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Abstract. Most of existing methods for few-shot object detection fol-
low the fine-tuning paradigm, which potentially assumes that the class-
agnostic generalizable knowledge can be learned and transferred im-
plicitly from base classes with abundant samples to novel classes with
limited samples via such a two-stage training strategy. However, it is
not necessarily true since the object detector can hardly distinguish be-
tween class-agnostic knowledge and class-specific knowledge automati-
cally without explicit modeling. In this work we propose to learn three
types of class-agnostic commonalities between base and novel classes ex-
plicitly: recognition-related semantic commonalities, localization-related
semantic commonalities and distribution commonalities. We design a
unified distillation framework based on a memory bank, which is able
to perform distillation of all three types of commonalities jointly and
efficiently. Extensive experiments demonstrate that our method can be
readily integrated into most of existing fine-tuning based methods and
consistently improve the performance by a large margin. Code is avail-
able at: https://github.com/WuShuang1998/MFDC.

Keywords: Few-shot; Object Detection; Knowledge Distillation; Com-
monality

1 Introduction

Few-shot object detection aims to learn effective object detectors for novel classes
with limited samples, leveraging the generalizable prior knowledge learned from
abundant data of base classes. Compared to general object detection [8127], few-
shot object detection is supposed to be able to generalize across different classes
rather than just across different samples within a class. It is also more challenging
than few-shot classification [7I31I34] in that it demands to learn the transferable
knowledge not only on recognition, but also on localization.
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Fig. 1. Given a cat sample from the base class ‘Cat’, we measure the semantic similar-
ities between it and each of novel classes in the optimized feature space for both object
recognition and localization, which are interpreted as the recognition- and localization-
related semantic commonalities, respectively. These learned commonalities are distilled
during the fine-tuning stage to improve the performance of the object detector on novel
classes. Note that the visualizations by Grad-CAM++ [2] show that the learned fea-
tures for recognition focus on the local salient regions while the localization pays more
attention to the global boundary or shape features.

A prominent modeling paradigm for few-shot object detection is fine-tuning
framework [626I32/3540], which first pre-trains the object detector using the
samples from base classes, then fine-tunes the model on novel classes. Based
on such two-stage training strategy, many methods are proposed to deal with a
specific challenge in few-shot object detection, such as MPSR, [40] which tack-
les the problem of scale variation, FSCE [32] for alleviating confusion between
novel classes, and Retentive R-CNN [6] suppressing the performance degrada-
tion on base classes during fine-tuning. A potential hypothesis of such fine-tuning
paradigm is that the class-agnostic prior knowledge for object detection could
be transferred from base classes to novel classes implicitly. Nevertheless, the
object detector can hardly distinguish between class-agnostic knowledge and
class-specific knowledge automatically without explicit modeling.

In this work we propose to learn multi-faceted commonalities between base
classes and novel classes explicitly in the fine-tuning framework, which is class-
agnostic and can be transferred across different classes. Then we perform distil-
lation on the learned commonalities to circumvent the scarcity of novel classes
and thereby improve the performance of the object detector on novel classes.
To be specific, we aim to learn three types of base-novel commonalities: 1)
the recognition-related semantic commonalities like similar appearance features
shared among semantically close classes; 2) the localization-related semantic
commonalities such as the similar object shape or boundary features between dif-
ferent classes; 3) the distribution commonalities in feature space shared between
similar classes like close mean and variance of features in a presumed Gaussian
distribution [30]. Consider the example in Figure |1} we first learn the optimized
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feature spaces for object recognition and localization respectively. Then we mea-
sure the semantic similarities between a given cat sample (from the base class
‘Cat’) and each of novel classes in each feature space. The obtained similarity
distribution in the feature space for recognition is interpreted as the recognition-
related semantic commonalities, and the same applies to the localization-related
semantic commonalities. The learned commonalities are further distilled towards
their corresponding tasks respectively during fine-tuning of the object detector
on novel classes, namely recognition-related commonalities for object classifi-
cation and localization-related commonalities for object bounding box regres-
sion. Consequently, all samples in base classes that share commonalities with
a novel class can be leveraged to train the object detector on this novel class,
which is equivalent to augment the training data for novel classes. Note that the
learned features for recognition and localization focus on different object areas:
the recognition captures the local salient regions (e.g., the head of cat in Fig-
ure |1f) whilst the localization pays more attention to the global boundaries as
shown in Figure [I] Thus we decouple the feature spaces for object recognition
and localization and learn the corresponding commonalities in the decoupled
feature spaces separately. Inspired by Distribution Calibration [45], we learn the
distribution commonalities by estimating the feature variance for a novel class
via reference to the closed base classes, and distill the obtained commonalities by
sampling for data augmentation. To conclude, we make following contributions.

— We learn three types of generalizable commonalities between base and novel
classes explicitly, which can be transferred from base classes to novel classes.

— We design a unified distillation framework based on a memory bank, which is
able to distill all three types of learned commonalities jointly and efficiently
in an end-to-end manner during the fine-tuning stage.

— Our method can be integrated into most of fine-tuning based methods. Ex-
tensive experiments show that our method leads to substantial improvements
when integrated into various classical methods. As a result, our method ad-
vances the state-of-the-art performance by a large margin.

2 Related Work

Few-Shot Image Classification. Few-shot image classification, which aims
to recognize novel categories with limited annotated instances, has received in-
creased attention in the recent past. Optimization-based approaches [7[20/24]
modify the classical gradient-based optimization for fast adaption to new tasks.
Metric-based approaches [31I3334/48] learn a metric space where instances could
be recognized by comparing the distance to the prototype of each category.
Hallucination-based approaches [ITI36/45] learn to generate novel samples to
deal with data scarcity. Compared to image classification, few-shot object detec-
tion which has to consider localization in addition, is still under-explored.

Few-Shot Object Detection. Early works of few-shot object detection focus
on the meta-learning paradigm [BUTOITHITE2TI2213742/44050], which introduces
a meta-learner to leverage meta-level knowledge that can be transferred from
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base classes to novel classes. Recently, researchers find out that the simple fine-
tuning based approaches [1I6123126/32353839/20/51/52] could outperform most
of meta-learning based approaches. TFA [35] proposes a two-stage fine-tuning
process that only fine-tunes the prediction layer. FSCE [32] rescues misclassifi-
cations between novel classes by supervised contrastive learning. UP-FSOD [38]
devises universal prototypes to enhance the generalization of object features. Re-
tentive R-CNN [6] regularizes the adaptation during fine-tuning to maintain the
performance on base classes. DeFRCN [26] proposes to decouple the features for
RPN and R-CNN. All these methods learn to detect novel instances by implic-
itly exploiting the class-agnostic knowledge learned from base classes. Instead,
we address few-shot object detection by distilling the multi-faceted commonali-
ties between base classes and novel classes.

Knowledge Distillation. Classical knowledge distillation aims at transferring
knowledge from a model (teacher) to the other (student). [I4] introduces the soft
prediction of the teacher network as dark knowledge for distillation. [28] leverages
the intermediate representations learned by teacher to guide student. [19] pro-
poses to transfer attention information of teacher. Several works [QI843|47)/49)
use the student itself as a teacher, named self-distillation. Inspired by these
works, we design a novel distillation framework to distill commonalities between
base classes and novel classes based on a memory bank.

3 Multi-Faceted Distillation of Base-Novel Commonality

In this section, we start with the preliminary of few-shot object detection, then
we introduce our method which distills the multi-faceted base-novel commonal-
ities to circumvent the scarcity of training samples in few-shot object detection.

3.1 Preliminary

We follow the standard few-shot object detection settings introduced in [I635]
and split classes into two sets: base classes (, with abundant annotated in-
stances, and novel classes C,, with only K (usually less than 30) instances per
category. Our proposed method involves the two-stage training procedure [35].
In the first stage, the Faster R-CNN [27] detector is trained with all the available
samples of base classes. In the second stage, the pre-trained detector is fine-tuned
on samples of both base and novel classes.

Different from existing works [626/3235]40] that create a small balanced
training set with K novel samples and K base samples in the second stage, we
fine-tune the detector with abundant samples of base classes which are used in
the first stage (the training details are described in the supplementary materi-
als). Thus, we are able to distill the multi-faceted commonalities that can be
transferred from abundant samples of base classes to limited samples of novel
classes to circumvent the data scarcity. Specifically, we distill three types of base-
novel commonalities to learn robust detector for novel classes, including 1) the
recognition-related semantic commonalities 2) the localization-related semantic
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Fig. 2. The framework of our approach. (a) The Rol features are decoupled into two
separate feature spaces for classification Fcjs and bounding box regression Fioc, respec-
tively. During the fine-tuning stage, the recognition-related and distribution common-
alities are learned in F¢s while the localization-related commonalities are learned in
Floc. All three types of commonalities are distilled in a unified framework based on a
memory bank. (b) The recognition-related commonalities are distilled by viewing them
as the soft labels to supervise the classifier whereas the localization-related common-
alities are used as aggregation weights to fuse all regressors. (¢) We distill the variance
for a novel class via reference to the top-k closest base classes, and sample examples
from the calibrated distribution to train the classifier.

commonalities, and 3) the distribution commonalities. Figure |2 illustrates the
overall framework of our method.

3.2 Distilling Recognition-related Semantic Commonalities

Semantically close categories tend to share similar high-level semantic common-
alities that is related to object recognition, such as similar appearance between
cow and horse. We aim to distill such semantic commonalities between base and
novel classes to guide the learning of the object detector on novel classes.
Classical knowledge distillation [14] transfers knowledge from a larger teacher
model to a student model. The transferred knowledge is represented as the pre-
dicted probabilistic distribution on all classes by the teacher model, which can
be interpreted as the similarities of current sample to each class. The knowledge
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distillation is performed by using such probabilistic distribution as the soft labels
to supervise the learning of the model together with the one-hot hard labels.

We draw inspiration from such classical way of knowledge distillation but
conduct distillation in a different way. To distill the recognition-related semantic
commonalities between base and novel classes, we measure the similarities of
samples in base classes to each novel class. Since there is no sufficient samples
from novel classes for learning a teacher model, we calculate such similarities in
a pre-learned feature space JFs directly instead of predicting class probabilities
by a teacher model. Formally, given a foreground region proposal r from a base
class, which is generated by the region proposal network (RPN), we define the
similarity of it to a novel class ¢ as the cosine distance between its Rol feature
v, and the prototype p,. of the class ¢ in the pre-learned feature space Fqjs:

T
Vr He

df=a ——— ¢
Vel el

b € Cy. (1)
Herein, C,, is the set of novel classes and « > 0 is the scaling factor. The prototype
1, is obtained by averaging the object features of a candidate set (implemented
as a memory bank, will be elaborated on in Section in the novel class c:

1 <&,
ll’c: ;me (2)
€ =1

where f! is the vectorial feature for the i-th object in the candidate set and
n. is size of the set. Since we focus on distilling the base-novel commonalities
to circumvent the scarcity of training samples in novel classes, the base-base
commonalities are ignored to allocate all model capacity to base-novel common-
alities. As a result, the similarities of a region proposal r from a base class to
other base classes are defined as a small constant value:

dy = —a,c € Cp \ {Cat }s (3)

where C, denotes the set of base classes and « is the same scaling factor as in
Equation [1| Note that we also calculate the cosine similarity between r and its
groundtruth class ¢, following Equation [1|to guarantee the predicting accuracy
(w.r.t. cg). Finally we normalize the similarities of sample r to all classes by a
softmax function:
qcls _ eXp(d?")
" T exp(d)
Assuming that a foreground region proposal r has 0 commonality with back-
ground cpg, we obtain the complete similarity distribution for r: <% = [q%!%; 0].
Similar to the classical knowledge distillation, we utilize the obtained simi-
larities of a region proposal as soft labels to supervise the learning of our object
detector. In particular, we perform such distillation during the fine-tuning stage
of the detector. Formally, for the region proposal r from a base class, we mini-
mize the Kullback-Leibler (KL) divergence between the soft labels q<* and the

c€CpUC (4)
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predicted class probabilities p&' by the object detector:

Laistill-cls = Z (a7 log qis — g% log pi3). (5)
c€C,UC,U{chg}

Rationale. We learn the semantic commonalities that are related to object
recognition by measuring the similarities of samples from base classes to each
novel class in a pre-defined feature space. Then the learned commonalities (after
normalization) are viewed as soft labels to supervise the fine-tuning of the object
detector. Consequently, all samples in base classes that share recognition-related
semantics with a novel class can be leveraged to train the object detector on this
novel class. In this sense, the proposed commonality distillation significantly
augments the training data for novel classes, thereby improving the performance
of the object detector on novel classes.

3.3 Distilling Localization-related Semantic Commonalities

Besides the recognition-related semantic commonalities, similar categories also
share semantic commonalities that is related to object localization such as sim-
ilar shape or boundary features. Distilling such commonalities between similar
base and novel classes enables the object detector to learn transferable knowl-
edge on localization from abundant base class samples, thereby improving its
performance of object detection on novel classes.

The localization-related semantic commonalities are distilled in a similar
way as the recognition-related commonalities in Section [3.:2] We also learn the
localization-related commonalities by measuring the similarities of samples in
base classes to each novel class in a pre-learned feature space Fio.. One of
the key differences between distillation of two different types of commonali-
ties (recognition- or localization-related) is that they are learned in different
pre-learned feature spaces: each feature space should be learned by optimizing
the corresponding task (object classification or localization), as illustrated in
Figure [1] We present an efficient implementation in Section [3.5)

The learned localization-related commonalities is represented as the normal-
ized similarities in the same form shown in Equation[d In contrast to viewing the
recognition-related commonalities as soft labels for supervision, the localization-
related commonalities are leveraged as normalized weights to aggregate all class-
specific bounding box regressors for object localization. This is based on the
intuition that an object can be localized by not only the bounding box re-
gressor for its groundtruth class, but also the regressors for the similar classes,
more similarities leading to more confidence. Formally, given a region proposal
r from a base class, its bounding box is predicted as offsets t = (¢, ty, tw,th)
to the groundtruth position by aggregating the predictions of all regressors for
C classes. Then the detector is optimized by minimizing the error between the
aggregated prediction and the groundtruth using the smoothed L1 loss [8]:

c
Laistill-loc = Z a4 - Z Smoothpr: (&7 — u;), (6)
=1 ie{z,yw,h}
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where !¢ is the normalized similarities representing the localization-related

commonalities. u; is the bounding-box regression groundtruth for r while ¢{ is
the prediction of box regressor for the class c.

Rationale. The similarities between samples from base classes to each novel
class in a pre-learned feature space Fio. towards localization are learned as the
localization-related commonalities, and are further used as aggregation weights
to fuse regressors for all classes. To be specific, a sample (object) from a base class
is localized by referring to the predictions of all regressors for the novel classes
sharing localization-related commonalities with this sample. It is equivalent to
training these regressors with the sample. As a result, all regressors for novel
classes are optimized with a lot of additional training samples from base classes,
which yields better performance of localization.

3.4 Distilling Distribution Commonalities

Semantically similar categories usually follow similar data distributions, such as
close mean and variance of features in a presumed Gaussian distribution between
these categories [30]. Hence, the third type of commonalities between base and
novel classes that we aim to distill is the distribution commonalities. Inspired
by Distribution Calibration [45] in few-shot image classification, we distill the
distributional statistics from base classes to calibrate the distribution of those
similar novel classes. Consequently, we can sample sufficient examples for these
novel classes to improve the performance of the object detector on novel classes.

Unlike Distribution Calibration which transfers both the mean and variance
of base classes to novel classes, we only distill the variance of base classes while
preserving the mean values of novel classes. This is because transferring both the
mean and variance of base classes would result in the distributional overlapping
between the base and novel classes, making it harder to distinguish between
them during object detection. In contrast, the classification between base and
novel classes is not required in the few-shot classification setting.

Assuming that each feature dimension follows a Gaussian distribution, which
is consistent with Distribution Calibration [45], we first calculate the mean and
variance per feature dimension for both base and novel classes in a pre-learned
feature space, and select the top-k semantically closest base classes for each novel
class according to the Euclidean distance w.r.t. the mean values (equivalent to
the class prototype in Equation . Then we can approximate the variance of
a novel class using the averaged variance over its top-k closest base classes.
Formally, the calibrated variance of a novel class ¢ is estimated by:

1
ol = z Z o (7)
i€S.

Herein, o; is the variance of the base class ¢ and .S, is the set of top-k closest base
classes to the novel class c. In this way we are able to sample more examples
in this pre-learned feature space for the novel class ¢ following the obtained
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Gaussian distribution N (.., o):
Se = {vlv ~ N(pe, 00)} (®)

where p, is mean of the novel class c. S, is the set of sampled features, which
are further used to train the classifier fy of the object detector using the Cross-
Entropy loss:

Laistill-dist = @ > CE(c, fo(v)). 9)

vES.

3.5 Unified Distillation Framework Based on Memory Bank

We propose a unified distillation framework, which is able to distill all three
commonalities jointly in an end-to-end manner during the fine-tuning stage.

Both the recognition-related commonalities and the localization-related com-
monalities are obtained by calculating the similarities between samples of base
classes to each of novel classes in their corresponding (but different) pre-learned
feature spaces. Typically such pre-learned feature spaces are independent from
the feature space for learning the detector, which is achieved by pre-learning
the feature spaces based on other data or other networks. Doing so enables the
knowledge distillation between two different feature spaces. However, such imple-
mentation has two limitations: 1) the commonalities calculated in the pre-learned
feature space may not be accurate since the extracted features for samples of
both base and novel classes are potentially not optimized; 2) the whole training
is performed in two separated stages, which is not efficient.

We propose to learn the commonalities in the same feature space as that for
learning the detector. As shown in Figure [2] we only learn one feature space by
the typical feature learning backbone together with the Rol feature extractor
based on the training data for current task. Then we decouple the feature space
into two separate feature spaces by two projection heads: one (denoted as Fs)
is connected to the classification head and is used for learning the recognition-
related commonalities, the other one (denoted as F,.) is connected to the regres-
sion head and is used for learning the localization-related commonalities. Each
projection head consists of a fully connected layer and a ReLU layer. We first
pre-train the detector based on the samples from base classes. Then in the fine-
tuning stage, we learn each type of commonalities and perform the commonality
distillation jointly in the corresponding feature space. Note that the distribution
commonalities are also learned in the feature space F since the distribution
similarities are intuitively more related to the recognition-related semantics.
Commonality Distillation. During the fine-tuning of the detector, the feature
space is evolving all the time. Thus all types of commonalities are also evolving
with the update of the feature space. Meanwhile, the commonality distillation
is performed in two aspects. First, the commonalities learned based on the pre-
vious training state of feature space are further used to optimize the feature
space in the next iteration (state). In this sense, the commonalities are distilled
between different training states in the same feature space, which is similar to
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Self-Knowledge Distillation [18]. Second, the recognition-related and distribution
commonalities are also distilled from the feature space F.s to the classification
head while the localization-related commonalities are distilled from Fj,. to the
localization head, yielding more precise classifier and regressors.

Memory Bank. During the fine-tuning of the detector, the commonalities are
evolving with the update of the feature space. However, calculating the pro-
totype for each class (including base and novel classes) from scratch using all
available samples in the training set, which is involved in learning all three types
of commonalities, is quite computationally expensive due to the feature extrac-
tion for all samples. To address this problem, we maintain a dynamic memory
bank to store the features (in both F,. and Fs) of a maximum number of L
Rol features for each class to improve the efficiency. Denoting the memory bank
as M = {m.}¢ , where C is the class number, the Rol features of each class are
stored as a queue. During each training iteration, we update the memory bank
by enqueuing the current batch of samples to the corresponding class queue and
dequeuing the same amount of oldest samples for the same class. Then we can
calculate the prototype for each class using the Rol features stored in M. As a
result, we do not need to extract features for all samples from scratch each time
the feature space is updated, and the operating efficiency is thereby improved
significantly. Using memory bank for efficiency has been previously explored in
unsupervised learning [T2/41].

Parameter Learning. In the pre-training stage using samples from base classes,
we train the object detector with standard Faster R-CNN [27] losses:

‘Cdet = £rpn + Ecls + ‘Creg7 (10)

where L,p, is the loss of the RPN to distinguish foreground from background,
L is the Cross-Entropy loss for classification, and L, is the smoothed L1
loss [§] for the regression of bounding boxes. In the fine-tuning stage, the model
is supervised with both the Faster R-CNN loss L4y and the losses for the dis-
tillation of three types of commonalities, in an end-to-end manner:

L = Laet + AeLdistill-cls + AiLaistill-loc + AdLdistill-dist s (11)

where A, \; and \g are hyper-parameters to balance among losses.

4 Experiments

4.1 Experimental Setup

Datasets. Our approach is evaluated on PASCAL VOC [4] and MS COCO [25]
datasets. We follow the consistent data construction and evaluation protocol
in [16135]. For PASCAL VOC, the overall 20 classes are split into 15 base classes
and 5 novel classes. We utilize the same three partitions of base classes and novel
classes introduced in [I6]. All base class instances from PASCAL VOC (07+12)
trainval sets are available. Each novel class has K instances available where K



Multi-Faceted Distillation of Base-Novel Commonality 11

Table 1. Comparison of different few-shot object detection methods in terms of nAP50
on three PASCAL VOC Novel Split sets.

Novel Split 1 Novel Split 2 Novel Split 3
Method / Shots 1 2 3 5 10|1 2 3 5 10|1 2 3 5 10
LSTD [3] 82 1.0 12.4 29.1 38.5|11.4 3.8 5.0 15.7 31.0/12.6 85 15.0 27.3 36.3
FSRW [16] 14.8 15.5 26.7 33.9 47.2|15.7 15.3 22.7 30.1 40.5|21.3 25.6 28.4 42.8 45.9
MetaDet [37] 18.9 20.6 30.2 36.8 49.6|21.8 23.1 27.8 31.7 43.0|20.6 23.9 20.4 43.9 44.1
Meta R-CNN [4] [19.9 25.5 35.0 45.7 51.5|10.4 19.4 29.6 34.8 45.4|14.3 18.2 27.5 41.2 48.1
RepMet [17] 26.1 32.9 34.4 38.6 41.3|17.2 22.1 23.4 28.3 35.8|27.5 31.1 31.5 34.4 37.2
NP-RepMet [46]  |37.8 40.3 41.7 47.3 49.4|41.6 43.0 43.4 47.4 49.1|33.3 38.0 39.8 41.5 44.8
TFA w/cos [35] 39.8 36.1 44.7 55.7 56.0(23.5 26.9 34.1 35.1 39.1|30.8 34.8 42.8 49.5 49.8
MPSR, [40] 41.7 — 51.4 55.2 61.8|24.4 — 39.2 39.9 47.8|35.6 — 42.3 48.0 49.7

HallucFsDet [51] 47.0 44.9 46.5 54.7 54.7(26.3 31.8 37.4 37.4 41.2|40.4 42.1 43.3 51.4 49.6
Retentive R-CNNJ[0]|42.4 45.8 45.9 53.7 56.1|21.7 27.8 35.2 37.0 40.3|30.2 37.6 43.0 49.7 50.1

FSCE [32] 44.2 43.8 51.4 61.9 63.4|27.3 29.5 43.5 44.2 50.2|37.2 41.9 47.5 54.6 58.5
FSCN [23] 40.7 45.1 46.5 57.4 62.4|27.3 31.4 40.8 42.7 46.3|31.2 36.4 43.7 50.1 55.6
SRR-FSD [52] 47.8 50.5 51.3 55.2 56.8|32.5 35.3 39.1 40.8 43.8|40.1 41.5 44.3 46.9 46.4
SQMG [50] 48.6 51.1 52.0 53.7 54.3|41.6 45.4 45.8 46.3 48.0(46.1 51.7 52.6 54.1 55.0
CME [22] 41.5 47.5 50.4 58.2 60.9(27.2 30.2 41.4 42.5 46.8|34.3 39.6 45.1 48.3 51.5
Dictionary [39] 46.1 43.5 48.9 60.0 61.7|25.6 29.9 44.8 47.5 48.2|39.5 45.4 48.9 53.9 56.9
FADI [1] 50.3 54.8 54.2 59.3 63.2/30.6 35.0 40.3 42.8 48.0{45.7 49.7 49.1 55.0 59.6
UP-FSOD [38] 43.8 47.8 50.3 55.4 61.7|31.2 30.5 41.2 42.2 48.3|35.5 39.7 43.9 50.6 53.3
QA-FewDet [10] 42.4 51.9 55.7 62.6 63.4/25.9 37.8 46.6 48.9 51.1|35.2 42.9 47.8 54.8 53.5
DeFRCN [26] 57.0 58.6 64.3 67.8 67.0|35.8 42.7 51.0 54.5 52.9|52.5 56.6 55.8 60.7 62.5
Ours |63.4 66.3 67.7 69.4 68.1]|42.1 46.5 53.4 55.3 53.8|56.1 58.3 59.0 62.2 63.7

is set to 1, 2, 3, 5 and 10. We report AP50 of novel classes (nAP50) on PASCAL
VOC 07 test set. For the 80 classes in MS COCO, the 20 classes overlapped
with PASCAL VOC are selected as novel classes, the remaining 60 classes are
selected as base classes. Similarly, we report COCO-style AP and AP75 of novel
classes on COCO 2014 validation set with K = 1,2,3,5,10, 30.
Implementation Details. As a plug-and-play module, our approach can be
easily integrated into other fine-tuning based methods. we evaluate our approach
on four baselines: TFA [35], Retentive R-CNN [6], FSCE [32] and DeFRCN [26].
We train the detector with a mini-batch of 16 on 8 GPUs, 2 images per GPU.
ResNet-101 [I3] pre-trained on ImageNet [29] is used as the backbone. The
maximum queue size L in our memory bank is tuned to be 2048. The scaling
factor « is tune to be 5. For distribution distillation, we transfer the variance
of top k = 2 base classes, and sample |[S;| = 10 instances from the calibrated
distribution for novel class ¢ during each iteration. The weights of each loss are
tuned to be A\, = 0.1, \; = 1.0, Ay = 0.1. Moreover, We begin the distillation
after 200 iterations in the fine-tuning stage to perform a basic optimization of
the feature space on novel classes.

4.2 Comparison with State-of-the-art Methods

We integrate our method based on DeFRCN [26], a state-of-the-art method for
few-shot object detection, to compare with other latest methods.

Results on PASCAL VOC. Table [l shows the results on PASCAL VOC. It
can be observed that our approach outperforms other methods in all novel splits
with different numbers of training shots. In particular, our method achieves much
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Table 2. Few-shot object detection performance on MS COCO.

Method 1-shot 2-shot ‘ 3-shot ‘ 5-shot 10-shot 30-shot
nAP nAP75|nAP nAP75|nAP nAP75|nAP nAP75|nAP nAP75|nAP nAP75
FSRW [16] - — - — - - — - 56 46 |91 76
SRR-FSD [52] - - - - - - - — 11.3 9.8 [14.7 13.5
FSCE [32] — — — — — — — — 11.9 10.5 |16.4 16.2
UP-FSOD [38] - - - - - - - - 11.0 10.7 |15.6 15.7
SQMG [50] - - - - - - - - 13.9 11.7 |15.9 14.3
CME [22] — — — — — — — — 15.1 16.4 [16.9 17.8
TFA w/cos [35] | 34 38 |46 48 |66 65 |83 80 [10.0 9.3 |[13.7 13.4
MPSR [40] 23 23 |35 34 [52 51 |67 64 |98 97 |[14.1 14.2
QA-FewDet [10]| 49 44 |76 6.2 |84 73 |97 86 |[11.6 9.8 |16.5 15.5
FADI [1] 57 6.0 |70 70 |86 83 |10.1 9.7 |12.2 119 |16.1 15.8
DeFRCN [26] 6.5 6.9 |11.8 12.4 [13.4 13.6 |15.3 14.6 |18.6 17.6 |22.5 22.3
Ours [10.8 11.6 |13.9 14.8 |15.0 15.5 |16.4 17.3 |19.4 20.2 |22.7 23.2

Table 3. Performance of integrating our method with different classical methods in
term of nAP50 on Novel Split 1 of PASCAL VOC.

Baseline Method ‘Ours ‘ 1-shot 2-shot 3-shot 5-shot 10-shot

39.8 36.1 44.7 55.7 56.0
v 45.2 47.3 50.6 58.2 58.4

42.4 45.8 45.9 53.7 56.1

TFA w/cos [35]

Retentive R-CNN [6] ‘

v ‘ 47.8 48.1 51.4 58.2 58.9

442 438 514 619  63.4

FSCE [32] v ‘ 48.0 51.6 553 63.8 66.2
57.0 586 643 67.8  67.0

DeFRCN [26] v ‘ 63.4 66.3 67.7 69.4 68.1

larger performance gain in extremely low-shot settings. For instance, for novel
split 1, our approach surpasses the previously best method by 6.4% and 7.7% in
1-shot and 2-shot scenarios, respectively. It is reasonable because the distillation
of commonalities plays more important role in fewer-shot settings.

Results on MS COCO. Similar performance improvements by our method can
be observed on the MS COCO benchmark. As shown in Table [2] our approach
consistently outperforms other state-of-the-art methods in all settings although
MS COCO is quite challenging. Particularly, for 1-shot scenarios, our approach
pushes forward the current state-of-the-art performance from 6.5% to 10.8% in
nAP. Besides, the improvement from 6.9% to 11.6% in nAP75 demonstrates the
effectiveness of our approach on localization.

4.3 Integration with Different Baseline Methods

We further integrate our method with different baseline methods to evaluate
the robustness of our method. Table [3] presents the performance of four differ-
ent baselines and our method on Novel Split 1 of PASCAL VOC. Our method
consistently boosts the performance distinctly. For instance, when integrated
with TFA w/cos [35], our method achieves substantial performance gains: 5.4%,
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Table 4. Effectiveness of each type
of commonality. ‘Recog’, ‘Local’,
‘Dist’ refer to the recognition-related,
localization-related and distribution
commonalities, respectively.

Table 5. Effect of using different fea-
ture spaces from the object detector to
learn commonalities. ‘Independent’ de-
notes the feature space pre-optimized
on ImageNet, and 'uniform’ denotes the
same feature space as the object detec-

. nAP50
Recog Local Dist 1-shot 2-shot 3-shot tor.
58.5  62.6  65.4 AP50
v 62.3 648 673 Feature space || o 0% O o ot
v 59.9 64.1 65.7 -sho -sho -sho
v 62.6 65.1 66.2 Baseline 58.5 62.6 65.4
v 632 659  67.7 Independent 59.6 63.8 66.1
v v 62.8 656  67.2 Uniform (ours) | 62.3 64.8 67.3
v v 63.4 66.3 67.7

11.2%, 5.9%, 2.5% and 2.4% from 1-shot to 10-shot respectively. These results
reveal the strong robustness of our approach on different baseline methods.

4.4 Ablation Studies

In this section, we conduct ablation studies by integrating our method with
DeFRCN [26]. All experiments are performed on Novel Split 1 of PASCAL VOC.
Note that more ablation studies on other hyper-parameters are provided in the
supplementary materials.

Effectiveness of each type of commonality. Table [d] shows the effectiveness
of each type of commonality. Compared with the baseline in the first line, each
individual type of commonality improves the performance distinctly. Combin-
ing all three types of commonalities achieves larger performance gain than any
individual one.

Learning commonalities in an independent feature space from the ob-
ject detector. Our method learns commonalities in the same (uniform) feature
space as the object detector, which allows our model to 1) achieve more accurate
commonalities due to more optimized features for current data and 2) perform
commonality distillation in an end-to-end manner. To validate the first merit,
we conduct experiments to learn commonalities in an independent feature space
from the object detector, which is pre-optimized on ImageNet dataset. All class
prototypes and cosine similarities for learning commonalities are calculated in
this independent feature space. The results in Table |5[ show that the perfor-
mance gain in such way is smaller than that of using the same space feature as
the object detector (denoted as ‘Uniform’).

Qualitative evaluation. To have a qualitative evaluation, we visualize the in-
stances from base classes that have most recognition- and localization-related
commonalities (interpreted as semantic similarities) with the novel class ‘Bird’
respectively in Figure The instances from the semantically similar base
classes to ‘Bird’, such as ‘Dog’ and ‘sheep’, tend to have more recognition-related
commonalities with ‘Bird’ than other base classes. In contrast, instances from
the base classes bearing more shape similarities to ‘Bird’, like ‘Plane’, have more
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DeFRCN

Recognition-related Similarity Localization-related Similarity Our Approach

(a) (b)

Fig. 3. (a) Visualization of base instances with highest recognition-related similarity
and localization-related similarity to the novel class ‘Bird’. (b) 1-shot object detection
results of randomly selected test samples by DeFRCN [26] and our approach on PAS-
CAL VOC Novel Split 1. More examples can be found in the supplementary materials.

localization-related commonalities with ‘Bird’ than other classes. Such observa-
tions are consistent with the different attention distributions in feature space
between recognition and localization shown in Figure [I} By distilling the multi-
faceted commonalities, our object detector is able to perform recognition and
localization more accurately, as shown in Figure

5 Conclusion

In this paper, we propose the multi-faceted distillation for few-shot object detec-
tion. The key insight is to learn three types of commonalities between base and
novel classes explicitly: recognition-related semantic commonalities, localization-
related semantic commonalities and distribution commonalities. Then these com-
monalities are distilled during the fine-tuning stage based on the memory bank.
Our method improves the state-of-the-art performance of few-shot object detec-
tion by a large margin.
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Supplementary Material for Multi-Faceted
Distillation of Base-Novel Commonality for
Few-shot Object Detection

A More Implementation Details

Unlike previous works [26/32135] that fine-tune the detector on a small balanced
training set with K novel instances and K randomly sampled base instances,
we utilize more base instances used in the first stage for fine-tuning, in that
our approach requires abundant base instances stored in the memory bank to
calculate the prototypes and distributions. Specifically, the training data for
fine-tuning consists of two sets: base set with abundant instances and novel
set with K instances per class. During each iteration, a batch is composed of
two equally sized parts, one from the base set and another from the novel set.
Then we update the memory bank by enqueuing the Rol features of instances in
current batch to the corresponding class queue. The dimension of Rol features
stored in the memory bank is 2048 for DeFRCN [26] baseline and 1024 for other
three baselines (TFA [35], Retentive R-CNN [6], FSCE [32]). All other training
settings (batch size, training iterations, learning rate, etc) are the same as that
in corresponding baselines.

B Performance for Base Classes

The proposed commonality distillation from base classes to novel classes allows
leveraging the samples of base classes to train the object detector on the novel
classes. Such commonality distillation pushes the model to fit the base samples
to other classes (novel classes) with semantic similarities instead of their own
groundtruth classes (base classes). Thus, it would not lead to the overfitting on
the base classes. Table [I|shows that while the commonality distillation improves
the performance of our model on novel classes substantially, it does not degrade
the performance on base classes.

Table 1. Performance for base classes (bAP50) and novel classes (nAP50) on PASCAL
VOC Novel Split 1.

bAP50 nAP50
1 2 3 1 2 3

78.4 78.1 76.8‘57.0 58.6 64.3

Method / Shots

w/o distillation

w/ distillation 78.5 78.0 78.3|63.4 66.3 67.7
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C Additional Ablation Studies

Effect of varying the maximum queue size L in the memory bank.
Fig [1] shows the performance as a function of maximum queue size L in the
memory bank for different number of training shots. It can be seen that the
performance improves initially as L increases because larger size of queue leads
to more accurate estimation of the class prototypes. The performance reaches a
plateau at L = 2048, which is selected for our method in other experiments.

1-shot 2-shot 3-shot
67.7 67.7
65 67 66.3 661 68 672
o 66
Q64 63.4 . 65.0 67
%() 63 62.8 66558
3 54%s
262 63 /7% 65
B1.
61 62 64
512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

Maximum Queue Size L

Fig. 1. Effect of varying the maximum queue size L in the memory bank.

Effect of varying the scaling factor. We explore the effect of different scal-
ing factors a for computing similarity distribution and report the results in
Table [2l It can be observed a = 5 outperforms the other scaling factors for both
recognition-related similarity and localization-related similarity. Therefore, we
adopt a = 5 in all of our experiments.

Table 2. Effect of varying the scaling factor for computing recognition-related and
localization-related similarity on PASCAL VOC Novel Split 1.

(a) For recognition-related similarity. (b) For localization-related similarity.
« nAP50 o nAP50
1-shot 2-shot 3-shot ) 1-shot 2-shot 3-shot
1 58.4 60.9 62.2 1 59.4 62.3 65.4
3 60.8 62.5 65.9 3 59.6 63.6 65.4
5 62.3 64.8 67.3 5 59.9 64.1 65.7
10 61.3 64.5 66.9 10 58.9 63.6 65.7

Effect of varying the loss weights. We conduct experiments to evaluate the
effect of the hyper-parameters ., \; and Ay, which control the weight of each
distillation loss. As shown in Table [3] we obtain the best results with A, = 0.1,
A; = 1.0 and Ay = 0.1, which are used for all other experiments.

Hyper-parameters for distribution commonalities. We study the hyper-
parameters, i.e., k and |S.| adopted in distribution commonalities. k is the num-
ber of the closest base classes to novel class ¢ for transferring the variance. |S,| is
the number of instances sampled from the calibrated distribution for novel class
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Table 3. Effect of varying the weight of each distillation loss on PASCAL VOC Novel
Split 1.

(a) Parameter: Ac. (b) Parameter: \;. (c) Parameter: Aq4.
A nAP50 N nAP50 N nAP50
¢ |1-shot 2-shot 3-shot ! |1-shot 2-shot 3-shot 4 |1-shot 2-shot 3-shot
0.001] 59.2 63.0 64.9 0.01] 58.1 62.0 64.7 0.001| 57.9 63.2 65.9
0.01 | 59.3 62.8 65.9 0.1| 57.6 63.9 65.0 0.01 | 60.5 63.4 65.9
0.1 62.3 64.8 67.3 1.0 | 59.9 64.1 65.7 0.1 62.6 65.1 66.2
1.0 60.7 62.2 63.3 2.0 | 59.7 62.6 64.7 1.0 58.0 58.7 63.2

¢ during each iteration. As shown in Table[d] these two hyper-parameters have a
mild impact on the performance, and we observe that k = 2 and [S.| = 10 work
best for nAP50.

Table 4. Ablation study for distribution commonalities. Results (nAP50) are reported
on 1-shot of PASCAL VOC Novel Split 1.

Number of the
Closest Base Classes

ISel
1 5 10 20

61.3 61.1 61.6 62.4

> x>
([Tl

1
2
3

62.3 62.3 61.8 60.0

‘Variance’ vs ‘mean’ & ‘variance’ for distribution commonality. In con-
trast to Distribution Calibration [45] transferring both the mean and variance
from base classes to novel classes, our method only distills the variance as the
distribution commonalities to avoid the distributional overlapping between base
and novel classes. We conduct experiments to compare such two mechanisms.
The results in Table [5| show that transferring both the mean and variance de-
grades the performance by a large margin than transferring only variance, and
performs even worse than the baseline without commonality distillation.

Table 5. Effect of transfer ‘mean’ for distribution commonality.

Dist nAP50

1 1-shot 2-shot 3-shot
Baseline 58.5 62.6 65.4
Mean & variance 57.5 62.4 64.1
Variance 62.6 65.1 66.2
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D Results over Multiple Runs

We report the few-shot object detection results (nAP50) over 10 random runs
on PASCAL VOC Novel Split 1 in Table[6] It can be observed that our method
outperforms the baseline (DeFRCN) under all settings, which shows the effec-
tiveness of our method.

Table 6. Results (nAP50) over 10 random runs on VOC Novel Split 1.

nAP50
Method / Shots 1 9 3 5 10

DeFRCN 43.8 57.5 61.4 653 67.0
Ours 53.7 64.3 66.6 69.6 70.4

E More Qualitative Visualizations

In this section, we provide more qualitative visualizations on PASCAL VOC
and MS COCO datasets. As shown in Figure [2] our approach could rescue var-
ious error cases, including missing detections, misclassifications and imprecise
localizations.
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PASCAL VOC
DeFRCN

Ours

%bird 70%
2y ¢

MS COCO
DeFRCN

Ours

Fig. 2. The visualization results of DeFRCN and our approach under 1-shot setting of
PASCAL VOC Novel Split 1, and under 1-shot setting of MS COCO.
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