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Abstract. Generative models for audio-conditioned dance motion syn-
thesis map music features to dance movements. Models are trained to
associate motion patterns to audio patterns, usually without an explicit
knowledge of the human body. This approach relies on a few assump-
tions: strong music-dance correlation, controlled motion data and rela-
tively simple poses and movements. These characteristics are found in all
existing datasets for dance motion synthesis, and indeed recent methods
can achieve good results. We introduce a new dataset aiming to challenge
these common assumptions, compiling a set of dynamic dance sequences
displaying complex human poses. We focus on breakdancing which fea-
tures acrobatic moves and tangled postures. We source our data from the
Red Bull BC One competition videos. Estimating human keypoints from
these videos is difficult due to the complexity of the dance, as well as the
multiple moving cameras recording setup. We adopt a hybrid labelling
pipeline leveraging deep estimation models as well as manual annota-
tions to obtain good quality keypoint sequences at a reduced cost. Our
efforts produced the BRACE dataset, which contains over 3 hours and
30 minutes of densely annotated poses. We test state-of-the-art meth-
ods on BRACE, showing their limitations when evaluated on complex
sequences. Our dataset can readily foster advance in dance motion syn-
thesis. With intricate poses and swift movements, models are forced to
go beyond learning a mapping between modalities and reason more ef-
fectively about body structure and movements.

1 Introduction

Audio-conditioned generative models [24,29,11,14] for dance motion synthesis
learn a mapping between music features and the aligned dance movements.
Models typically tackle this task treating the skeleton sequence as an addi-
tional modality to be “remembered” when “hearing” a particular music beat
or melody. Models are trained to capture correspondences between a sequence
of music features and a sequence of keypoints, often without explicitly mod-
elling the body’s structure and movements. This is a reasonable approach when

⋆ Work done while at Nanyang Technological University. † Equal contribution.
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Fig. 1. Challenges and characteristics of BRACE’s video source. Acrobatic moves make
our dataset unique compared to previous dance datasets. Complex poses are difficult to
estimate automatically. Occlusion, multiple cameras setup with frequent shot changes
and aerial views, dynamic lighting with strong flashes and motion blur add to the
difficulty of extracting keypoints for the dancer.

the following conditions are met: i) there is a strong correlation between mu-
sic and dance movement, i.e. a choreography can be observed; ii) poses and
movements are relatively simple or not too diverse and iii) motion data is con-
trolled, i.e. all the captured movement is related to the dance, without keypoint
shifts induced by camera movements. Current datasets [2,24,12,29,14,11,13,7]
satisfy these constraints, where videos are captured either in a controlled envi-
ronment [2,24,29,14], with a static camera [12,7,11] or are even synthesised [13].

We propose a new dataset aiming to challenge such assumptions. Our goal
is to gather data that: i) contains diverse and complex human poses and move-
ments; ii) exhibits a weaker correlation between music and movement; iii) is cap-
tured in a real-world setting, i.e. multiple moving cameras record dancers from a
variety of viewpoints. We look after these characteristics to push generative mod-
els to go beyond learning a mapping between modalities. With weak music-dance
correlation, less controlled motion and difficult movements and poses, models are
forced to effectively reason about body structure and movement. The properties
we are seeking are amply available in videos of breakdancing, which is an athletic
form of dance with swift movements and tangled poses. Music is typically a loop-
ing sequence providing a rhythmic beat rather than a base for a choreography,
and as such it is weakly correlated with the dance.

We use videos from the Red Bull BC One contests featuring the best dancers
in the world. Thanks to recent progress in deep pose estimation models, key-
points are typically entirely estimated, and good results can be achieved when
poses are relatively simple. However, the dynamic nature of breakdancing and
the recording setting in our video source introduce several challenges to key-
point estimation. Due to the complex posture assumed by the dancers, pose
estimation models are pushed to their limits. Motion blur induced by fast and
acrobatic moves, occlusion and dynamic lighting further complicate the task, as
we show in Figure 1. Under these circumstances, it is not possible to solely rely
on pose estimation models to obtain good quality keypoints. At the same time,
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Table 1. Comparing recent datasets for dance motion synthesis. A: automatic (esti-
mated with a model). M: manually annotated. C: obtained from MoCap. *not available.

Name Year Sequences Size Dancers Styles Annotations Source FPS Movement Pose

Groove net [2] 2017 4 0h 23m 1 1 3D joints (C) Hired dancer NA* NA* NA*

Dance with melody [24] 2018 61 1h 34m NA 4
3D joints (C),
basic dance movements

Hired dancers 25 1.918 0.193

Dancing 2 Music [12] 2019 361K 71h NA 3 2D keypoints (A) YouTube 15 0.704 0.071

Music 2 Dance [29] 2020 2 0h 58m 2 2 3D joints (C) Hired dancers 60 1.583 0.205

AIST++ [14] 2021 1.4K 5h 11m 30 10
2D/3D keypoints and
SMPL body models (A)

Hired dancers 60 1.450 0.135

Dance revolution [11] 2021 790 12h NA 3 2D keypoints (A) YouTube 15 0.804 0.137

Phantom Dance [13] 2021 300 12h 1 4 3D quaternion Synthesised 60 1.962 0.251

Learning to Dance [7] 2021 298 0h24m NA 3 2D keypoints (A) YouTube 24 1.161 0.111

BRACE (Ours) 2022 465 3h 32m 64 1
2D keypoints (A/M),
movement categories,
dancer IDs, shot bounds

YouTube 25-30 2.388 0.235

manually annotating poses in videos is very expensive and time consuming. To
overcome these issues we design a hybrid annotation pipeline using both auto-
matic and manual annotations, striking a good balance between keypoint quality
and labelling burden. Our efforts produced the BRACE dataset, a collection of
dynamic dance sequences annotated with high quality 2D keypoints. As reported
in Table 2, our dataset amounts to over 3 hours and 30 minutes of footage. We
also provide fine-grained labels annotating the key elements of breakdancing.
We test recent state-of-the-art methods on BRACE, showing the limitations of
current approaches when evaluated on more dynamic and complex data.

To summarise, our contributions are: i) a new high quality dataset featuring
complex poses and dynamic movements; ii) a hybrid automatic-manual annota-
tion pipeline designed to efficiently annotate human keypoints under challenging
conditions; iii) a study of recent work on our new dataset, showing the challenges
posed by its unique characteristics. BRACE is publicly available online 1.

2 Related Work

2.1 Dance Datasets

Table 1 reports recent datasets for music conditioned dance motion generation.
Earlier efforts [2,24] collect a small amount of highly curated data, with motion
capture setups recording hired dancers. AIST++ [14] offers 2D/3D keypoints
and SMPL models extracted for a subset of AIST [25]. Synthetic datasets have
also been proposed [13], where digital artists produce video animations of dance
videos. As pose estimation models grow increasingly reliable, sourcing videos
from YouTube and extracting keypoints has become a common option [12,11,7].
We partially follow this approach, sourcing videos from YouTube and using a
hybrid approach combining automatic and manual annotations.

1 https://github.com/dmoltisanti/brace/

https://github.com/dmoltisanti/brace/
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A common characteristic of current datasets is their relative simplicity of
pose and motion. Dancer in datasets such as Dancing 2 Music [12], Dance Rev-
olution [11] and Learning to Dance [7] are mostly in an upright position and do
not perform particularly dynamic moves. AIST++ [14] includes breakdancing,
however these amount to only 30 minutes of footage (10% of the whole dataset).
Furthermore, based on our observations breakdancing sequences in AIST++
mostly feature simple moves and upright poses. We next quantify the differences
amongst these datasets and BRACE measuring movement and pose diversity.
Measuring movement and pose diversity We need to normalise all keypoints in
a consistent way for a fair comparison. We also wish to marginalise apparent
movements that could be induced by a camera change, zoom or panning. We ex-
tract the tightest box/cuboid enclosing all keypoints and normalise each keypoint
with respect to the tightest box/cuboid. For example in 2D, given the tightest
box B = (xb, yb, w, h) and a keypoint P = (xp, yp), the normalised keypoint is
P̄ = ((xp − xb)/w, (yp − yb)/h). To measure movements we take into account
the FPS of the videos, since a small FPS may produce an unrealistic large dis-
placement and vice-versa. For a given node p its movement is thus calculated as
vi = d(pi, pi+1)/dt, where d(pi, pi+1) is the Euclidean distance between frames i
and i + 1 and dt = 1/fps. We measure such frame-wise distance for each node
independently and take the average on all sequences in a given dataset. This
is what we report under “Movement” in Table 1. To measure pose diversity we
calculate the standard deviation of each node. We calculate the std of each node
in a sequence and take the average across all sequences in a dataset and across
all nodes. This gives us a 2D or 3D vector depending on the dimension of the
keypoints. We report the average of this vector under “Pose” in Table 1. To fur-
ther reduce camera movement bias, we calculate metrics within shot boundaries.
As the table shows, our dataset offers by far the most dynamic sequences thanks
to the very nature of breakdancing. While Phantom Dance exhibits a slightly
larger pose diversity, it should be noted that this is a synthesised dataset.

2.2 Dance Motion Synthesis

Sequence-to-sequence approaches [24,29,11,14] are a common choice for audio-
conditioned dance motion generation. Huang et al. [11] design an Encoder-
Decoder (ED) architecture, where the Encoder is a transformer that encodes
music features in a latent space. The decoder is an RNN that produces the
dance movement as a sequence of keypoints. Li et al. [14] also adopt a sequence-
to-sequence framework, using a group of transformers. When motion data is
controlled a sequence mapping can successfully produce good dance motion by
implicitly learning movements from the data. However, when data is less con-
trolled, i.e. data captures motion induced by camera movements (e.g. zooming,
panning, camera change), we expect models to produce similar artefacts since
they learn to replicate the training sequences. While normalisation techniques
can mitigate this issue, ultimately it becomes harder for a model to learn motion
when this is captured “in the wild”. When poses and motion are more diverse
and complex the mapping task also becomes intrinsically harder. We test [11,14]
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Table 2. The BRACE dataset at a glance. Each dancer performs multiple sequences
in a video. Sequences are annotated into segments according to their dance element.

Frames 334,538 Sequences 465
Manually annotated frames 26,676 (8%) Segments 1,352
Duration 3h 32m Avg. segments per sequence 2.91
Dancers 64 Avg. sequence duration 27.48s
Videos 81 Avg. segment duration 9.45s

on BRACE, where these challenges are widely present, to study the limitations
of sequence-to-sequence approaches.
Other approaches [12] extracts music and dance units from the data. Music units
are extracted with an audio beat detection algorithm. Dance units are found de-
tecting abrupt changes in motion magnitude and angle. Dance sequences are
decomposed into such units. An auto-encoder models these atomic moves, and
a GAN composes multiple units to form a dance sequence. The motion unit
decomposition of this method is likely to be challenged when dance sequences
exhibit swift movements and acrobatic poses as in BRACE, as we show in Sec-
tion 4. In [13] an ED generates key poses, while another ED generates motion
curves between these key poses. The authors propose a Kinematic Chain Net-
work where features are embedded with MLPs that are chained following the
body structure, using a tree topology. In [27] a latent space is constructed sam-
pling from a Gaussian process. The latent space encodes an abstract motion
signal, and a GCN is then trained to map such signal to a skeleton sequence.
[27] does not condition motion generation on music, which is done in [7] through
a GCN-based generative model trained in an adversarial fashion.

3 The BRACE Dataset

We choose the Red Bull BC One breakdancing competition as our data source,
which features the best dancers in the world competing one against each other.
The competition follows the knockout tournament format, where two dancers
compete in a 1-vs-1 battle taking turns to perform a number of sequences. Video
recordings of the shows are available on YouTube 2 (we use videos from years
2011/13/14/17/18/20). Figure 1 illustrates the videos characteristics and the
difficulties involved in extracting human poses. Videos were shot using multi-
ple cameras and feature wide panning, long zooming, aerial views and abrupt
shot changes, all of which makes automatic pose extraction not trivial. Lighting
is also a challenge, since strong flashes and dimly lit scenes are common in the
videos. Furthermore, the very nature of breakdancing makes keypoint extraction
intrinsically difficult. Complex poses and motion blur induced by quick move-
ments stretch the capabilities of pose estimation models. We design a pipeline
to address such challenges to extract 2D keypoints from the videos, adopting a
hybrid annotation paradigm. Our objective is to obtain dense and good quality

2 https://www.youtube.com/channel/UC9oEzPGZiTE692KucAsTY1g

https://www.youtube.com/channel/UC9oEzPGZiTE692KucAsTY1g
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a) Pose extraction and filtering b) Active dancer detection

e) Outlier detectiond) Manual annotation

c) Temporal labelling

f) Merging and interpolating
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Fig. 2. Data acquisition pipeline. We start extracting automatic poses with a model
ensemble, which produces a large number of annotations (a). We then filter poses and
detect the active dancer throughout the video (b) before annotating dance segments
(c). Subsequently, we select bad poses and manually label them (d). Automatic pose
outliers are then detected (e) and manually labelled. Finally, manual and automatic
pose are merged and interpolated to produce our dance keypoint sequences (f, where
“A”, “X” and “M” indicate automatic, missing and manual poses respectively).

poses while minimising manual annotations cost. Our pipeline is flexible and can
be adopted for other pose estimation datasets.

It should be noted that we are not affiliated with Red Bull and that all
video-audio copyright belongs to Red Bull. We release our processed keypoint
sequences and our temporal labels, providing a link to the original YouTube
videos. We also release audio features extracted with Librosa [18].

3.1 Data Acquisition

Figure 2 shows our approach to obtain human keypoints for the active dancer. We
first employ state-of-the-art human pose estimators to extract automatic poses.
We then process keypoints to select the active dancer and temporally annotate
dance sequences. As discussed earlier, we cannot solely rely on automatic pose
estimation. We thus find bad keypoints corresponding to difficult poses and
manually label them. We later detect automatic pose outliers and also manually
label these. Finally, we merge automatic and manual annotations interpolating
the keypoint sequences with Bézier curves. Table 2 summarises our dataset.
Automatic pose estimation We employ a model ensemble to extract human poses
from video frames. We favour this option over a single model to boost the chance
of getting good keypoints for difficult poses. We choose a top-down approach to
first detect humans in frames and then estimate their pose, using MMDetec-
tion [19] and MMPose [20]. We use the top 3 human detectors ranked on the
COCO dataset [16]: HTC [6] with backbones ResNet 50/100 [9] and Cascade R-
CNN [3] with backbone ResNet 50. Accordingly, we utilise the top 3 pose estima-
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tors ranked on COCO: HRNet [23] and a cascaded HRNet+DarkPose [28] with
two different configurations (32 and 64 channels for the bottleneck block). All
models were pre-trained on COCO. We obtain poses for each detector/estimator
combination, gathering a total of 9 sets of poses for each frame.

Filtering multiple pose estimations We start rejecting poses with low confidence
scores. We keep the 4 largest boxes produced by each model at a given frame,
which removes most poses captured for people in the audience. Finally we apply
a standard object-detection NMS. Figure 2 (a) shows all poses detected with
the model ensemble before filtering. Notice the abundant number of detections.
Figure 2 (b) illustrates the automatically selected pose for the active dancer.

Active dancer detection We automatically find the active dancer by building
people tracks. These are obtained by linking boxes across frames if their IOU
is above a certain threshold (0.4). For robustness we look for overlapping boxes
in a window of 10 frames, i.e. given a box at frame t, if there is no overlapping
box at frame t + 1 we search for a box in frames [t + 2, t + 10], choosing the
temporally closest overlapping box. This simple method based entirely on boxes
is good enough for our purpose. We measure the movement of each tracked
person by calculating the change in pixel area of the tracked box across frames.
We select the box corresponding to the track exhibiting the highest movement
as our active dancer, and use the corresponding keypoints as the pose candidate.

Temporal labelling We generate a new copy of each video overlaying the keypoints
of the detected active dancer. We then label the start/end of each dance element,
annotating the type of movement (toprock, footwork and powermove, presented
in Section 3.3) as well as the dancer ID. We also annotate segments where the
active dancer estimation was incorrect, i.e. frames where the pose candidate
corresponded to the idle dancer or another person in the video. We use these
labels to later retrieve keypoints for the correct person automatically.

Manual pose annotation The quality of keypoint estimation degrades when the
dancer’s pose is extreme or when frames are too blurry. We manually label such
difficult poses. To automatically find which frames need manual annotation we
aggregate a labelling score. This is obtained multiplying the candidate’s box
confidence score and the average keypoint confidence score (a low labelling score
indicates the pose is likely bad). We treat frames with a low labelling score as
missing frames we need to manually annotate. We then apply a labelling discount
to reduce annotation time and cost. Thanks to our Bézier interpolation, we can
allow for a certain number of missing frames in a given window, while still
recovering a good keypoint sequence. We allow for a maximum of 2 consecutive
and a total of 5 missing frames in a window of 10 frames. The selected frames
are then labelled by our locally sourced annotators. With our discount method
we annotated only 57.17% of frames initially marked for labelling.

Outlier detection Some bad automatic poses may not be selected for manual
annotations due to a noisy high confidence score. We find such poses with an
outlier detection method. Once we have manually annotated frames for a video,
we merge automatic and manual poses. We then employ a sliding window me-
dian filter to detect noisy outliers. Figure 2 (e) shows an outlier found with this
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Table 3. Quality control measures for BRACE. Incorrect pose shows the percentage
of the whole dataset where we spotted wrong keypoints. GT/Raw - Interpolated MAE
refers to the Mean Absolute Error calculated for a fully manually annotated sequence.

Incorrect pose GT - Interpolated MAE GT - Raw MAE

Automatic Manual All frames Rejected frames Rejected frames
0.63% 0.12% 27px 35px 60px

algorithm. Green segments indicate the head, thus the person is incorrectly de-
tected in an upright position. We search for outliers within the labelled segments
and shot boundaries (detected with [5]). All outliers are manually labelled.

Merging and interpolating poses At this point we have a mix of manual and auto-
matic annotations, with missing poses for a few frames due to our labelling dis-
count. In order to obtain smooth dance sequences we interpolate the keypoint se-
ries using Bézier curves. We slide an overlapping window throughout a sequence
of keypoints and fit a Bézier curve to each node trajectory separately. Curves are
fitted using a least-square algorithm. Sequences are interpolated within dance
segments and shot boundaries. The interpolated sequences constitute our final
keypoints data. More details can be found in the supplementary material.

3.2 Quality Control

We carefully reviewed all the final interpolated sequences to spot incorrect poses.
This is to validate the automatic selection of bad poses as well as the manual
annotations themselves. We generated and watched videos overlaying the key-
points, marking all frames with a bad pose. An odd-looking frame in the interpo-
lated sequence is introduced when automatic or manual keypoints are incorrect.
Table 3 reports how many of these we spotted. In total 0.63% and 0.12% of the
total frames were found incorrect for automatic and manual keypoints. These
very low error percentages reflect the reliability of our data acquisition pipeline.
Wrong automatic keypoints were outliers that were not detected. This typically
happens when many consecutive poses are noisy, i.e. a bad pose is no longer
an outlier in a window of frames according to the rolling window median filter.
This can be fixed by tuning the outlier detector parameters. Manual incorrect
annotations were found over frames with severe occlusion or where annotators
labelled the idle dancer. This issue can be alleviated by showing annotators a
few neighbouring frames in addition to the frame to be labelled.

We also implemented another quality control measure. We manually labelled
a sequence of 1,472 frames (1min). The sequence contains toprocks, footworks
and powermoves. The Mean Absolute Error (MAE, averaged across frames and
joints) between the GT and the interpolated sequence is 27px (frame area:
1920x1080), as reported in Table 3. The low MAE is indicative of BRACE’s
quality. 355 frames (24%) of the raw keypoints were rejected (bad pose). 7% of
these frames were manually annotated for the interpolated sequence. Looking
only at the rejected frames (i.e. those with a difficult pose), the GT-raw MAE
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powermovefootworktoprock

Fig. 3. The primary elements of breakdancing: toprock, footwork and powermove.
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1st sequence
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Sequence length %

19.54% 38.40% 39.78%

2nd sequence
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Sequence length %

22.85% 43.20% 32.15%

3rd+ sequence
Global average 22.73% 37.77% 37.32%toprock footwork powermove

Fig. 4. Analysing dance elements patterns emerging from the battle-format. We split
sequences according to their order in the battle. Bottom: each line shows a sequence
from a single dancer, with coloured segments corresponding to the three different move-
ments we labelled. Segments are normalised according to the sequence length. We re-
port the average percentage of frames labelled with each movement, both according to
the sequence order (top) and globally (top right).

is 60px whereas the GT-interpolated MAE is 35px. This further highlights the
efficiency of our pipeline to obtain good poses labelling fewer frames (7 vs 24%).

3.3 Dance Elements

A breakdancing sequence can be decomposed into three main elements: toprock,
footwork and powermove. We label sequences into such constituent parts, and
here we describe them briefly. A toprock features a dancer in the upright position
performing a variety of free-style steps. A footwork involves a dancer supporting
themselves on the floor using their hands while performing moves with their
legs and feet. Powermoves are the most dynamic movements where performers
engage in complex moves such as acrobatic aerial flips and head/back spins.
Figure 3 illustrates a few frames for each dance element. Note the complexity of
the dancer poses, especially for powermove and footwork. Next, we analyse how
such movements are combined temporally.
Cypher format We investigate here whether the alternating battle format brings
any patterns in the dance. In Figure 4 we plot each sequence according to their
order in the competition. For each sequence we illustrate the segments anno-
tated with the corresponding dance element (bottom of the figure). We observe
that the vast majority of dancers begins their competition (1st sequence) with
toprock movements, which is a common practice in breakdancing. Some dancers
though do not follow such convention and start off with powermoves. We also
notice that the most common pattern in a sequence is (toprock, powermove, foot-
work), which is interestingly more evident in the 1st sequence. Figure 4 (top)
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also illustrates how often each movement was performed in a sequence (calcu-
lated as average percentage of the total length). We again see that the highest
concentration of toprock appears in the 1st sequence. The percentage of footwork
grows according to the order of the sequence. Interestingly, powermove percent-
age is virtually unchanged in the first two sequences but drops by 7% in the
last sequence, which suggests that dancers become more tired towards the end
of the competition, given that powermoves are very strenuous. Finally, Figure 4
(top right) reports global movement percentages. Footwork and powermove are
the dominant movements, confirming the dynamism of BRACE. We will look at
global movement percentages again when testing our dataset.

We believe the alternating battle format is an interesting novel aspect of
BRACE. Indeed, by considering a sequence not just as a stand-alone progression
of movements but as part of a longer and more complex scenario one could devise
more creative models simulating dance competitions. While here we focus on
breakdancing competitions, other styles too are often performed following such
battle format (e.g. modern styles such as Hip-Hop, Krump and Street Jazz).

3.4 Audio Correlation

Although breakdancing has a weaker audio correlation, dancers still closely follow
the music and its rhythm. Quoting from Red Bull BC One website 3, dancers
use especially toprock movements to “showcase their rhythmic style and their
ability to play with the music”. As another example, dancers also follow the
music to perform a freeze. Quoting again from 3: “a freeze is when a dancer
holds a solid shape with their body for a few seconds. This is usually done to
hit a prominent sound in the music”. While the melody of the music might be
less correlated with the dance, the rhythm is the foundation of the movements.
Models are pushed to their limits, however the fundamental premise of the audio-
conditioned generative task remains solid, i.e. there is sufficient correlation in the
data for a model to learn to generate sequences based on the music.

Finally, we note that audio files contain live commentary of the performances.
Theoretically, these could provide cues models could exploit. We watched 8 ran-
dom full videos from all years (23 minutes of footage, 11% of the dataset) and
labelled segments with commentary. We found that 17% of the labelled sequences
contained a vocal comment of the performance. Based on these numbers, we con-
clude commentary is present but not likely to influence generative models.

4 Testing Generative Models on BRACE

Testing models that were designed with specific assumptions on data where such
constraints are more loose might not appear fair. Our intention is to test a new
benchmark to encourage novel approaches to tackle more challenging data, rather
than cast a bad light onto existing work. Here we evaluate Dance revolution [11],
AIST++ [14] and Dancing 2 Music [12], reviewed in Section 2.2.

3 https://www.redbull.com/us-en/understand-the-basic-elements-of-breaking

https://www.redbull.com/us-en/understand-the-basic-elements-of-breaking
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Fig. 5. t-SNE embeddings of all keypoints in BRACE. A good separation of the three
main dance elements emerges from static poses.

4.1 Evaluation Metrics

We follow AIST++ [14] and report the commonly used Fréchet Inception Dis-
tance [10] (FID) calculated directly in the nodes pose space. More precisely,
we first normalise keypoints as explained in Section 2.1. To calculate the FID,
we stack all keypoints and estimate their mean and covariance. We report two
dance-music correlation metrics introduced in [14]: Beat Alignment Score and
Beat Dynamic-Time-Warping (DTW) Cost. These metrics measure the align-
ment and similarity between music and kinematics beats. Music beats were ob-
tained using the Essentia library [26]. Kinematics beats were obtained by finding
peaks in the averaged second-order derivatives of keypoint movements.

We also analyse the ability of the models to generate a sensible breakdanc-
ing sequence by looking at the distribution of the three dance elements. As we
saw in Figure 3, our sequences are mostly composed of footwork and powermove
movements, both around 37% of all frames, with toprock movements amount-
ing to around 23% of the data. We check if the generated sequences reflect this
distribution. We conduct this study by looking at frame poses. We first inspect
whether static poses have a clear enough separation for our study to be sensible.
We do this by plotting t-SNE embeddings [17] of all keypoints in BRACE. As de-
picted in Figure 5, we observe a good separation of the three dance elements from
static poses. This motivates us to train a classifier to recognise poses from single
frames and use its predictions to estimate the distribution of dance elements in
the generated sequences. Specifically, we train a spatial GCN model [22], which
attained 73.1% top-1 accuracy on the test set.

4.2 Results

We divide our dataset in a 70/30 training/test split and ensure all models reach
training convergence before testing. Table 4 reports results obtained on the se-
lected models. The “GT Reference” baseline reports evaluation metrics calcu-
lated on the ground truth test set, i.e., on real dance sequences as opposed to
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Table 4. Testing recent generative models on BRACE. Note that toprock, footwork and
powermove averages for the GT reference baseline were predicted with the GCN clas-
sifier. Actual statistical average in the test set were (toprock=25.52, footwork=39.72,
powermove=34.76). ↓ lower is better, ↑ higher is better.

Baseline Pose FID ↓ Beat alignment score ↑ Beat DTW cost ↓ Toprock avg Footwork avg Powermove avg

GT Reference 0.0032 0.451 36.50 7.84 48.45 43.71
Dance Revolution [11] 0.5158 0.264 11.88 10.59 51.60 37.72
AIST++ [14] 0.5743 0.136 12.92 6.39 40.73 52.89
Dancing 2 Music [12] 0.5884 0.129 11.60 16.04 50.09 33.87

generated ones. Since this is a new dataset, this helps us understand the results
of the evaluated models. We observe that all baselines struggle to achieve optimal
performance. In fact, pose FID and beat alignment score are far from the refer-
ence baseline, which indicates that the generated sequences are not very realistic.
However, models are able to generate poses resembling breakdancing postures.
This is indicated by the classifier predictions of toprock, footwork and power-
move. Nevertheless, except for AIST++, all models generate more toprock and
fewer powermove poses, which are respectively the easiest and hardest break-
dancing postures. This demonstrates the challenges BRACE poses to existing
state-of-the-art models when evaluated on complex scenes. Dancing 2 Music
achieves the worst FID and beat alignment score. As noted in Section 2.2, this
method splits sequences automatically into atomic dance units, and the model
is trained to compose such units to form a dance sequence. Motion decomposi-
tion is done by measuring the displacement of each joint between neighbouring
frames. Breakdancing moves with their large displacements stress this approach,
which explains the poor performance of the method.

Interestingly, we notice that models attain a better beat DTW cost com-
pared to the GT Reference baseline, but their beat alignment score is worse.
Breakdancing songs feature fast-tempo music with regular beats. While dancer
follow the tempo and flow of the music, naturally they do not perform a move-
ment for every beat, hence the higher beat DTW cost of the reference baseline.
This suggests models learn to “blindly” follow the music beat, i.e. they generate
sequences full of strong movements which however do not necessarily mimic a
real breakdancing, which typically displays a good mix of slow and fast moves.

Qualitative evaluation is as important as quantitative analysis for dance mo-
tion synthesis. We visually inspect the generated sequences and notice that while
motion appears plausible, ultimately sequences look disconnected, showing re-
peating movements. Although the pose classifier shows that models are able to
generate toprock, footwork and powermove, we observe that the way these are
mixed is not very realistic and diverse. This is most likely due to the weaker
correlation of music and motion in breakdancing. The generated sequences also
display motion induced by camera panning and zooming, which was expected
since the tested methods assume the input motion data is controlled. We show
these findings in the supplementary material video 4.

4 https://youtu.be/-5N6uBDfMoM

https://youtu.be/-5N6uBDfMoM
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Table 5. Evaluating BRACE for pose estimation. We compare the performance of
HRNet [23] pre-trained on COCO [16] before and after fine-tuning.

Model BRACE AP BRACE AR Ext. powermoves AP Ext. powermoves AR

COCO-pretrained 0.158 0.202 0.462 0.513
BRACE-finetuned 0.357 0.445 0.598 0.642

Lastly, we evaluate the impact of two hyper-parameters when training Dance
Revolution [11], namely the number of layers (2-4) for the encoder and the sliding
window size of the local self-attention (15, 25, 50, 100, 200). In Table 4 we
report results obtained with the best parameters, i.e. 3 layers and window size
15 (all results in supplementary material). The number of layers did not affect
performance much. The attention size instead played an important role, with
performance degrading as the window enlarged. This parameter controls the
receptive field of the encoder, i.e. the temporal neighbourhood each element in
the input sequence can attend to. Performance deterioration with larger windows
is linked to the fact that our sequences contain motion with very quick and large
displacement, which are hard to model well with a large receptive field.

5 Pose Estimation on BRACE

We show here that BRACE can also be useful for 2D keypoint estimation since
it contains well-labelled skeletons with motion blur and extreme poses. We use
the 26K manually annotated skeletons and split them into 80/20 train/test sets.
We use HRNet [23] pretrained on COCO [16] as base model and compare perfor-
mance before and after finetuning on BRACE. Table 5 reports a large improve-
ment after fine-tuning. While this was expected, it proves manual annotations
are consistent and models can learn from the data. The poor performance of
COCO-pretrained also corroborates that our pipeline successfully detected bad
automatic key-points: frames are then manually labelled but have complex pos-
tures, so performance before finetuning is low. Besides showing improvements on
the test split of BRACE, the BRACE-finetuned model also outperforms COCO-
pretrained when tested on an external powermove video 5. This video is a com-
pilation of powermoves shot with a very different setting compared to BRACE.
We randomly sample 200 frames from the video and manually annotate these
frames. Although camera movements and angles as well as lighting in the ex-
ternal video are very different from those in our dataset, the BRACE-finetuned
model shows a substantial improvement. This proves that BRACE is useful to
help the model learn pose estimation in extreme postures.

6 Conclusion

We presented BRACE, a new dataset for audio-conditioned dance motion syn-
thesis. BRACE was collected to challenge the main assumptions taken by mo-

5 https://www.youtube.com/watch?v=q5Xr0F4a0iU

https://www.youtube.com/watch?v=q5Xr0F4a0iU


14 D. Moltisanti et al.

tion synthesis models, i.e. relative simple poses and movement captured with
controlled data. We designed an efficient pipeline to annotate poses in videos,
striking a good balance between labelling cost and keypoint quality. Our pipeline
is flexible and can be adopted for any pose estimation task involving complex
movements and dynamic recording settings. We further enrich our dataset with
temporal segments labelling the constituent elements of breakdancing. BRACE,
while restricted to a specific dance genre, readily pushes models to go beyond a
modality mapping approach, to reason more efficiently about motion and poses
and to deal with less constrained scenarios.

Future research Because audio cues are not as strong as in other datasets, fu-
ture models will have to creatively find other ways to generate good results on
BRACE. For example, the movement labels could be exploited. This could be
achieved by injecting the movement category in a model through positional en-
coding, i.e. by modelling the relative position of a movement in the sequence
together with its type. Knowing that a given dance segment is a specific move-
ment, models could generate more varied sequences by enforcing a given distri-
bution or order of the movement categories. This is just one of the possible ideas
one could develop with our fine-grained labels. Another interesting direction
for further research is the generation of dance sequences in a finer granularity
and more controlled manner. Current methods lack the ability to adjust gen-
erated sequences according to human intervention or conditioning. If we could
decompose sequences into shorter actions, e.g. by effectively clustering poses and
movements, we could then introduce user input as another modality to generate
dance movements that follow a designated pattern. For example, a user might
specify a target combination of toprocks, footworks and powermoves. Such work
would be extremely helpful for animation and gaming industries. Since break-
dancing is one of the most granular dance genre, we believe BRACE constitutes
a good dataset to experiment such methods on.

Longevity of BRACE While it is common practice to utilise YouTube videos to
compile research datasets (e.g. Kinetics [4], AVA [8], YouTube8M [1]), this comes
with a risk. Because videos can disappear from YouTube and since researchers in
most cases cannot publish their own copy of the videos, YouTube-based datasets
are sometimes difficult to compare results on, and missing videos intrinsically
diminish the usefulness of a dataset. We are aware of this issue, however for dance
motion synthesis, the main scope of our work, this problem is not as severe.
We release our keypoint sequences together with Librosa [18] audio features,
thus even if all the corresponding YouTube videos were removed, our dataset
would still be entirely usable and future generative models can be compared
accordingly. We note this is common practice in other skeleton-based datasets
for dance synthesis [12,11,7] and we follow this approach accordingly.

Acknowledgement. This study is supported under the RIE2020 Industry Align-
ment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as
well as cash and in-kind contribution from the industry partner(s). The project
is also supported by Singapore MOE AcRF Tier 1 (RG16/21).



BRACE: The Breakdancing Competition Dataset 15

Supplementary Material

A Video

We prepared a video to showcase our dataset. For a better viewing we outline
the video below. We overlay our keypoints onto the original videos, however we
only release keypoints since video copyright belongs to Red Bull, to which we
are not affiliated. The video is available at https://youtu.be/-5N6uBDfMoM.

Active dancer detection We show the input/output of our active dancer detection
algorithm, i.e. all the poses obtained with the pose estimation models and the
automatically detected performing dancer. Notice the abundant number of boxes
and keypoints and the accurate detection of the active dancer.

Merging and interpolating sequences We show a sequence of raw automatic poses
and the corresponding sequence obtained merging and interpolating automatic
and manual keypoints. Notice here the noisy estimations in the raw sequence.
Noisy poses were automatically rejected, and a few of them were manually la-
belled. The final sequence merges good automatic poses and manually annotated
keypoints, interpolating the rejected frames we did not annotate due to our dis-
count method. This example shows how our approach is able to produce good
sequences with a low annotation cost. We recommend slowing down the video
during this section. We added a text colour legend to illustrate which keypoints
were rejected or missing, manually annotated or were good automatic keypoints.

Dataset samples We show a few toprock, footwork and powermove segments. We
display the interpolated keypoint sequences and play the corresponding audio.
Notice the main characteristics that make keypoint extraction challenging: mul-
tiple moving cameras, fast lighting changes, occlusions, tangled poses and fast
movements. Complex postures and dynamic moves also make BRACE a unique
data source for dance motion synthesis.

Experiment results We compare sequences generated with the tested baselines:
Dance Revolution [11], AIST++ [14] and Dancing to Music [12]. The input for
testing these models is an audio snippet. In the video we show the corresponding
footage segment for reference. Here we provide a few comments about these
examples:

– Dance Revolution generates sequences “that never stop”, i.e. the dancer is
constantly moving throughout the video. While this does not reflect a real
breakdancing sequence very well, the continuous motion and the plausible
movements help this model achieve the highest pose FID amongst the eval-
uated baselines.

– AIST++ is able to produce sequences following a more natural tempo, i.e. it
generates both fast and slow motions as well as a good mixture of toprock,

https://youtu.be/-5N6uBDfMoM
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footwork and powermove segments. However AIST++ also picks up much of
the motion induced by the recording setting, i.e. moving/zooming/panning
cameras and shot changes, which explains the lower pose FID obtained by the
model. Note that due to the required inference seeding, the first 2 seconds of
the sequences generated by AIST++ are identical to the ground truth (more
details in Section B).

– Dancing to Music can generate reasonable movements, however these are
severely disconnected and consequently the produced sequences do not look
realistic. This is due to the automatic decomposition of the dance as we
explained in the main text, and is the main cause of the poorer performance
of this baseline. This model too picks up camera-induced motion, although
to a lesser extent compared to AIST++.

While in the supplementary video we show only a few examples, our findings
apply to all the generated sequences we reviewed.

B Experimental Setup

When testing models on BRACE we ensured training convergence and sensible
test output. Here we provide details about our experimental setup. We used the
same acoustic features extracted with Librosa [15] following [11] for all baselines.

Dance Revolution [11] For training we set learning rate to 1e-4 and batch size to
32. We evaluated different numbers of layers in the encoder, namely 2, 3 and 4,
as well as different sizes for the self-attention window: 15, 25, 100, 200. Training
sequence length was set to 200 frames (longer sequences are split accordingly).
Pose and frame embedding sizes were set to 34 (number of nodes times 2) and
200 respectively. The number of hidden units for the decoder was set to 1024.
The condition step q and λ parameters for the dynamic auto-condition learning
scheme were set to 10 and 0.1. Please refer to [11] for details about these hyper-
parameters.

AIST++ [14] For training we follow the implementation details reported in [14],
except for the sequence length. In [14] the authors used a seed motion sequence
of 120 frames and a music sequence of 240 frames to predict the future 20 frames,
where L2 loss is used to optimise the network. However, since their videos are
60 fps while ours are mostly 25 fps, we adjust the seed sequence length to be 50
frames for motion and 100 frames for music, and supervise the L2 loss with the
future 8 frames. AIST++ requires a seeding sequence for inference as well. For
testing we use the first 50 frames of the motion sequence from the ground truth
to generate future frames, hence in our supplementary video it can be observed
that the first two seconds of AIST++’s sequences are identical to the ground
truth. We exclude these initial 50 frames when calculating the reported metrics.
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Table 6. Extended results obtained with Dance Revolution [11]. Here we show the
impact of varying the number of layers in the encoder as well as the size of the self-
attention window.

Layers Attention size Pose FID ↓ Beat alignment score ↑ Beat DTW cost ↓ Toprock avg Footwork avg Powermove avg

2

15 0.5239 0.269 11.89 6.92 54.20 38.88
25 1.1174 0.273 11.80 6.12 55.82 38.06
50 0.9663 0.271 11.75 6.52 55.53 37.95
100 1.0816 0.266 11.70 6.70 55.59 37.71
200 0.7924 0.265 11.67 11.11 52.13 36.77

3 15 0.5158 0.264 11.88 10.59 51.69 37.72

4 15 0.5723 0.263 11.85 10.25 52.64 37.12

Dancing to Music [12] We split sequences into segments of 32 frames (roughly 1.2
seconds at 25 fps) using kinematic beats. These were obtained by finding peaks in
second order derivatives of keypoint displacements. We used the same approach
to find kinematic beats to calculate the beat alignment score and DTW cost, as
mentioned in the paper. We use the split segments to train the decomposition
network. Specifically, we extract the first four segments from each sequence.
These four segments together with the corresponding music features form a
training sample for the composition network. The used hyper-parameters are
the same as those specified in the official code repository.

C Dance Revolution extended results

Table 6 reports extended results obtained with Dance Revolution [11]. We trained
the model varying the number of layers in the encoder as well as the size of the
self-attention window. While the number of layers plays a limited role (best re-
sults obtained with 3 layers), the attention window size has a stronger impact
on performance (best results with size 15). In particular, we observe that pose
FID degrades as the window is enlarged. This parameter controls the receptive
field of the encoder, i.e. the temporal neighbourhood each element in the input
sequence can attend to. Since our sequences display complex motion with large
displacement, a smaller receptive field is best suited at modelling the dance pat-
terns. We do not see noticeable changes in beat alignment score and beat DTW
cost, which suggests that the ability of the network to align dance and music is
not affected by the number of encoding layers and the attention window size.

D Pose Estimation

We show here qualitative results for the pose estimation experiment on the
external powermoves video 6. Figure 6 compares poses estimated with the base
model (HRNet [23]) trained on COCO [16] (top row) and the model finetuned
on BRACE (bottom row). We display here particularly difficult cases where the
base model struggled due to the complex pose and the prominent motion blur.

6 https://www.youtube.com/watch?v=q5Xr0F4a0iU

https://www.youtube.com/watch?v=q5Xr0F4a0iU
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Fig. 6. Qualitative results for pose estimation on the external powermoves video.

Notice how the model finetuned on BRACE is able to predict very accurate
keypoints thanks to the additional training on our manually labelled frames.
Our data processing pipeline picks the hardest frames for manual labelling. Our
high quality labels for such difficult frames prove effective for the model to learn
to predict accurate keypoints even for very tangled postures in the presence of
motion blur. While the main scope of our work is dance motion synthesis, we
believe BRACE can also be a valuable resource for pose estimation.

E Bézier interpolation

A Bézier curve is a parametric curve based on Bernstein polynomials. Given
a set of control points P = (P0, P1, . . . , Pd), a Bézier curve can be obtained
multiplying the Bernstein matrix by the control points. For a given order d and
a vector τ of m values uniformly spaced between 0 and 1, the Bernstein matrix
M ∈ Rm×(d+1) is defined as follows:

Mi,j+1 =

(
d

j

)
(1− τi)

d−jτ ji (1)

where 0 ≤ i < m, 0 ≤ j ≤ d and τ ∈ [0, 1]. In our case, P is unknown and is what
we need to find to fit a Bézier curve to a node trajectory. Let R ∈ Rq×2 be the
matrix formed stacking the 2D coordinates of a node trajectory, i.e. Ri = (xi, yi).
R can contain a mix of automatic and manually annotated 2D points. Note
that keypoints are not expected to be temporally continuous due to missing or
discarded poses. In other words, if T (i) is a function returning the corresponding
frame number of the i-th point in the trajectory, T (i + 1) = T (i) + 1 does not
necessarily hold true. Following [21] we compute P using the least square method.
Namely, we first calculate M with a τ vector of q values and predefined order
d. We then calculate the Moore–Penrose inverse M+ of M . Finally, the fitted
control points are given by P = M+R. Once P is obtained we can generate the
interpolated trajectory by multiplying the previously calculated M by P . We
adopt a sliding window approach to interpolate keypoint sequences. Specifically,
we slide a window of 15 frames with stride 14. The overlapping frame between
windows allows for a smoother transition. We set the degree of the curve to 7.
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