sharing weights. Left: no sharing (FILM-med),
Middle: sharing (FILM-med), Right: sharing (FILM), i.e., the highest quality
model. Sharing weights is clearly better. Quality and sharpness increases when
going from the medium to the full model with sharing.

fig/loss_ablation/xx-77.png

fig/loss_ablation/xx-77.png

fig/loss_ablation/xx-77.png

fig/loss_ablation/xx-77.png

fig/loss_ablation/xx-77.png

fig/loss_ablation/xx-77.png
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LVGG LS

Fig. 7. Loss function comparison on our FILM. L1 loss (left), L1 plus VGG
loss (middle), and our proposed style loss (right), showing significant sharpness
improvements (green box).

4K (0-80 range), as shown in Figure 8. On Vimeo-90K, FILM-med trained with
the smallest motion range performs the best. As larger motion is added, PSNR
goes down significantly.

We hypothesize that this behavior is caused by two factors: 1) when training
for larger motion, the model assumes a larger search window for correspondence,
and thus has more chances to make errors. 2) with larger motion, the problem
is simply harder and less neural capacity is left for smaller motion.

On Xiph-4K, the best performance is obtained by training with motion range
0-100 pixels. Motivated by our finding, we trained our best model (FILM) with
this dataset, and achieve an additional PSNR performance gain of +0.5dB over
the state-of-the-art, as described in Section 5.1.

In summary, our findings indicate that scale-agnostic features and shared
weight flow prediction improve the model’s ability to learn and generalize to a
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wider range of motion. In addition, we find that best results are obtained when
the training data also matches the test-time motion distribution.

5.4 Performance and Memory

Fig. 8. A study of the effect of the
training dataset’s motion range on the
PSNR, when evaluated on (a) Vimeo-
90K, and (b) Xiph-4K.

Table 4 presents inference times and
memory comparisons on an NVIDIA
V100 GPU. We report the average of
100 runs. Our FILM is 3.95× faster
than ABME, and 9.75× faster than
SoftSplat, while using only 1.27× and
1.01× more memory than ABME and
SoftSplat, respectively. Our model is
slightly larger due to its deep pyramid
(7 levels), but the time performance
gains are significantly large.

5.5 Limitations

In some instances, FILM produces un-natural deformations when the in-between
motion is extreme. Although resulting videos are appealing, the subtle move-
ments may not look natural. We provide failure examples in our Supplementary
video.

Interpolation
Method

Inference Time
(Second)↓

Peak Memory

(GB)↓
SoftSplat 3.834 4.405
ABME 1.554 3.506
Our FILM 0.393 4.484

Table 4. Inference time and memory comparison for a 720p frame interpolation.

6 Conclusions

We have introduced an algorithm for large motion frame interpolation (FILM),
in particular, for near-duplicate photos interpolation. FILM is a simple, unified
and single-stage model, trainable from regular frames, and does not require ad-
ditional optical-flow or depth prior networks, or their scarce pre-training data.
Its core components are a feature pyramid that shares weight across scales and
a “scale-agnostic” bi-directional motion estimator that learns from frames with
normal motion but generalizes well to frames with large motion. To handle wide
disocclusions caused by large motion, we optimize our models with the Gram
matrix loss that matches the correlation of features to generate sharp frames.
Extensive experimental results show that FILM outperforms other methods on
large motions while still handling small motions well, and generates high quality
and temporally smooth videos. Source codes and pre-trained models are available
at https://film-net.github.io.

https://film-net.github.io
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We provide additional implementation details and a supplementary video
(visit https://film-net.github.io) for a quick overview of our paper, the
motivations, as well as more visual results.

A Implementation Details

A.1 Loss Combination Weights

Our style loss (LS) optimally combines L1, LVGG, and LGram. We use a piece-
wise linear weight-schedule to select a weight for each loss at each iteration.
Specifically, we assign weights of (1.0, 1.0, 0.0) for 1.5M iterations, and weights
of (1.0, 0.25, 40.0) for the last 1.5M iterations. For the last 1.5M iterations, the
loss weights are empirically selected such that each loss contributes equally to
the combined Style loss.

A.2 SoftSplat Implementation

As described in the paper, we have implemented the SoftSplat[18] in Tensorflow
2, using the author’s tuned hyper-parameters, and we have been able to replicate
their published benchmark scores. Note that, SoftSplat3 provides only a CuPy
implementation of the softmax splatting operator.

In Figure 1, we show our faithful implementations on a DAVIS [34] image
sample rendered in [18]. We found that renderings with our implementation to
be quite comparable to the ones provided in the original paper.

B Supplementary Video

Please watch the enclosed video or visit https://film-net.github.io. We
have included motivations, illustrations of our methods, and more visual results
and failure samples.

3 https://github.com/sniklaus/softmax-splatting

https://film-net.github.io
https://film-net.github.io
https://github.com/sniklaus/softmax-splatting
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Blended Inputs SoftSplat-L1 SoftSplat-LF ABME FILM-L1 FILM-LS

Fig. 1. Frame interpolation example from DAVIS-dataset [24] featuring a walk-
ing flamingo. From left to right: The input frames overlaid, SoftSplat-L1 [18],
SoftSplat-LF [18], ABME [23], our FILM-L1, and our FILM-LS . FILM-LS pro-
duces crisp frame, while color distortions and transparencies can be seen in
ABME and SoftSplat, respectively. SoftSplat renderings are generated from our
faithful implementations, which we found to be quite comparable to the original
paper [18].


	FILM: Frame Interpolation for Large Motion
	 Supplementary Materials FILM: Frame Interpolation for Large Motion

