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Abstract. Knowledge distillation learns a lightweight student model that
mimics a cumbersome teacher. Existing methods regard the knowledge as
the feature of each instance or their relations, which is the instance-level
knowledge only from the teacher model, i.e., the local knowledge. However,
the empirical studies show that the local knowledge is much noisy in object
detection tasks, especially on the blurred, occluded, or small instances.
Thus, a more intrinsic approach is to measure the representations of
instances w.r.t. a group of common basis vectors in the two feature spaces
of the teacher and the student detectors, i.e., global knowledge. Then, the
distilling algorithm can be applied as space alignment. To this end, a novel
prototype generation module (PGM) is proposed to find the common
basis vectors, dubbed prototypes, in the two feature spaces. Then, a robust
distilling module (RDM) is applied to construct the global knowledge
based on the prototypes and filtrate noisy local knowledge by measuring
the discrepancy of the representations in two feature spaces. Experiments
with Faster-RCNN and RetinaNet on PASCAL and COCO datasets
show that our method achieves the best performance for distilling object
detectors with various backbones, which even surpasses the performance
of the teacher model. We also show that the existing methods can be easily
combined with global knowledge and obtain further improvement. Code
is available: https://github.com/hikvision-research/DAVAR-Lab-ML.
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1 Introduction

Object detectors can be enhanced by applying larger networks [13,21], which,
however, will increase the storage and computational cost. A promising solution
for finding the sweet spot between efficiency and performance is knowledge
distillation (KD) [1,16], which learns a lightweight student that mimics the
behaviors of a cumbersome teacher.

⋆ Authors contributed equally. † Corresponding authors.
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Fig. 1. Left: the prototypes are representative and play roles as a common group
of basis vectors in TS-space. Although the absolute location of Ins. 4 is different in
TS-space, its representations, e.g., the relations, w.r.t. prototypes are similar while Ins.
5 shows the representation of much dissimilar. Right: on COCO dataset [28] with
Faster-RCNN detector [36], we show the discrepancy of relations between instances and
three types of basis in TS-space. 10 instances are selected for each class as the bases and
others are used for measuring the discrepancy of relations in TS-space. The relations
with prototypes show much smaller discrepancy than others.

The knowledge can be known to be formed in three categories [10]: feature-
based knowledge [37,45,15,43,46], response-based knowledge [16,24,34], and relation-
based knowledge [34,30,42,25,4]. Such knowledge can be treated as the local
knowledge, since only the instance-level knowledge from a single feature space,
e.g., the teacher’s, is considered. Based on these knowledge, existing methods
design their distilling algorithms for object detection tasks based on some prior
senses, e.g., the foreground regions [43], the decoupled background regions [11],
the attention guided regions [46,22], or the discrepancy regions [4,23]. However,
we find that the local knowledge is of much discrepancy between the teacher and
the student in object detection tasks, especially on the ambiguous instances which
are blur, truncated, or small. This is because features of ambiguous instances
are susceptible to the small disturbance in feature spaces of the teacher and the
student. Thus, the distilling process will suffer from the noisy local knowledge,
e.g., the false positives and the localization errors, and lead to sub-optimal.

The main concerns on relieving the effect of noisy local knowledge are two folds:
constructing reliable global knowledge and applying robust distilling algorithms.
By viewing knowledge as the representation of feature space, a more intrinsic
approach is to find a group of common basis vectors in both the feature spaces
of the teacher and the student detectors. In this way, the global knowledge can
be formed by representing the instances w.r.t. these basis vectors. Then, a more
robust distilling algorithm can be designed by measuring the discrepancy of the
representations in the two feature spaces. Hereafter, we name the two feature
spaces of the teacher and the student detector as TS-space and the common basis
vectors of the TS-space as prototypes.

In Fig. 1 (left), we illustrate that: (1) the representations of normal instances
w.r.t. the prototypes are of the little discrepancy between two feature spaces, e.g.,
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the Ins.4 ; (2) the discrepancy of the ambiguous instances is much larger than
others, e.g., the Ins. 5. In Fig. 1 (right), we show the statistic analysis of the
discrepancy of the instance representations in TS-space on the COCO dataset.
Notice that each instance is represented by a pair of features in the TS-space.
Thus, we first measure the cosine similarity between the bases and each of the
other instances in the TS-space, and then calculate the discrepancy by l1 distance
as shown by the abscissa. In Fig. 1 (right), the discrepancy of relations between
prototypes and other instances is much smaller than other bases, which shows a
more promising representation of the knowledge in TS-space.

Based on the above considerations, we first propose a prototype generation
module (PGM) to find a group of common basis vectors as the prototypes in TS-
space. It selects the prototypes according to minimizing the reconstruction errors
of the instances in the two feature spaces, which is inspired by the dictionary
learning [41,20,33]. Then, a robust distillation module (RDM) is designed for
robust knowledge construction and transfer. Based on the prototypes, the global
knowledge is formed by representing the instances under the prototypes, which
shows a smaller gap between the two spaces as in Fig. 1 (right). The discrepancy
of the representations in TS-space can also be regarded as an ensemble of
the two models to mitigate noisy local knowledge transferring when distilling.
Experiments are carried out with both single-stage (RetinaNet [27]) and two-stage
detectors (Faster R-CNN [36]) on Pascal VOC [7] and COCO [28] benchmarks.
Extensive experimental results show that the proposed method can effectively
improve the performance of knowledge distillation, which achieves new remarkable
performance. We also show the existing methods can be further improved by the
prototypes with global and local knowledge.

2 Related Works

2.1 Object Detection

Existing object detection methods based on deep neural networks can be divided
into anchor-based and anchor-free detectors. The anchor-based detectors use the
preset boxes as anchors, which are trained to classify their categories and regress
the offsets of coordinates. They can be further divided into multi-stage [9,36] and
single-stage [35,29,8] detectors. As the representative multi-stage detector, Faster
R-CNN [36] uses a region proposal network to generate proposals that probably
contain objects and then predicts their categories and refines the proposals in the
second stage. Considering the large computation cost of the multi-stage detectors,
YOLO [35], as the representative single-stage detector, is proposed to use a fully
convolutional network to predict both the bounding boxes and categories. It is
further improved by applying feature pyramid [29], deconvolutional layers [8]
and focal loss [27] to treat the various object scales, the semantic information
of features, and the unbalance of positives and negatives, respectively. Many
anchor-free detectors [40,49] are proposed to avoid empirically setting and tedious
calculation of the anchors. Although applying deeper and wider networks can
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often improve the performance of detectors, it is too computationally expensive
in many resource-limited applications.

2.2 Knowledge Distillation

Knowledge distillation [16,47,14] is proposed by Hinton et al. [16] in the image
classification task to transfer knowledge of a cumbersome teacher model into a
compact student model. There are two main aspects of knowledge distillation:
knowledge construction and knowledge transfer. For the first aspect, knowledge
mainly consists of three types [10]: the feature-based knowledge, i.e., activations
of intermediate feature [37,17,45,15], the relation-based knowledge, i.e., structures
in the embedding space [34,31,39,42,25], and the response-based knowledge, i.e.,
the soft target of the output layers [16]. For the second aspect to effectively
transfer the knowledge to the student. [16] applies a temperature factor to control
the softness of the probability distribution over classes. [37] adds a regression
layer as a bridge to match dimensions of the features. Such knowledge can be
viewed as local knowledge since only the instance-level knowledge in the single
feature space, e.g., the teacher’s is considered.

For distilling an object detector [3,11,48,46,23,22], more attention is paid on
constructing knowledge due to the extreme imbalance over the foreground/background
areas and the numbers of instances among different classes. [43] aims at keeping
the balance between foreground and background features by distilling on the
areas around ground-truth boxes, while [24] distills on high-level features within
the equivalently sampled foreground and background proposals by referring to
the ground-truth boxes. [4] is recently proposed to distill features in anchors
where there are the most discrepancies of confidence between the student and
the teacher model. [38] proposes to gradually reduce the distillation penalty to
balance the two targets of detection and distillation. However, existing methods
regard the activations or the relations between all instances as the local knowledge
to distill object detectors, which suffers from the noises, e.g., the ambiguous
instances or the detection errors from the teacher.

3 Method

In this section, we detail the proposed framework for distilling object detectors
with global knowledge. As shown in Fig. 2, the overall framework consists of two
modules: a prototype generation module (PGM) to find class-wise prototypes
for bridging the two feature spaces, and a robust distilling module (RDM) to
construct and distill the reliable global knowledge based on the prototypes.

3.1 Prototype Generation Module

The knowledge of a deep model can be viewed as the representation of its
feature space, which can be approximated by a small set of basis vectors from
the view of dictionary learning [41,20], as shown in Fig 1 (left). Concretely, let
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Fig. 2. The proposed framework for distilling object detectors with global knowledge.
A prototype generation module (PGM) is first deployed to find the prototypes for each
class based on the similarity of their representations in TS-space. A robust distillation
module (RDM) is then designed to construct reliable global knowledge w.r.t. the
prototypes and measure their discrepancy for robust knowledge distillation.

F = {fi}Ni=1 ∈ RD×N be features of N instances in the feature space of D
dimensions. The K (K≪N) basis vectors G = {gi}Ki=1⊂F of a single feature
space can be selected by minimizing the reconstruction errors of all instances:

G, W = argmin
G,W

||F −GW ||22 + λ||W ||21, (1)

where W ∈ RK×N is the representation of all samples F w.r.t. the basis vectors
G. The last regularized term weighted by λ helps to learn a sparse W , which
makes the basis vectors G representative.

In the knowledge distillation task, there are two different feature spaces that
are represented by the teacher and student detectors, namely TS-space. Thus,
a more intrinsic approach is to find a group of common basis vectors in TS-
space, which bridge the gap between the two spaces and reduce the difficulty of
distillation. Following the above considerations, the prototype generation module
(PGM) aims at finding K instances as the basis vectors, dubbed prototypes.
In this way, other instances can be represented by prototypes with minimum
reconstruction errors in each of the feature spaces. Meanwhile, the representing
discrepancy based on the prototypes between two feature spaces should also be
small such that it is easier to transform one feature space to another.

Let Ft = {f t
i }Ni=1 ∈ RDt×N and Fs = {fs

i }Ni=1 ∈ RDs×N be the N instances
in the feature spaces of the teacher and the student detectors, respectively. Dt and
Ds are the dimensions of the two feature spaces. TheK prototypes can be grouped
as (Gt,Gs) = {(gt

i , g
s
i )}Ki=1, where Gt = Fi(t) ⊂ Ft and Gs = Fi(s) ⊂ Fs are the

subset of all instances in TS-space. i(s), i(t) are the indexing sets.
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Notice that the prototypes are the common basis vectors of TS-space. Thus,
they can be generated from all the instances by minimizing the reconstruction er-
rors in both of the two feature spaces as well as a regularization of the representing
consistency with a trade-off weight λ:

||Ft − Fi(t)Wt||22 + ||Fs − Fi(s)Ws||22 + λ||Ws −Wt||22
s.t. i(s) = i(t) and |i(s)| = |i(t)| = K

(2)

Wt = {wt
j,i}K×N and Ws = {ws

j,i}K×N are the representations, i.e., coordinates,
of the N instances w.r.t. the K prototypes in the feature spaces of the teacher
and the student. The last term in Eq. 2 requires the representations of instances
in TS-space are similar such that the discrepancy of the relations is small, as
illustrated in Fig. 1 (right). The constraint i(s) = i(t) requires that a prototype
is indeed one instance represented in two feature spaces, and total K prototypes
are selected. In this way, representations of instances w.r.t. the prototypes can
be regarded as approximations of the feature space, i.e., the global knowledge,
as shown in Fig. 1 (left), which allows penalizing the difference of the relations
between instances and prototypes in two feature spaces for knowledge transfer.
Besides, the discrepancy of relations w.r.t. the prototypes can be used as the
robustness cue for knowledge transfer, as illustrated in Fig. 1.

We show an approximate solution of the problem in Eq. 2 through a variant
of matching pursuit [33], which is indeed a greedy algorithm yet very efficient.
To select the (n+ 1)th prototype (gt

n+1, g
s
n+1), we first define the residuals rtn,i

and rsn,i w.r.t. the selected n prototypes as follows:

rtn,i≜f t
i −

n∑
k=1

gt
kw

t
k,i, rsn,i≜fs

i −
n∑

k=1

gs
kw

s
k,i. (3)

The objective in Eq. 2 w.r.t. the (n+ 1)th prototype can be written by

Ln+1 =

N∑
i=1

||rtn+1,i||22 +
N∑
i=1

||rsn+1,i||22 + λ

N∑
i=1

n+1∑
k=1

(wt
k,i − ws

k,i)
2. (4)

The optimal wt
n+1,i and ws

n+1,i can be obtained by making the derivative of the
Ln+1 with respect of wt

n+1,i and ws
n+1,i to zero. Then, we have

wt
n+1,i =

〈
rtn,i, g

t
n+1

〉
+ λws

n+1,i

λ+ ||gt
n+1||22

, ws
n+1,i =

〈
rsn,i, g

s
n+1

〉
+ λwt

n+1,i

λ+ ||gs
n+1||22

. (5)

We detail the derivation and show the closed-form solution of Eq. 5 in the
supplemental materials, where we also show more analysis about the relationship
between global knowledge and relation-based knowledge. The overall algorithm
for generating prototypes is summarized in Alg. 1. Notice that we separately
generate prototypes for each class.
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Algorithm 1 Algorithm for selecting prototypes in PGM.

Input:
{(f t

i ,f
s
i )}Ni=1: features of N instances in TS-space;

Parameter:
K: number of prototypes to be selected;
λ: regularization weight;
Output:
I: index set of the prototypes

1: initialize n = 0, the residuals rt
0,i = f t

i , and rs
0,i = fs

i ∀i = 1, · · · , N ;
2: while n < K do
3: compute the optimal ws

n+1,i and wt
n+1,i by Eq. 5;

4: compute the Lk
n+1 with Eq. 4 for each instance by setting gs

n+1 = fs
k and

gt
n+1 = f t

k, ∀k = 1, · · · , N ;
5: append the index k∗ into I where k∗ = argmink

{
Lk

n+1

}
∀ (gs

k, g
t
k) ∈

{(fs
i ,f

t
i )}Ni=1; set g

t
n+1 = f t

k∗ and gs
n+1 = fs

k∗ ;
6: update the residuals rt

n+1,i and rs
n+1,i by Eq. 3;

7: set n = n+ 1;
8: end while
9: Return: I

3.2 Robust Distillation Module

In this section, we focus on global knowledge construction and robust knowledge
transferring by a robust distillation module (RDM) based on the prototypes.

Identifying the knowledge. By referring to the prototypes, the global
knowledge, i.e., the representations of instances on the common basis vectors in the
two feature spaces, can be naturally constructed by measuring the representation
between the instances and the prototypes.

Specifically, let the features of the jth instance in the ith image be f t
i,j and

fs
i,j in the feature spaces of the teacher and the student detectors, respectively.

For an instance with a pair of features (f t
i,j ,f

s
i,j) in TS-space, they can be

separately projected onto the common basis vectors (Gt,Gs) in each space as
Λt

i,j = PGt
(f t

i,j) and Λs
i,j = PGs

(fs
i,j). P is the projection function. The project

coefficients Λt
i,j and Λs

i,j can be calculated exactly the same as in Eq. 5.

Thus, the global knowledge can be transferred by minimizing:

Lglobal =
1

2NK

n∑
i=1

ni∑
j=1

σi,j ||Λs
i,j −Λt

i,j ||22, (6)

where N =
∑n

i=1 ni are the total number of instances. n is the number of images
and ni is the number of instances in the i-th image. σi,j is the weight that reveals
how reliable the knowledge is and will be discussed later.

For the local feature-based knowledge, we follow [43] identifying the knowledge
as the features of the regions that overlap with any ground-truth boxes larger
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Algorithm 2 The proposed knowledge distilling process.

Input: teacher detector T , student detector S, prototype updating period T and
maximum training epochs Tm.

1: let e be the current training epoch and set e = 0;
2: while e < Tm do
3: if mod(e,T) == 0 then
4: extract features of instances Ft and Fs from the teacher T and current student

(at e-th epoch) Se, respectively;
5: updating and bootstrapping prototypes (Gt,Gs) for each class by minimizing

Eq. 2 based on T and Se (see Alg. 1);
6: end if
7: training the student detector for one epoch by minimizing Eq. 9;
8: set e = e+ 1;
9: end while

than a threshold. Thus, the local feature-based knowledge can be defined as:

Lfeat
local =

1

2N

n∑
i=1

ni∑
j=1

σi,j ||H(fs
i,j)− f t

i,j ||22, (7)

where H is an adaptation function, e.g., a 1× 1 convolutional layer with ReLU
activation in our paper, that transforms the features of the student into the
feature space of the same dimensions as the teacher’s.

For the local response-based knowledge, we use the proposals and apply
the RoI-align [36] to get the prediction inside the regions. The KL-divergence
weighted by σi,j is used on the predicting logits between the teacher and the
student, and denoted as Lresp

local.

Robustly distilling the knowledge. Since the knowledge from the teacher
might be noisy, especially on ambiguous instances, a robust knowledge transferring
approach is required to distinguish noisy knowledge and mitigate transferring
them to the student. Inspired from co-teaching [18,32,12] to alleviate the noise
from multiple views, the student might also have a voice in discriminating the
noisy knowledge. Based on the observations that reliable knowledge should
have similar representations under the measurement from two models, shown
in Fig. 1, the robustness of knowledge can be estimated by the discrepancy of
representations in TS-space. Thus, the weight σi,j for fine-grained knowledge
distillation can be approximated as

σi,j = 1− ||Λs
i,j −Λt

i,j ||2. (8)

σi,j describes the similarity of the representations between the instance and the
prototypes in the TS-space. It is indeed heavily related to the last term in Eq. 2,
where we concentrate more on the instances with small discrepancy w.r.t. the
prototypes for both global and local knowledge transfer.
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Table 1. Knowledge distillation results on COCO dataset with different detectors.
Some results are missing since we cannot find the performance report in their papers.

Method mAP AP50 AP75 APs APm APl mAR ARs ARm ARl

Faster-Res101 (teacher) 39.8 60.1 43.3 22.5 43.6 52.8 53.0 32.8 56.9 68.6
Faster-Res50 (student) 38.4 59.0 42.0 21.5 42.1 50.3 52.0 32.6 55.8 66.1

FGFI [43] 39.3 59.8 42.9 22.5 42.3 52.2 52.4 32.2 55.7 67.9
DeFeat [11] 40.3 60.9 44.0 23.1 44.1 53.4 53.7 33.3 57.7 69.1
FBKD [46] 40.2 60.4 43.6 22.8 43.8 53.2 53.4 32.7 57.1 68.8
GID [4] 40.2 60.8 43.6 23.6 43.9 53.0 53.7 33.6 57.7 68.6
Ours 40.6 61.0 44.0 23.4 44.4 53.3 53.8 33.9 57.9 69.2

Retina-Res101 (teacher) 38.9 58.0 41.5 21.0 42.8 52.4 54.8 33.4 59.3 71.2
Retina-Res50 (student) 37.4 56.7 39.6 20.0 40.7 49.7 53.9 33.1 57.7 70.2

FGFI [43] 38.6 58.7 41.3 21.4 42.5 51.5 54.6 34.7 58.2 70.4
GID [4] 39.1 59.0 42.3 22.8 43.1 52.3 55.3 36.7 59.1 71.1

DeFeat [11] 39.3 58.2 42.1 21.7 42.9 52.9 55.1 33.9 59.6 71.5
FBKD [46] 39.3 58.8 42.0 21.2 43.2 53.0 55.4 34.6 59.7 72.2

FR [5] 39.3 58.8 42.0 21.5 43.3 52.6 - - - -
PFI [23] 39.6 - - 21.4 44.0 52.5 - - - -
Ours 39.8 58.6 42.6 21.8 43.5 53.5 55.8 34.1 60.0 72.2

3.3 Optimization

The overall objective for distilling object detectors can be summarized as:

Lkd = Ldet + α1Lglobal + α2Lfeat
local + α3Lresp

local, (9)

where Ldet is the original detection objective defined by the student detector. α1,
α2, and α3 weigh the global and local knowledge transfer. For detectors with
FPN [26] using multiple feature maps for prediction, we independently apply the
PGM and the RDM on each of the feature maps. Since the student is gradually
optimized and the relations are changed, the prototypes should be updated when
training the student. For efficiency, the prototypes are bootstrapped and updated
every T epochs. Both the student and the teacher detectors are pre-trained on the
task-relevant dataset to extract features of instances and generate the prototypes.
The overall proposed distilling algorithm is summarized in Alg. 2

4 Experiments

We perform experiments with the representative single-stage and two-stage
detectors, namely, RetinaNet [27] and Faster R-CNN [36] on the PASCAL VOC
[7] and COCO [28] detection benchmarks. We follow the common settings that
use both VOC 07 and 12 trainval split for training and VOC 07 test split for
test. For the COCO dataset, the train split are used for training while the val
split are used for test. Unless otherwise specified, the hyper-parameters are set
as K = 10, λ = 10 and T = 1. The distilling weights α1, α2, and α3 are set to
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1.0, 1.0, 5.0, respectively. The student detector is trained through 2× learning
schedule on 8 Tesla V100 32G GPUs. The input images are resized as large as
1333× 800 while keeping the aspect ratio. Other standard augmentations, e.g.,
the photometric distortion, are applied as the settings in MMDetection [19]. The
ResNet101 and ResNet50 [13] backbones are used for the teacher and the student
detectors, respectively. We also validate our methods with larger teachers, e.g.,
Cascade Mask R-CNN [2] with ResNext-101 [44]. More implementation details
are included in the supplemental material.

4.1 Comparison with existing methods on VOC and COCO datasets

We first evaluate our method on VOC and COCO datasets with the representative
two-stage detector (Faster R-CNN) and single-stage detector (RetinaNet). As
shown in Table 1 and Table 2, all student models are significantly improved by our
knowledge distillation algorithm, e.g., 2.2% and 2.4% mAP on the COCO dataset
and 2.5% and 2.5% mAP on the VOC dataset for both detectors. Moreover,
they even surpass the teacher detector within a large margin, e.g., 0.8%, 0.9%
on COCO dataset for both detectors. As we form the global knowledge as the
ensemble of both the student and the teacher detectors and use common basis
vectors to bridge the two feature spaces for distilling, the proposed method shows
more potential to achieve a further gain compared to the teacher detectors.

We also compare our method with the SOTA detection distillation methods
with the same teacher and student detectors. Table 1 and Table 2 show that the
proposed method achieves best mAP on COCO and VOC datasets. Notice that
GID [4] applies all the three types of local knowledge, i.e., feature-based, relation-
based, and response-based knowledge for distilling. However, the proposed method
shows further improvement on both COCO and VOC datasets, e.g, 0.7% mAP
gain for distilling the RetinaNet. It reveals that distilling the knowledge by
forcing the student to absolutely behave the same as the teacher still leads to
sub-optimal since the local knowledge represented by the ambiguous instances
is hard to transfer and will hurt the distillation. The proposed method shows a
more promising way by looking for a group of common basis vectors, i.e., the
prototypes, for bridging the gap of the two feature spaces and forming as well as
distilling the global knowledge based on the prototypes in a more robust way.
Moreover, the results in Table 1 and Table 2 demonstrate that our method is
capable to be applied to various detection frameworks.

4.2 Effects of the prototypes in robust knowledge distillation

To verify the advantages of the prototypes bridging the two feature spaces for
global and local knowledge distillation, we conduct ablation experiments on the
VOC dataset with 1× learning schedule. ResNet101-based and ResNet50-based
Faster R-CNN are used as the teacher and the student detectors, respectively.

We first separately apply Lglobal, Lfeat
local and Lresp

local in Eq. 9 for knowledge
distillation. In our framework, the global knowledge is formed as the projections
of instances w.r.t. the prototypes, while the feature-based and response-based
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Table 2. Knowledge distillation results on Pascal VOC dataset with different detectors.

Method
Faster R-CNN Res101-50 RetinaNet Res101-50
mAP AP50 AP75 mAP AP50 AP75

teacher 56.3 82.7 62.6 58.2 82.0 63.0
student 54.2 82.1 59.9 56.1 80.9 60.7

FitNet [37] 55.0 82.2 61.2 56.4 81.7 61.7
FGFI [43] 55.3 82.1 61.1 55.6 81.4 60.5
FBKD [46] 55.4 82.0 61.3 56.7 81.9 61.9
ICD [22] 56.4 82.4 63.4 57.7 82.4 63.5
GID [4] 56.5 82.6 61.6 57.9 82.0 63.2
Ours 56.7 82.9 61.9 58.6 82.4 64.2

Table 3. Ablation experiment on separately applying the global knowledge Lglobal,
feature-based local knowledge Lfeat

local and response-based local knowledge Lresp
local in Eq. 9

on VOC dataset with 1× learning schedule.

Module Student Faster R-CNN Res101-50

Lfeat
local ✓ ✓ ✓

Lglobal ✓ ✓ ✓
Lresp

local ✓ ✓ ✓ ✓

AP50 81.3 82.0 82.4 82.2 82.6 82.4 82.9

local knowledge is weighted through the discrepancy of the projections. Table 3
shows that the prototypes can boost the global and local knowledge distillation
by a large margin. By applying both the global and local knowledge, we show
1.6% performance gain compared to the student detector with the 1× learning
schedule, which also surpasses the teacher detector with the mAP 82.4%.

Furthermore, we also extend some existing methods based on the prototypes.
DeFeat [11], RKD [34] and Vanilla-KD [16] are the representative feature-based,
relation-based and response-based local knowledge distillation methods. We di-
rectly use the released source codes of FBKD and carefully re-implement the RKD
(as RKD†) and Vanilla-KD as (Vanilla-KD†) for distilling the object detectors.
Then, we apply the prototypes separately: as for RKD [34], we form the global
knowledge by projecting the instances w.r.t. the prototypes; as for DeFeat [11]
and Vanilla-KD [16], we apply the distilling weight defined in Eq. 8, which is
measured by the discrepancy w.r.t. the prototypes. Table 4 shows the consistent
performance gain among those three knowledge distillation methods with the
prototypes, which shows the effectiveness of prototypes for both constructing
more reliable global knowledge and more robust knowledge transfer. The im-
plementation details by combining prototypes with those distilling methods are
included in the supplemental materials.
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Table 4. Ablation experiment by combining the prototypes with the existing represen-
tative methods for feature-based [11], relation-based [34], and response-based [16] local
knowledge distillation, respectively.

Method Student DeFeat [11] RKD† [34] Vanilla-KD† [16]

+prototypes ✓ ✓ ✓

AP50 81.3 82.0 82.4 81.6 82.0 81.8 82.2

Table 5. Ablation experiments on the hyperparameters α1, α2, α3, λ, K, and T .

α1 0.1 0.5 1.0 1.2 α2 0.5 0.8 1.0 1.5

AP50 82.1 82.3 82.9 82.6 AP50 82.3 82.4 82.9 82.6

α3 1 5 10 20 λ 1 10 50 100

AP50 82.3 82.9 82.3 82.2 AP50 82.3 82.9 82.6 82.0

K 1 5 10 20 T 0.5 1 2 3

AP50 82.0 82.3 82.9 82.5 AP50 82.8 82.9 82.3 82.2

4.3 Analysis of the hyperparameters

We investigate the updating periods T in Alg. 2 of the prototypes for knowledge
distillation on the VOC dataset. Since the student detector is updated during
training, the prototypes and their features Gs should be updated. Table 5 shows
that as the period T increasing, the performance slightly decreases. It is because
the bootstrapped prototypes are approximations of the basis vectors of updated
student detector, which results in some bias when forming the global knowledge
as well as computing the discrepancy in Eq. 8. Table 5 also shows ablation
experiments on the three weights α1, α2, and α3 of the three terms in Eq. 9, the
number of selected prototypes K and the similarity regularization weight λ in
Eq. 2. The results in Table 5 show that the proposed method is relatively robust
to the hyperparameters, which achieves better performance than the student in
a wide range of hyperparameters.

4.4 Analysis on the prototype generation methods

In our framework, the prototypes play roles as the common basis vectors in
both the feature spaces of the teacher and the student. They are selected by
minimizing the reconstruction errors among instances in TS-space as defined
in Eq. 2. We also compare the proposed prototype generation algorithm in Alg.
1 with some other similar methods, e.g., the K-means and the DBSCAN [6].
Besides, we also deliberately select the same number of ambiguous instances,
e.g., small or truncated instances, as the prototypes for comparison. In Table
6, we show the performance of knowledge distillation based on those prototype
generation methods. We find that the cluster-like algorithms, e.g., the K-means
or the DBSCAN [6], fail to improve the distillation by comparing the results in
Table 3, because those algorithms are applied only in the single feature space
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Table 6. Ablation experiments on the effect of different prototype generation methods
for knowledge distillation. For the cluster-like algorithms, e.g., K-Means and DBSCAN
[6], we apply them separately on the feature space of either the teacher or the student.

Method K-Means DBSCAN [6] Ambiguous Ours

Features Student Teacher Student Teacher - Both
AP50 82.3 82.1 82.4 82.2 81.8 82.9

and can hardly bridge the two feature spaces of the teacher and the student. The
poor performance by selecting the ambiguous instances as the prototypes further
verify the importance of selecting the representative instances as the prototypes.
Otherwise, it will bring large discrepancy as shown in Fig. 1 (right), and increase
the difficulty of knowledge distillation.

4.5 Distilling with larger teacher

The larger teacher will achieve better performance, which might also bring an
extra bonus for knowledge distillation. Following the common settings with the
existing methods [11,43,38], on the VOC dataset, we use the Faster R-CNN with
the backbones ResNet152 and ResNet50 as the teacher and the student. For a fair
comparison, we follow DeFeat [11] by using 1× learning schedule. On the COCO
dataset, we follow FBKD [46] by applying ResNeXt101-based [44] Cascade Mask
R-CNN [2] as the teacher detector and the ResNet50-based Faster R-CNN as the
student. The 2× learning schedule is used as in FBKD [46]. In Table 8 and Table
7, we show the performance of knowledge distillation with larger teachers on VOC
and COCO datasets, respectively. The proposed method can still achieve the best
performance on the VOC dataset, with the 0.6% mAP advantage w.r.t. DeFeat
[11]. On the COCO dataset, we achieve comparable performance as the FBKD
[46] with the much larger teacher and heterogeneous backbone. The performance
with larger teachers further shows the proposed method can be applied in various
detection frameworks with the same hyperparameters.

4.6 Analysis of noisy knowledge transferring

In Figure 3, we also illustrate some wrong detection in red boxes, e.g., false
positives and inaccurately located instances, from the teacher detector that are

Table 7. Knowledge distillation results with larger teacher on COCO dataset.

Method Backbone mAP AP50 AP75 APs APm APl

Cascade R-CNN (teacher) ResNext101 47.3 66.3 51.7 28.2 51.7 62.7
Faster R-CNN (student) ResNet50 38.4 59.0 42.0 21.5 42.1 50.3

FBKD [46] ResNet50 41.5 62.2 45.1 23.5 45.0 55.3
Ours ResNet50 41.5 61.9 45.1 23.5 45.1 55.4
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Fig. 3. Illustration of detection results via different knowledge distillation methods, e.g.,
FGIF [43], our re-implemented RKD [34], DeFeat [11], and ours. Some noisy knowledge
of the teacher are transferred to the student (marked in red boxes). Best view in color.

Table 8. Knowledge distillation results with larger teacher on VOC dataset.

Method Teacher Student
Faster R-CNN ResNet152-50

FGFI[43] TADF[38] DeFeat[11] Ours

AP50 83.1 81.3 81.6 81.7 82.3 82.9

transferred to the student. Our method shows more promising results against
noisy knowledge transferring and is capable to surpass the performance of the
teacher detector. More quantitative analysis is discussed in the supplementary.

5 Conclusion

In this paper, we propose a novel knowledge distillation framework with global
knowledge. The prototype generation module is first designed to find a group of
common basis vectors, i.e., the prototypes, by minimizing the reconstruction errors
in both the feature spaces of the teacher and the student. The robust distillation
module is then applied to (1) construct the global knowledge by projecting
the instances w.r.t. the prototypes, and (2) robustly distill the global and local
knowledge by measuring their discrepancy in the two spaces. Experiments show
that the proposed method achieves state-of-the-art performance on two popular
detection frameworks and benchmarks. The extensive experimental results show
that the proposed method can be easily stretched with larger teachers and the
existing knowledge distillation methods to obtain further improvement.
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