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Fig. 1: (Better viewed in color) Examples of our AnimeCeleb. Including a canon-
ical head (Neutral), the AnimeCeleb contains expression-changed (+Expression)
and head-rotated (+Rotation) images with varying shaders.

Abstract. We present a novel Animation CelebHeads dataset (Anime-
Celeb) to address an animation head reenactment. Different from previ-
ous animation head datasets, we utilize a 3D animation models as the
controllable image samplers, which can provide a large amount of head
images with their corresponding detailed pose annotations. To facilitate
a data creation process, we build a semi-automatic pipeline leveraging
an open 3D computer graphics software with a developed annotation
system. After training with the AnimeCeleb, recent head reenactment
models produce high-quality animation head reenactment results, which
are not achievable with existing datasets. Furthermore, motivated by
metaverse application, we propose a novel pose mapping method and
architecture to tackle a cross-domain head reenactment task. During in-
ference, a user can easily transfer one’s motion to an arbitrary animation
head. Experiments demonstrate an usefulness of the AnimeCeleb to train
animation head reenactment models, and the superiority of our cross-
domain head reenactment model compared to state-of-the-art methods.
Our dataset and code are available at this url .
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1 Introduction

Recent head reenactment methods [4,24,28] show impressive results on control-
ling a human head motion after trained with large-scale human talking head
video datasets [5,20]. The common approaches [35,34,28,24] for this task is to
learn diverse motion changes between two contiguous frames, which require a
large amount of head videos to train a high-performing neural network model.
Due to the dependency of human video datasets, such approaches show weak
generalization capacity on the animation domain, because animation characters
have distinct appearances (e.g., explicit lines and large eyes) compared to the
human head ones. Our key contribution is to construct a large-scale animation
head dataset, AnimeCeleb, for head reenactment, which deems as a data-centric
solution to produce high-quality reenactment results on the animation domain.

Obviously, a standard approach to build an animation dataset would be to
collect the images from comic books and cartoon films. Instead, we propose a
principled manner to construct animation dataset, where 3D animation models
serve as valuable image samplers. This leads to three following benefits. First, we
can ceaselessly simulate the specified pose5 of a 3D animation model, enabling
to generate an unlimited number of multi-pose images of the same identity. Sec-
ond, the simulated poses are easily obtainable as detailed pose vectors, where
each dimension represents an individual semantic of an expression or a head
angle. Lastly, a 3D vector graphics environment gives freedom to render the ar-
bitrary resolution images with various shaders (See Fig. 1 horizontal axis). These
strengths bring multiple use cases including the animation head reenactment and
intuitive pose editing.

Technically, our data creation process involves 3D animation model collec-
tion, semantic annotation and image rendering. In this process, we first collect
the 3D animation models spanning a wide range of animation characters. The
collected 3D models contain a set of morphs that can deform appearances of
the 3D models in face and body part. To identify suitable morphs relevant
to the head reenactment task, we develop an annotation system to filter the
expression-irrelevant morphs. We employ Blender6 that can execute codes for a
head detection and a pose manipulation to enable an automatic image rendering.

A great interest of an animation domain is to transfer a user’s motion to the
animation character, which is potentially applicable in a metaverse and a virtual
avatar system. In this paper, we focus on transferring a user’s pose to the ani-
mation character, and refer to this problem as a cross-domain head reenactment
task. A plausible solution to the task is building a shared pose representation
space across the domains (i.e., human and animation). We use 3D morphable
model (3DMM) parameters as the shared pose representation, which is widely
used in recent numerous head reenactment studies [8,37,24,31,9]. 3DMM is a
parametric face modeling method that provides powerful tools for describing hu-

5 Throughout this paper, we mean by the ’pose’ the information about head rotation,
translation, and facial expression.

6 https://www.blender.org/
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man heads with semantic parameters. Since the AnimeCeleb pose vector is not
compatible with 3DMM, we newly propose a pose-mapping method to transform
an AnimeCeleb pose vector to 3DMM parameters. To be specific, we compute a
set of distinct 3DMM parameters to describe the semantics that the AnimeCeleb
includes, and combine it to obtain 3DMM parameters corresponding to a Ani-
meCeleb pose vector. Owing to the pose mapping, we can guarantee that both
the AnimeCeleb and VoxCeleb [20], a human head video dataset, share the pose
representations. Furthermore, we propose a new architecture called an anima-
tion motion model (AniMo), in which datasets from different domains are used
to learn how to manipulate a head image according to the motion residing in
the shared representations. In this manner, our model is capable of transferring
a human head motion represented as 3DMM parameters to an animation head.7

In summary, our contributions to animation research are as follows:

– We propose a novel data creation pipeline and present a public large-scale
animation head dataset AnimeCeleb, which contains groups of high-quality
images and their corresponding pose vectors.

– We newly propose a pose-mapping method and a cross-domain head reenact-
ment model AniMo, which jointly lead to a seamless motion transfer from a
human head to an animations head.

– We demonstrate the effectiveness of AnimeCeleb in training head reenact-
ment baselines, and experimental results show the superiority of AniMo on
cross-domain head reenactment compared to state-of-the-art methods.

2 Animation CelebHeads Dataset

We first describe each step of the data creation of the AnimeCeleb in Section 2.1.
Next, AnimeCeleb properties and statistics are given in Section 2.2. In Sec-
tion 2.3, we show the animation head reenactment results on the AnimeCeleb
and other animation datasets.

2.1 Data Creation Process

Fig. 2 depicts the overall process of the data creation pipeline. In the following,
we provide details of each step from (A) to (D).
Data Collection (A). We collected 3D animation models from two different
web sites: DevianArt8 and Niconi solid9. Since all 3D animation models are
copyrighted by their creators, we carefully confirmed the scope of rights and
obtained permission from reachable authors. Finally, we acquired 3613 usable
3D animation models in total. We will release all 3D animation model artists’
list along with the AnimeCeleb to acknowledge the credits of the artists.

The collected 3D animation models contain two essential components. The
first component is the morphs that can alter appearances of a 3D animation

7 Related work regarding to the AnimeCeleb and the proposed algorithm is provided
in supplementary material.

8 https://www.deviantart.com/
9 https://3d.nicovideo.jp/
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Fig. 2: Dataset Creation Pipeline Overview. 3D animation models are col-
lected from two different websites (A). Then, a head part of the collected model
are rendered after applying a morph with maximum intensity (B); these are
then used for semantic annotation (C). In a data sampling step, sampled target
morphs are used to compose pose vectors that serve as conditions to produce
multi-pose images with diverse facial expressions and head rotations.

model on face or body parts. We are able to change an individual morph’s
continuous value ranging from [0, 1], and obtain a transformed appearance of a
3D animation model; for example, an animation head with open mouth in 0.3
proportion can be generated. The second one is the bones that can control head
angles (i.e., yaw, pitch and roll axes). In specific, the head angles are controlled
by applying a rotation matrix to the neck bone.

Image Rendering (B). To achieve an automatic sampling using 3D anima-
tion models, we develop a 2D head image creation pipeline built on Blender:
an open source 3D computer graphics software that supports the visualization,
manipulation and rendering of 3D animation models. To successfully render the
animation head images in Blender, we need to consider three aspects: (1) camera
position, (2) light condition, and (3) image resolution.

We set the camera position based on a neck bone position with the aim of
capturing the head part. In respect to the light condition, we use a directional
light point along the negative y-axis: frontal direction of an animation char-
acter (See Fig. 2 (B)). Before rendering, we set the resolution of the images
as 256 × 256, which is a standard resolution used in previous head reenact-
ment methods [28,24]. Nonetheless, since the AnimeCeleb images are rendered
from a 3D vector graphics model, we can create a higher image resolution (e.g.,
1024× 1024). To demonstrate its extensive usage, we present various generated
samples under different conditions in the supplementary material. Note that the
rendered images contain an alpha channel as a transparent background, which
can separate the foreground animation character and the background.

Semantic Annotation (C). Each 3D animation model has a significantly dif-
ferent number of morphs ranging from zero to even over 100. However, a morph
naming convention is different according to a creator, which makes it difficult
to apply a standardized criterion before annotating an accurate semantic of an
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Fig. 3: (A) Visualizing target morphs’ examples and head rotation. (B) The
percentage of the number of source and target morphs on 3D animation models.
The number of source morphs are widely distributed ranging from 0 to over 100,
and most animation models have dense usable annotations (i.e., target morphs).

individual morph. A goal of the semantic annotation is to identify expression-
related morphs and annotate the morphs according to the unified naming conven-
tion. Importantly, this allows to sample a properly functioning expression-related
source morph from a 3D animation model during rendering. For example, when a
morphあ attached to a specific 3D animation model is identified as indicating a
semantic of pronouncing the syllable ‘ah’ with a mouth, then it can be annotated
as the target morph (i.e., Mouth (A)). After annotation, that source morph あ
of the 3D model is used, when the target morph Mouth (A) is determined to
control the mouth shape.

To achieve the semantic annotation, we first define 23 target morphs, these
are deemed as meaningful semantics to represent the facial expressions. We se-
lect the target morphs out of candidates collaborated with animation experts
who work with cartoon makers. Fig. 3 (A) shows the examples of the target
morphs that include meaningful semantics for three parts: eyes, eyebrows, and
a mouth. Conversely to the target morphs, we denote the original morphs as
source morphs in the remainder of this section. Next, we attempt to match the
source morphs to the target morphs. Fortunately, a group of the source morphs
with the identical name tends to portray the same semantics. Therefore, we take
a two-stage approach: a group annotation and an individual inspection. The for-
mer collectively match a group of the source morphs under the same name to a
target morph; the latter is responsible for inspecting the matched source morphs
one-by-one to confirm whether it works correctly. During the group annotation,
we count the number of source morphs that 3D models have, and remove the
source morphs under 50. The individual inspection reduces the erroneous anno-
tations that occur at the group annotation.

For this, we first render the head images after applying the entire source
morphs independently and a neutral image without applying any morph using a
3D animation model (Fig. 2 (C) upper part). Afterwards, we match a group of
source morphs to one of the target morphs (i.e., group annotation) and correct
the results in a single morph-level via comparing a neutral and a morph-applied
image for each source morph (i.e., individual inspection). The entire procedure
is conducted on the newly developed annotation system (Fig. 2 (C) lower part).
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Dataset
Num. of
Images

Identity
Labels

Face
Align.

Unified
Style

Image
Source

Attribute Anno.

Kaggle Anime Face [1] 63K ✗ ✗ ✗ Media -
Danbooru 2019 [3] 302K ✓ ✗ ✗ Media -

iCartoonFace [39] 0.39M ✓ ✗ ✗ Media
3D Head Pose,
Bounding Box

Gender

AnimeCeleb
(Ours)

2.4M ✓ ✓ ✓ 3D Models

3D Head Pose,
Expression,

Foreground Mask
Artistic Style

Table 1: Comparison between the AnimeCeleb and public animation head
datasets.

Fig. 4: (A) Head reenactment results trained with the iCartoonFace that bear
an identity leakage problem. (B) An intra-variation within the same identity of
the iCartoonFace is extremely large. (C) Average inception score comparison on
three datasets; the average scores using 1000 identities indicate that iCartoon-
Face contains relatively inconsistent styles within the identity than those of the
VoxCeleb and the AnimeCeleb.

We provide the details of the defined target morphs and annotation system in
the supplementary material.

Data Sampling (D). Throughout the data sampling, randomly selected target
morphs for each part (i.e., eyes, eyebrows and a mouth) are applied to a 3D ani-
mation model. The magnitudes of the morphs are determined by sampling from
a uniform distribution, U(0, 1), independently. In respect to the head rotation,
a 3D rotation matrix is computed taking yaw, pitch and roll values sampled
between -20◦ and 20◦. We render a transformed head after applying the morphs
and the rotation, and also acquire a paired pose vector p ∈ R20. A detailed
description of the pose sampling process is provided in supplementary material.

A real-time rendering engine that Blender provides is used to produce the
manipulated images and paired pose vectors. During rendering, we utilize 4 dif-
ferent types of shaders as shown in Fig. 2 to provide diverse textured 2D images.
Since the morphs and the head rotation are applied independently, two image
groups: a group of frontalized images with expression (frontalized-expression)
and head rotated images with expression (rotated-expression) are included in
the AnimeCeleb. The number of images sampled from the 3D model are deter-
mined differently depending on the number of annotated target morphs that a
3D animation model has. When a 3D animation model contains more than five
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annotated target morphs, we generate 100 images; if not (e.g., zero), just 20
images are obtained.

2.2 Dataset Description

AnimeCeleb Properties. Fig. 3 (A) shows the examples of multiple target
morphs for each part and head rotation results. The target morphs consist of 9
eye-related morphs, 9 eyebrow-related morphs and 5 mouth-related morphs. Note
that the pre-defined target morphs include the semantics related to both eyes or
eyebrows, which fill two values (e.g., left and right eye) of a 17-dimensional pose
vector (expression part). In total, 3613 different 3D models are used to generate
the AnimeCeleb. As can be seen in Fig. 3 (B) left, the number of source morphs of
collected raw 3D animation models are widely distributed, averaging 49 morphs.
After the semantic annotation, most animation models have more than 20 target
morphs as shown in Fig. 3 (B) right; this indicates the source morphs are densely
matched to the target morphs.
Comparison with Other Datasets. As shown in Table 1, the AnimeCeleb has
three advantages compared to the public existing animation head datasets [1,3,39].
The advantages mainly stem from exploiting the power of 3D software and 3D
animation models. First, detailed annotations such as facial expressions and head
rotations can be easily gained because we are able to manipulate the head us-
ing our morph annotation (Table 1 Attribute Anno.). Second, the AnimeCeleb
provides a massive amount of animation images that have unified styles (Ta-
ble 1 Num. of Images, Unified Style). We believe that these properties help to
develop high-performing neural networks in broad applications. Lastly, the Ani-
meCeleb contains four different unified styles in consideration of different cartoon
textures. A similar approach [16] has been proposed using 3D animation mod-
els to construct an animation face dataset, and achieve a promising results on
head reenactment. The contribution of AnimeCeleb is the first publicly available
dataset that contains animation faces with pose annotations as well as the data
sampling pipeline.

2.3 Animation Head Reenactment

Overview. The head reenactment aims to transfer a pose from a driving image
to a source image. A common training scheme of the head reenactment model
is to extract a pose from a driving image, and feed it with a source image to a
decoder to reconstruct the driving image. Therefore, training a high-performing
head reenactment model requires a large-scale video dataset, containing a set
of the same identity images that can serve as a source and driving image pair.
In a human domain, the VoxCeleb [20], a large-scale talking head dataset, plays
this role. We believe that the AnimeCeleb is analogous to the VoxCeleb in an
animation domain, which bears a potential to train a high-performing animation
head reenactment model.

Prior head reenactment approaches are categorized into two groups whether
a pre-computed pose annotation is utilized during training or not. The FOMM
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Fig. 5: (A) Qualitative results of the FOMM and PIRenderer trained with the
AnimeCeleb. (B) Intuitive editing of an animation head image with different pose
vectors. (C) Filling in-between frames using linearly interpolated pose vectors.

Model
Same-Identity Cross-Identity

FID↓ SSIM↑ FID↓

FOMM 23.45 0.824 29.94
PIRenderer(w/ keypoints) 27.84 0.770 21.48
PIRenderer(w/ pose vector) 20.27 0.826 16.52

Table 2: Quantitative results of animation head reenactment. Obviously, for the
AnimeCeleb dataset, the PIRenderer trained with pose vector outperforms the
PIRenderer with keypoints and the FOMM.

does not use the pose annotation, and learn relative motion between two images
to convey the pose to a source image. In contrast, numerous studies [35,24,34]
take advantage of the pose annotations such as keypoints and 3DMM param-
eters obtained from off-the-shelf pose extractors. Among them, we train two
representative head reenactment baselines [28,24] from each category with the
AnimeCeleb: the FOMM [28] and the PIRenderer [24], which uses 3DMM pa-
rameters to describe a head pose.

Experiment Setup. When training the PIRenderer, we replace 3DMM with
the pose vectors of the AnimeCeleb. For the dataset comparison, we addition-
ally train the baselines [28,24] using the iCartoonFace[39]. Although there exist
other animation head datasets [1,3], we select the iCartoonFace as a comparison
dataset, acknowledging the size of it and accurate identity labels. Furthermore,
with the aim of pose annotation comparison, we train the PIRenderer leveraging
the keypoints for both datasets. We utilize an off-the-shelf animation keypoint
detector10 that gives 28 keypoints of an animation head image. All implemen-
tations are conducted following the hyperparameters denoted the papers with
3319 train set and 294 test dataset created with the first shader style.

We evaluate the trained models on (1) Self-identity task where the same char-
acter provides the source and driving image, and (2) Cross-identity task where
two frames of different character sampled from the AnimeCeleb serve as the
source and driving image. For evaluation, Frechet Inception Distance (FID) [12]
and Structural Similarity (SSIM) [33] are adopted to measure the generated

10 https://github.com/hysts/anime-face-detector
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Fig. 6: Head reenactment results on other animation datasets.

images quality. Note that the AnimeCeleb is applicable to other existing head
reenactment models [34,10,35] that need image keypoints, yet we implement two
representative baselines here.

Experimental Results with the iCartoonFace. Fig. 4 (A) shows the cross-
identity head reenactment outputs of two models trained with the iCartoonFace.
Despite the attempts to train the FOMM and PIRenderer with the iCartoon-
Face, we have found that the trained models show poor performance, producing
blurry outputs. We assume that excessive variation within a single identity is
the main cause of the results. In fact, considering that the iCartoonFace consists
of the images collected from different appearance scenes, most images have own
properties as seen in Fig. 4 (B). For quantitative analysis, we measure the Incep-
tion Score (IS) [27] by averaging 1,000 image sets of the same identity. As seen in
Fig. 4 (C), we confirm that the iCartoonFace records higher IS score, compared
to the VoxCeleb and the AnimeCeleb. This indicates that the iCartoonFace con-
tains unacceptable appearance complexity, hence learning from such images goes
beyond the capacity of existing head reenactment models.

Advantage of Pose Annotation. As seen in Fig. 5 (A), the FOMM trained
with the AnimeCeleb produces plausible outputs, yet still has undesirable de-
formation. Different from it, the trained PIRenderers successfully preserve the
source head structure while imitating a given driving image with both pose
annotations (i.e., keypoints and pose vector). Especially, the PIRenderer(w/
pose vector) accurately conveys a driving pose to the source image as shown
in Fig. 5 (A) red boxes. It is because the AnimeCeleb pose vectors hold more
direct guidance (e.g., 80% mouth openness) than the keypoints. This results can
be quantitatively confirmed in Table 2, where the PIRenderer(w/ pose vector)
outperforms other baselines on both same-identity and cross-identity head reen-
actment tasks. Besides, the PIRenderer(w/ pose vector) is able to intuitively edit
head poses based on given pose vectors (Fig. 5 (B)) and generate the in-between
frames by interpolating the pose vectors of two different frames (Fig. 5 (C)).

Other Animation Results. We demonstrate the generalization capacity of the
trained model on other animation datasets. In an experiment, we evaluate the
PIRenderer(w/ pose vector) on different collected head datasets including Waifu
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Labs 11 and Naver Webtoons 12. As seen in Fig. 6, the model successfully transfer
a given driving image pose to an animation head. We provide the details of the
collected animation head datasets and additional results on other examples in
supplementary material.

3 Cross-Domain Head Reenactment

Overview. Although we show a promising animation head reenactment result
in Section 2.3, controlling characters’ head pose as a human user wants (i.e.,
cross-domain head reenactment) is another important application that bears a
potential to be used in a virtual YouTuber system and a cartoon production. In
this section, we address the cross-domain head reenactment using the proposed
pose mapping method and the AniMo.

In a standard head reenactment training scheme, two frames are sampled
from a video: a source image s and driving image d, and reconstruct d. Different
from previous methods [28,24], we leverage two videos from different domains,
respectively. Since a direct supervision across domains is not available during
training, the source and driving image pair from animation domain: s(a), d(a)

and human domain: s(r), d(r) are utilized to reconstruct the driving images,
d(a) and d(r), respectively. In the following, we illustrate the details of a driving
pose representation(Section 3.1). Then, we describe a training pipeline and its
objective functions (Section 3.2).
Difference from PIRenderer. Our architecture design is inspired by PIRen-
derer [24], yet two novel components, a pose-mapping method and separate
domain-specific networks, are proposed to improve cross-domain head reenact-
ment performance. The pose-mapping method enables to align blendshape and
3DMM, which gives the capability to handle a pose from human domain (i.e.,
cross domain). Also, the domain-specific networks help to preserve a given source
image’s textures for each domain, and improve the quality of image. Note that
our pose-mapping method can help PIRenderer to improve the performance on
cross-domain head reenactment task.

3.1 Driving Pose Representations

Human Pose Representation. Our approach employs the 3DMM parameters
to describe a pose of a driving human head image. With the 3DMM, a 3D
human face shape S can be represented as S = S̄ + αBid + βBexp, where S̄
is the average face shape, Bid and Bexp denote the principal components of
identity and expression based on 200 scans of human faces [2], respectively.
Also, α ∈ R80 and β ∈ R64 indicate the coefficients that control the relative
magnitude between the facial shape and expression basis. The head rotation
and translation are defined as R ∈ SO(3) and t ∈ R3. We use a pre-trained
3D face reconstruction model [6] to extract the 3DMM parameters from the

11 https://waifulabs.com/
12 https://comic.naver.com/
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human head images. Discarding α for excluding an identity-related information,
we only exploit a subset space of the 3DMM parametersM to represent a human
head pose, where m ∈ M comprises of expression coefficients, head rotation and
translation: m ≡ {β,R, t} ∈ R70.
Pose Mapping. The AnimeCeleb pose vector p ∈ R20 consists of independent
coefficients b ∈ B and head angles h ∈ H, where B denotes a 17-dimensional
space of concatenated expression coefficient and H indicates a 3D head angle
space. In this step, we aim at discovering a mapping relationship from the Ani-
meCeleb pose vector to the 3DMM parameters. To this end, we propose a pose
mapping function: T : B ×H → M, which is responsible to find its correspond-
ing 3DMM parameters, given a pose vector. We construct a direct mapping
relationship between the coefficients b and the 3DMM expression parameters
β using facial landmarks as a proxy space and expressing the each coefficient’s
semantics via manually manipulating the landmark positions. In the following,
we elaborate the details step-by-step with Fig. 7 (A).

(T.0) Before the landmark manipulation, we first obtain an initial landmark
position, which corresponds to a neutral 3DMM coefficient. To be specific, the
initial landmark position is obtained from a rendered mesh with setting the entire
3DMM coefficients as 0 expressed as {α0, β0,R0, t0}, meaning that the average
face shape S̄ at center location offers the initial landmark position. (T.1) Next,
the initial landmarks are manipulated according to each semantic; for example,
left closed eye landmarks can be achieved by minimizing the distances between
the upper and the lower eyelid keypoints at the left eye. (T.2 and T.3) Then,
the manipulated landmarks lk with k-th semantic are used to update the initial
β by minimizing the ℓ2 distance between lk and the landmarks extracted from
the rendered mesh using β. Also, we employ a ℓ2 regularization during updating
β. Completing this process for each landmark, we can gain the fitted 3DMM
expression parameters for each semantic: Φ = {βk}17k=1 ∈ R17×64. Finally, the
pose mapping function can be written as: mi = T (bi,hi) = (bi ·Φ)⊕Π(hi)⊕0 ∈
M, where Π denotes a mapping to convert a degree into radian measurement
and ⊕, i indicate a concatenation operation and a data index, respectively. In
addition, 0 ∈ R3 is concatenated to represent translation parameters.

3.2 Training Pipeline

Fig. 7 depicts an overview of our framework, which consists of three networks
described below.
Motion Network. Given a driving pose m, our motion network F generates
a latent pose code z ∈ Z, where Z denotes a latent pose space. Formally, this
can be written as: z(a) = F (m(a)), z(r) = F (m(r)), where m(a) = T (b,h) is
a transformed driving pose corresponding to the driving image d(a) in an ani-
mation domain and m(r) denotes a subset of 3DMM paramters obtained from
the driving image d(r) in a human domain, respectively. Thanks to the pose
mapping method, the motion network F can be designed as domain-agnostic
manner. The learned latent pose code z is transformed to estimate the affine pa-
rameters for adaptive instance normalization (AdaIN) [13] operations. The pose
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Fig. 7: Overview of (A) pose mapping method and (B)-(D) AniMo.
information parameterized as the affine parameters plays a role in predicting an
optical flow in the warping network W and injecting a fine-detailed pose in the
editing network G.
Warping & Editing Network. For sake of simplicity, we omit the domain no-
tation unless needed, such as z = {z(a), z(r)}, d = {d(a), d(r)}, and s = {s(a), s(r)}
in the descriptions of warping and editing network. Inspired by the PIRen-
derer [24], we employ domain-specific warping networks and an editing network
for each domain. A warping network W takes a source image s and latent pose
code z to predict the optical flow u that approximates the coordinate offsets to
reposition a source head alike a driving head.

Next, the source image is fed into an encoder part of a editing network G and
the optical flow u is applied to the intermediate multi-scale feature maps. This
leads to spatial deformation of the feature maps according to the driving pose.
During decoding in G, the AdaIN operation is used to inject the pose informa-
tion. After training, the warping network mainly focuses on causing a large pose,
including the head rotation, whereas the editing network serves to portrait an de-
tailed expression-related pose. We train our framework with a reconstruction loss
and a style loss following the PIRenderer [24]. The architecture, implementation
details and objective functions are elaborated in the supplementary material.

3.3 Experiments

Experiment Setup. Different from Section 2.3, we use both cartoon texture
shader style AnimeCeleb and the VoxCeleb[20] as a training dataset. The Vox-
Celeb contains 22,496 talking-head videos collected from online videos, and we
use downloadable 18,503 videos for the train set and 504 videos for test set.

We evaluate the trained models on self-identity, and cross-domain head reen-
actment where the images of the AnimeCeleb and the VoxCeleb alternatively
serve as a source and a driving image respectively. Similar to Section 2.3, FID
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Train Dataset Methods

Self-identity

(AnimeCeleb)

Self-identity

(VoxCeleb)
Cross-domain
(Vox.→Anime.)

Cross-domain
(Anime.→Vox.)

FID↓ SSIM↑ FID↓ SSIM↑ FID↓ HAE↓ FID↓

Single Dataset
(VoxCeleb)

FOMM 47.91 0.648 16.10 0.803 122.83 0.177 94.23
PIRenderer 134.91 0.532 19.67 0.604 95.75 0.176 96.42
LPD - - - - 166.54 0.171 -

Joint Datasets
(AnimeCeleb,
VoxCeleb)

FOMM 45.01 0.748 19.60 0.748 144.88 0.196 126.49
PIRenderer+T 16.07 0.735 18.98 0.611 69.80 0.195 61.67

Ours 16.05 0.738 19.34 0.606 18.78 0.128 41.04

Table 3: Quantitative comparison with baselines on self-identity and cross-
domain head reenactment tasks. The expression A→ B denotes that transferring
a A’s motion to B’s a source image.

Fig. 8: Qualitative comparison between our model and the baselines.

and SSIM are used to assess the quality of generated images. In addition, we
introduce a Head Angle Error (HAE) that measures the ℓ1 distances between
the driving image’s head angles and those of the generated image with the aim
of evaluating head rotating ability. To be specific, we take advantage of a pre-
trained head angle regressor, based on ResNet-18 [11] architecture and trained
with the AnimeCeleb train set using ℓ1 distance objective function between a
predicted angle and the ground-truth h. In experiments, we use randomly sam-
pled 1,000 pairs of source and driving images to compute evaluation metrics.
Comparison with State of the Art. We compare the the AniMo with state-
of-the-art models [4,28,24] quantitatively and qualitatively. Since we leverage
two datasets during training, comparable baselines are trained on either the
VoxCeleb following their original implementations or both the VoxCeleb and
AnimeCeleb. During evaluation, we make an inference of manipulated animation
or human head by optionally leveraging the decoder of each domain. We describe
the details of the baselines and settings in the supplementary material.

Table 3 shows quantitative comparisons between the AniMo and the baselines
on the self-identity and the cross-domain head reenactment. When evaluating
the self-identity head reenactment within the AnimeCeleb, it is obvious that the
models trained on both the AnimeCeleb and the VoxCeleb surpass those trained
on the VoxCeleb. On the contrary, quantitative results on self-identity head reen-
actment within the VoxCeleb demonstrate that joint datasets may be harmful
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to the reconstruction task. Unlike these results, our model outperforms all base-
lines on cross-domain head reenactment tasks in terms of an image quality and
an imitating head pose, indicating the superiority of our model in transferring a
pose across the domains.

Fig. 8 shows qualitative comparisons between the AniMo and the baselines
on the cross-domain head reenactment. The FOMM, which relies on the unsu-
pervised landmarks, does not work well, because the model attempts to align the
appearance of the source image as the driving image’s head structure, and this
leads to the identity leakage problem as well as introducing blurring artifacts. In
contrast, the PIRenderer and latent pose descriptor (LPD) [4], where the pose
is injected by the AdaIN operations, successfully retain a head structure of the
source image, yet produce rather blurry outputs. As seen in the PIRenderer+T ,
the blurry artifacts can be improved by incorporating the AnimeCeleb as an
additional training dataset with the pose mapping T . Meanwhile, our model
clearly outperforms the baselines, preserving more vivid textures of the source
image and accurately reflecting the pose of the driving image with the aid of the
domain-specific networks. We conclude that the shared pose space introduced by
the pose mapping and the domain-specific design help the model to transfer the
pose across domains. We include more results in the supplementary material.

4 Conclusions

In this paper, we present the AnimeCeleb, a large-scale animation head dataset,
which is a valuable and practical resource for developing animation head reenact-
ment model. Departing from existing animation datasets, we utilize 3D anima-
tion models to construct our animation head dataset by simulating facial expres-
sions and head rotation, resulting in neatly-organized animation head dataset
with rich annotations. For this purpose, we built a semi-automatic data creation
pipeline based on Blender and a semantics annotation tool. We believe that the
AnimeCeleb would boost and contribute to animation-related research. On the
other hand, we propose the pose mapping and architecture to address cross-
domain head reenactment to admit transferring a given human head motion to
an animation head. Conducted experiments demonstrate the effectiveness of the
AniMo on cross-domain head reenactment and intuitive image editing. In the
future work, we plan to extend the AnimeCeleb and develop more advanced
cross-domain head reenactment model.
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Supplementary Material

Overview of Supplementary Material. This supplementary material con-
sists of 6 sections: (1) related literature and context of our paper (Section A), (2)
details of data creation process (Section B), (3) additional AnimeCeleb samples
and experimental results (Section C), (4) implementation details of the AniMo
and the baselines (Section D), (5) additional head reenactment results of AniMo
(Section E), and (6) discussions and future work (Section F).

A Related Work

With abundance of digital contents, numerous animation datasets collected
from different media are released to community. Focusing on animation head
datasets, there exist multiple studies [1,3,7,25,39] that provide the pre-processed
animation heads. Based on these datasets, early animation-related research [23,30,36]
mainly focused on recognizing and detecting an animation character in anima-
tion scenes. However, an extension of animation research to generative modeling
is non-trivial. One major bottleneck is that the released datasets are collected
from unlisted online source, thereby containing unexpected and noisy images
(e.g., an occluded head). In this regard, existing datasets are forced to narrow
their application scope; for example, current animation datasets are not suitable
to train head reenactment models [4,10,28,32,34,35].

Head reenactment aims to drive a source image to mimic a motion of a target
image while preserving identity of the source image. Most approaches [4,10,28,32,34,35]
use two frames from the same video during training; an image conveys the
identity-related information while the other provides the motion-related infor-
mation, which are combined to produce a final output. Also, multiple pose repre-
sentations (e.g., keypoints and 3DMM parameters) play vital roles to deliver the
head motion in previous literature [10,24,34,35]. In fact, the pose representation
is an important aspect for head reenactment approaches as shown in previous
work [4] when training a high-performing model.

Undoubtedly, the collected animation images of current datasets [1,3,7,25,39]
do not include its detailed pose annotations, and obtaining accurate pose rep-
resentations is also non-trivial. In opposition, AnimeCeleb provides numerous
groups of images that have the same identity, and detailed pose annotations,
which bear a potential to be used for various generation tasks.
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Fig. 9: Visualizations of all target morphs and 3D head angles. Given a neutral
image (Top-left), we apply every annotated target morph independently with the
maximum intensity (i.e., 1.0) to obtain the morph-applied images. We highlight
the locations, where manipulations occur with pink arrows.

B Details of Data Creation Process

In this section, we present the details of the data creation process as follows:

– The visualizations of entire pre-defined target morphs that a single character
has (Fig. 9).

– Detailed user interfaces of the annotation system: statistics, group annota-
tion, and individual inspection (Fig. 11) and mapping relationships between
the source morphs and the target morphs after the annotation (Table 4).

– Detailed description of pose sampling process for generating a pose vector
(Algo. 1).

– Sampling examples from a 3D animation model (Fig. 10).

Visualizations of Target Morphs. Fig. 9 shows the visualizations of the
manipulated poses and their corresponding target morphs, which are responsible
for annotating the source morphs. For head rotation and mouth annotation, there
is a single value to control each semantic, respectively. On the other hand, for
eyes and eyebrows annotation, we consider left and right part separately and
define three different target morphs: left-related, right-related and both-related
semantics. Note that although we have defined 23 target morphs including six
morphs that control both parts (e.g., closed eyes and raised eyebrows), during
constructing a pose vector, the both-related morphs simultaneously determine
two values of the pose vector (i.e., left and right part). Therefore, the dimensions
of a pose vector become 20 (=17+3) with three additional head angle dimensions.
Semantic Annotation System. Fig. 11 shows the components of semantic
annotation system developed with Vue.js 13. Given a group of neutral images
and morph-applied images, our system aims at visualizing the images and the
source morph names. Through the annotation, the source morphs are annotated
as the target morphs, considering a semantic match.

13 https://vuejs.org/
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The system consists of three views: statistics, group annotation and individ-
ual inspection. In statistics view, there are the number of models and unique
morph names that the models contain, and annotation progress shows the ra-
tio of the annotated models to the total models. During annotation, we match
the source morphs (e.g., 困る and なごみ) as their corresponding target morphs
(e.g., lowered eyebrows and closed eyes) by considering given sample images as
seen in the group annotation view of Fig. 11. Next, we manually check the valid-
ity of a single morph one-by-one by examining its corresponding morph-applied
image as shown in individual inspection view of Fig. 11. If the morph-applied
image has an unmatched semantic, we exclude that source morph marking it as
X. We present the annotation results in Table 4.
Pose Sampling Process. Algorithm 1 depicts a detailed process for sampling
a pose vector p ∈ R20. Note that the annotated target morphs can be differ-
ent depending on the 3D animation model. Given the annotated target morphs
{en}Nn=1, we first select a semantic of each part: eye seye, eyebrow seyebrow, and
mouth smouth. For example, if there exist Mouth (A), Mouth (E) and Mouth
(O) as mouth semantics, we randomly sample one of them as smouth. Similar to
this, the pre-defined target morphs are randomly sampled for seye and seyebrow,
respectively. The difference is that we check whether a 3D animation model con-
tains independent morphs that can control left and right part separately or a
single morph to adjust both parts. If there exist the independent morphs, they
are used with priorities. Then, the values sampled from a uniform distribution
are assigned to the selected semantics as well as head angles (i.e., roll, pitch,
and yaw). This results in a pose vector p that works for manipulating a pose of
an animation character.
Sampling Examples. Fig. 10 shows the example pairs of generated images and
pose vectors from a 3D animation model. The output data consists of frontalized-
expression and rotated-expression images and their corresponding pose vectors
that contain 17 different morphs and 3D head angles. In addition, we provide
four different shader styles: (S.1), (S.2), (S.3) and (S.4) to boost the diversity of
images and consider various drawing styles of animation creators.
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Fig. 10: Examples of sampled data. Given a 3D animation model, two groups of
images are generated: (1) frontalized-expression images using the sampled target
morphs and zero head angles (Top-right), and (2) rotated-expression images after
adding the sampled head angles (Bottom-right). Note that four different shading
styles are applied for image rendering.

Source morphs Target morphs

あ, ああ, あ2 Mouth(A)
え, ええ, え2, え Mouth(E)
い, いい, い2, い Mouth(I)
お, おお Mouth(O)
う, うう Mouth(U)
ばたき, 笑い, なごみ Closed Eyes
ウィンク, ウィンク.001, ウィンク2, なごみ左 Left Closed Eye
ウインク右, なごみ右, ウインク２右, ２右 Right Closed Eye
半目, じと目, ジト目 Unimpressed Eye
じと目左 Left Unimpressed Eye
じと目右 Right Unimpressed Eye
びっくり２, びっくり, 驚き Surprised Eyes
びっくり左, びっくり２左 Left Surprised Eye
びっくり２右, びっくり右 Right Surprised Eye
怒り眉, 怒り2, 怒り Angry Eyebrows
怒り左, ’怒り眉左, 怒りL Left Angry Eyebrow
怒り眉右, 怒り右, 怒りR Right Angry Eyebrow
上 Raised Eyebrows
上左, 上L Left Raised Eyebrow
上右, 上R Right Raised Eyebrow
下, 困る Lowered Eyebrows
困るL, 下L, 困る左, 下左 Left Lowered Eyebrow
困る右, ’下R, 下右, 困るR Right Lowered Eyebrow

Table 4: Examples of mapping relationships between the source morphs and the
target morphs.
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Fig. 11: Simplified semantic annotation system overview.
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Algorithm 1: Pseudo Codes for Pose Sampling

Data: Annotated target morphs {en}Nn=1

/* N indicates the number of source morphs of a 3D animation model.

*/

Result: A sampled pose p ∈ R20

/* Select eye, eyebrow, mouth semantics and sample the values from

a uniform distribution. */

seye, seyebrow, smouth ← sample({en})
if ∃ left-seye, right-seye ∈ {en} then

u1, u2 ∼ U(0, 1);
left-seye(v)← u1;
right-seye(v)← u2;

else
u ∼ U(0, 1);
left-seye(v)← u;
right-seye(v)← u;

end
if ∃ left-seyebrow, right-seyebrow ∈ {en} then

u1, u2 ∼ U(0, 1);
left-seyebrow(v)← u1;
right-seyebrow(v)← u2;

else
u ∼ U(0, 1);
left-seyebrow(v)← u;
right-seyebrow(v)← u;

end
u ∼ U(0, 1);
smouth(v)← u;
/* Sample roll, pitch and yaw from a uniform distribution. */

roll(v), pitch(v), yaw(v) ∼ U(−20◦, 20◦);
/* Fill p with sampled values. p[·] denotes an index of each

semantic. */

initialize p = {pm}20m=1 = {0, 0, ..., 0};
p[left-seye] = left-seye(v);
p[right-seye] = right-seye(v);
p[left-seyebrow] = left-seyebrow(v);
p[right-seyebrow] = right-seyebrow(v);
p[smouth] = smouth(v);
p[roll] = roll(v);
p[pitch] = pitch(v);
p[yaw] = yaw(v);
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C Additional AnimeCeleb Samples and Experimental
Results

This section presents additional results as follows:

– Other examples sampled from the AnimeCeleb.
– Qualitative head reenactment results on other animation head images ob-

tained from Waifu Labs 14 and Danbooru 2019 [3].
– Other applicable tasks using the AnimeCeleb: animation colorization and

image harmonization.

Additional Examples from AnimeCeleb. Fig. 12 shows the sampled images
of eight different characters. As aforementioned, we present two image groups:
frontalized-expression (the first row) and rotated-expression (the second row),
and a difference between two groups lies in whether a head rotation is applied to
the animation heads or not. As seen in Fig. 12, the images rendered with different
shaders are generated with the exact same pose vector ((S.2-4) in Fig. 12) for
the purpose of providing multiple styles of images.
Other Animation Images Head Reenactment. We present qualitative re-
sults using the PIRenderer [24] trained with the AnimeCeleb on two other an-
imation sample images obtained from the Waifu Labs and the Danbooru 2019.
We choose to use the PIRenderer(w/ pose vector) because it has strong gen-
eralization capacity compared to other models as seen in main manuscript. As
shown in Fig. 13, the trained model successfully generates the head reenactment
results given a source and a driving image. The PIRenderer(w/ pose vector)
produces favorable outputs, imitating the head poses of driving images. Fur-
thermore, Fig. 14 shows the outcomes on the Danbooru 2019. Due to the distri-
bution gap between the AnimeCeleb and the Danbooru 2019, we confirm slight
performance degradation for the samples from the Danbooru 2019.
Additional Applications of AnimeCeleb. To reveal the benefits of the Ani-
meCeleb, we implement additional two tasks: an animation colorization, and
an image harmonization. The third shader (i.e., S.3) styled images are used to
train the colorization and the harmonization models. We clarify an importance
of each task in the animation domain and show experimental results in the fol-
lowing paragraphs.

First, the animation colorization is a practical task for animation creators to
reduce their effort during the labor-intensive painting process. Given a trained
colorization model, creators are able to obtain colorized images given sketch
images. We conduct character colorization tasks using both unconditional and
conditional colorization baselines [14,18]. As can be seen in Fig. 15, the col-
orization models trained with the AnimeCeleb show a promising performance
at painting the animation character sketch images, producing plausible coloriza-
tion outputs in an automatic manner or following a given animation reference
image. To demonstrate the broad generalization capacity of the reference-based

14 https://waifulabs.com/
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colorization model [18] trained with the AnimeCeleb, we also use the reference
images crawled from online cartoons. We find that not limited to the AnimeCeleb
reference images, the model achieves high-quality colorization outputs based on
other animation head images.

Second, the image harmonization aims to generate natural composite images
given two images from different domains, achieving a visually pleasing match
for both content and style. We implement a representative optimization-based
approach [38] to explore the applicability of the AnimeCeleb and generate more
realistic animation images. Since the AnimeCeleb images only contain a fore-
ground object (i.e., an animation head), a composition with suitable background
is a natural extension of the AnimeCeleb. Not limited to the background com-
position, decorative objects (e.g., sunglasses, caps and masks) are available as-
sets to be exploited for the composition. We can employ an optimization-based
composition model [38] that requires a foreground segmentation mask because
the AnimeCeleb includes the segmentation mask. As shown in Fig. 16, both
background and decorative object composition with the AnimeCeleb produce
plausible results, demonstrating a potential extension of the AnimeCeleb in that
it can provide the images with diverse backgrounds and multiple objects.
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Fig. 12: Examples of the created images from the AnimeCeleb.
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Fig. 13: Additional animation head reenactment results on the images fromWaifu
Labs.

Fig. 14: Additional animation head reenactment results on the Danbooru 2019.
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Fig. 15: Colorization results in an automatic and reference-based manner on
the AnimeCeleb and other collected images. A Pix2Pix [14] trained with the
AnimeCeleb successfully outputs a plausible colorized image. Also, a reference-
based model [19] successfully fills a given sketch image with the color maps
extracted from reference images.

Fig. 16: Image harmonization results. F.G., B.G. and Acc. denotes a foreground
object, a background, and an accessory, respectively. The components for image
harmonization (the 1st column) are well-blended, where the backgrounds and
the accessories are refined with similar styles with an animation character.
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D Implementation Details of the AniMo and Baselines

In this section, we describe the architectures of the motion network, the warping
network, and the editing network in detail, and objective functions for training.
Then, we elaborate the baselines [28,24,4] and implementation details of them,
respectively.

Fig. 17: The architecture of the motion network.

Motion Network. As shown in Fig. 17, the motion network has a multi-layer
perceptron structure, which consists of four fully-connected layers that are re-
sponsible for resulting in a latent motion code z ∈ R256 given the 3DMM pa-
rameters m ∈ R70. The latent motion code z are transformed to estimate the
affine parameters for adaptive instance normalization (AdaIN) [13] operations
in the warping network and the editing network.

Fig. 18: The architecture of the warping network.

Warping Network. As shown in Fig. 18, the warping network has a encoder-
decoder architecture. In addition, we employ the skip-connection as U-Net [26] to
preserve the spatial information as well as AdaIN operation to inject the motion
information. The optical flow u ∈ R64×64×2 is upsampled or downsampled to fit
the sizes of feature maps in the editing network.
Editing Network. Fig. 19 shows the architecture of the editing network. The
editing network employs the structure of a hourglass network [21], in which in-
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Fig. 19: The architecture of the editing network.

termediate encoder feature maps are passed to the decoder layers by an element-
wise addition operation. When propagating the multi-scale feature maps of the
encoder to the decoder, the optical flow u is applied to the multi-scale feature
maps. In addition, as similar to the warping network, we utilize the AdaIN op-
eration to inject the motion information.
Objective Functions. In order to train the AniMo, we follow the PIRen-
derer [24] objective functions as follows.

First, a reconstruction loss encourages the warping network to estimate an
accurate optical flow. For the sake of this, we apply the estimated optical flow
to a source image s, and encourage the warped output to reconstruct a driving
image d. Instead of pixel-level loss, we employ the perceptual loss [15] to minimize
the ℓ1 distances in latent feature space between the warped source image u(s)
and driving image d. Formally, this can be written as:

Lw
perc(s, d) =

∑
j

∥∥∥ϕj(W(s,u))− ϕj(d)
∥∥∥
1
, (1)

where ϕj represents the activation map of j-th layer of the pre-trained VGG-19
network [29] and W denotes a warping operation. This leads to reliable optical
flow prediction of the warping network.

Second, our editing network is trained with two losses: a reconstruction loss
Lg
perc and a style loss Lg

sty. The reconstruction loss is designed to reduce the

errors between the final prediction d̂ and the ground-truth driving image d. This
can be formulated as:

Lg
perc(d, d̂) =

∑
j

∥∥∥ϕj(d̂)− ϕj(d)
∥∥∥
1
. (2)

Next, the style loss is introduced to match the statistics between the ground
truth driving image d and the final prediction as follows:

Lg
sty(d, d̂) =

∑
j

∥∥∥Cϕ
j (d̂)− Cϕj(d)

∥∥∥
1
, (3)
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where Cϕ
j denotes the gram matrix calculated from the activation maps ϕj .

In summary, our full objective function is given as:

Ltotal = λw
perc(Lw

perc(s
(a), d(a)) + Lw

perc(s
(r), d(r)))

+ λg
perc(Lg

perc(d
(a), d̂(a)) + Lg

perc(d
(r), d̂(r)))

+ λg
sty(L

g
sty(d

(a), d̂(a)) + Lg
sty(d

(r), d̂(r))),

where λw
perc, λ

g
perc and λg

sty are hyperparameters that control the relative impor-
tance of three different losses. We set λw

perc, λ
g
perc and λg

sty as 2.5, 4 and 250,
respectively. Note that our framework is jointly trained on both the AnimeCeleb
and VoxCeleb.

We train the AniMo in two stages, where the motion network and the warping
network are trained for 100 epochs, and we train the entire network for the
additional 100 epochs. We employ the Adam [17] optimizer, one of the widely-
used optimization methods, with the learning rate of 0.0001. The learning rate
is set initially as 0.0001, then decreased to 0.00002 after 150 epochs. The batch
size is set to 12 for all experiments.
Head Reenactment Baselines. We compare the AniMo with state-of-the-art
models [4,28,24]. Since we leverage two datasets during training, comparable
baselines are trained on either the VoxCeleb following their original implemen-
tations or both the VoxCeleb and AnimeCeleb.

In the following, we describe each baseline and experimental settings:

– First-Order Motion Model (FOMM) [28] is an unsupervised landmark-
based approach, which internally detects the spatial positions to transform
the source image. We implement two versions of this model: a VoxCeleb-
trained and a jointly-trained model using both the AnimeCeleb and the
VoxCeleb.

– PIRenderer [24] takes the 3DMM parameters to represent a driving mo-
tion and employs the AdaIN operation to inject the motion information.
Similar to FOMM, we first implement a VoxCeleb-trained model. Also, we
apply our pose mapping T to use a shared pose representations (i.e., 3DMM
parameters) for the purpose of achieving joint training.

– Latent Pose Descriptor (LPD) [4] relies on the AdaIN operation to
inject a motion information, where the driving image is encoded as latent
pose vector in unsupervised manner. To handle an unseen identity during
inference, a trained model is fine-tuned with the same-identity images to
infer. For evaluation, we utilize a model trained on the VoxCeleb, and fine-
tune it using a group of the same-identity images in the AnimeCeleb.

For the implementations of existing baselines, we follow the hyper-parameters
given in the original papers and codes.
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E Additional Head Reenactment Results of AniMo

This section contains additional head reenactment results with the AniMo
and the baselines as follows:

– Qualitative results on self-identity (VoxCeleb and AnimeCeleb), cross-identity
(VoxCeleb and AnimeCeleb), and cross-domain head reenactment (Vox. →
Anime. and Anime. → Vox.) tasks.

– Intuitive pose editing of an animation and human head images.
– Qualitative results on cross-domain head reenactment using various unseen

head images.
– A user study to compare the characteristics with iCartoon and head angle

distribution comparison between VoxCeleb.

Additional Qualitative Head Reenactment Results of AniMo. In the ex-
periments, we utilize two different training source: single dataset (VoxCeleb) and
joint datasets (AnimeCeleb and VoxCeleb). We use the single dataset (VoxCeleb)
to compare the original experimental setup of the previous studies [4,28,24]. For
qualitative comparisons, we show the results of three tasks: (1) self-identity
head reenactment where the identical being provides both a source and a
driving image, (2) cross-identity head reenactment where the identities of
a source and driving image are different within the same dataset, and (3) cross-
domain head reenactment where two frames of different identities sampled
from the AnimeCeleb and the VoxCeleb alternatively for the sake of serving as
a source and a driving image; for example, Vox. → Anime. denotes a source
and driving image are sampled from the AnimeCeleb and the VoxCeleb, respec-
tively. Note the warping and the editing network for each domain: WA, GA and
WV , GV are responsible for producing an animation and a real human head
image, respectively.

Fig. 21 shows qualitative comparisons on self-identity head reenactment using
the VoxCeleb. As seen in Fig. 21, our model produces the outputs that are
perceptually realistic, as good as the baselines. Although the baselines show
similar results on the task, there is a performance gap between the models when
it comes to handling cross-identity inputs. As shown in Fig. 22, the FOMM [28]
often fails to produce photo-realistic results because a head structure of a driving
image is involved to generate results (the 3rd and the 5th columns). Compared
to these results, the models which rely on the 3DMM parameters successfully
handle cross-identity inputs (the 4th, the 6th and the last columns in Fig. 22).

Meanwhile, when performing on self-identity head reenactment using the
AnimeCeleb, it is obvious that the models trained only with the VoxCeleb do
not work well (the 3rd and the 4th columns in Fig. 23). In contrast, the models
trained with the VoxCeleb and the AnimeCeleb show a promising performance
(the 6th and the last columns in Fig. 23), yet the FOMM still has difficulty
in synthesizing vivid textures of a source image (the 5th column in Fig. 23). In
addition, Fig. 24 shows similar results on cross-identity head reenactment, where
the models trained with the VoxCeleb have performed poorly (the 3th and the
4th columns). In contrast, the others trained with the AnimeCeleb successfully
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Fig. 20: (A) Comparison of head pose statistics between VoxCeleb and Anime-
Celeb. (B) User study results for comparison between iCartoon and AnimeCeleb.
The higher score is better.

synthesize the outputs (the 6th and the last columns15) except for the FOMM
(the 5th column). Furthermore, Fig. 25 and 26 demonstrate that our model
generates photo-realistic results compared to the baselines for cross domain head
reenactment.
Intuitive Image Editing. One of the important applications of our model is
to explicit control of a facial expression and head rotation on both the animation
and human domain. As shown in Fig. 27, the AniMo is capable of generating
high-quality images steered by diverse semantics. For example, an animation
and human head can be controlled along roll, pitch and yaw axis (the 1st row
in Fig. 27), and manipulating the facial expressions (i.e., eyes and a mouth) is
achievable (the 2nd row in Fig. 27).
Head Reenactment of Other Animation Images. In this experiment, we
evaluate our model on multiple head image samples collected from different
sources, including Waifu Labs, Naver Webtoon 16, Face Sketches [22], 2D Dis-
ney 17 as seen in Fig. 28. Given the trained WA and GA of the AniMo, the poses
of other animation images can be controlled with the guidance of driving poses.
However, we also find that there exist problems such as a background distortion
and a lack of detailed expressions. We discuss such problems in Section F.
Head Angle Comparison and User Study. Fig. 20 (A) shows the ranges of
head angles of 10K samples from each dataset. As can be seen, we determine
the ranges of head poses in the scope of covering most samples of VoxCeleb. For
purpose of quantitative comparison with iCartoon, we conduct a user study to
compare the properties of datasets after see- ing 100 samples from each dataset.
As shown in Fig. 20 (B), users positively evaluate the style consistency, quality18

and cleanness19 of AnimeCeleb. Also, the users respond that AnimeCeleb has a
comparable diversity of head pose and expression.

15 Note that both models use our pose mapping method.
16 https://comic.naver.com/
17 https://toonify.photos/
18 A low-resolution or defocused image is considered as low-quality one.
19 If a face is occluded with an object or incompletely cropped, then it is considered as

a noisy image
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Fig. 21: Qualitative comparison between our model and the baselines on self-
identity head reenactment given the images of the Voxceleb.

Fig. 22: Qualitative comparison between our model and the baselines on cross-
identity head reenactment given the images of the Voxceleb.
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Fig. 23: Qualitative comparison between our model and the baselines on self-
identity head reenactment given the images of the AnimeCeleb.

Fig. 24: Qualitative comparison between our model and the baselines on cross-
identity head reenactment given the images of the AnimeCeleb.
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Fig. 25: Qualitative comparison between our model and the baselines on cross-
domain head reenactment given the source image from the VoxCeleb and the
driving image from the AnimeCeleb (Anime. → Vox.).

Fig. 26: Qualitative comparison between our model and the baselines on cross-
domain head reenactment given the source image from of the AnimeCeleb and
the driving image from the VoxCeleb (Vox. → Anime.).
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Fig. 27: Intuitive image editing results on animation and human heads via con-
trolling the semantics and the head angles.

Fig. 28: Additional head reenactment results on head images from various ani-
mation head samples.
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Fig. 29: (A) Examples of rendered images with higher resolution (i.e., 1024 ×
1024, 512× 512, and 256× 256) in order. (B) We generate additional examples
under different camera viewpoints from spherical coordinate system where the
neck bone is the origin, ranging azimuth [-40°, 40°] and elevation [-40°, 40°].
(C) Similar to (B) we render the images by relocating a light source position,
ranging azimuth [-40°, 40°] and elevation [-40°, 40°] with setting the neck bone
as the origin.

F Discussions

In this section, we discuss potential issues and directions for improvement of
the AnimeCeleb and the AniMo in further research.
Extension of Creation Protocol. Due to the limited budget, the proposed
pipeline is designed to generate a group of multi-pose yet single-view animation
head images with the limited poses. However, we believe that the AnimeCeleb
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Fig. 30: Additional cross-domain head reenactment results on (A) AnimeCeleb
and (B) other animation datasets.

has room for improvement in three aspects: (1) constructing high-quality images
higher than 256 × 256, (2) obtaining multi-view animation head images by ro-
tating the camera, and (3) building a various light-conditioned animation head
dataset from changing the light source position. To prove these concepts, we
present these samples in Fig. 29. As seen in in Fig. 29 (A), our data creation
pipeline is able to render a higher resolution than 256× 256 (e.g., 1024× 1024).
This definitely allow us to construct a high-quality dataset in future research.
Next, the images of AnimeCeleb are created based on the frontal face, and thus
do not span comprehensive appearances that can be created at various camera
angles. This is mainly due to the goal of the AnimeCeleb lies in constructing the
public animation dataset, which is suitable for head reenactment. A straightfor-
ward method to improve our creation process is to render an animation head
at different camera angles in Blender as shown in Fig. 29 (B). Also, as can be
seen in Fig. 29 (C), we can control the illumination for the aim of generating
animation head images under different light conditions.
Diversity of the AnimeCeleb. One of the AnimeCeleb strengths lies in a wide
spanning of animation characters. However, we fixed the camera position with
the aim of capturing frontal faces of animation characters during the AnimeCeleb
generation process. Although this enables us to extract character face easily, the
fixed camera position also constrained dataset diversity especially in terms of a
translation. In addition, we uniformly set a background of the generated image
as 0 (i.e., white color). Obviously, this weakens the capacity of a head reenact-
ment model trained with the AnimeCeleb when handling a center-unaligned or
complicated-background animation head image. Our planned solution to these
limitations is to develop a more flexible architecture that can consider translation
parameters under this constraint.
Limitations of the AniMo. We have found that when using 3DMM param-
eters obtained from the VoxCeleb, the AniMo often fails to reflect the detailed
poses (e.g., eye or mouth pose). Indeed, there are successful examples as shown
in Fig. 30, our finding is that region sizes of lip and eyes are important to gen-
erate diverse images; more dynamics are tend to be entailed when a lip or eyes
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are noticeably large. On the other hand, this is not the case when we use 3DMM
parameters acquired by our pose mapping method with a pose vector from the
AnimeCeleb. We conclude that this behavior mainly stems from the fact that a
pose from the VoxCeleb often does not identify the exact position of an eye or a
mouth. In future work, we will address this problem by considering expression
detail correctness of the outputs during training.

In addition, since the images of the AnimeCeleb are center-aligned and have
no background, it is no surprise that there exists a performance degradation
when an animation head image does not these conditions(e.g., containing com-
plicated background). To be specific, the generated outputs have an artifact at
background and often loss the detailed poses (e.g., eye or mouth pose). This
behavior is also observed in previous studies [4,28,35] when a position of a given
head in an image is far from the training dataset distribution. The solution to
alleviate the problem by shifting a head position of a given source and driving
image in the inference time 20. Similar to these approaches, we plan to imple-
ment an additional preprocessing pipeline for an animation source image during
the inference.

20 https://github.com/shrubb/latent-pose-reenactment


	AnimeCeleb: Large-Scale Animation  CelebHeads Dataset for Head Reenactment

