Skip to main content

SP-Net: Slowly Progressing Dynamic Inference Networks

  • Conference paper
  • First Online:
  • 1997 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13671))

Abstract

Dynamic inference networks improve computational efficiency by executing a subset of network components, i.e., executing path, conditioned on input sample. Prevalent methods typically assign routers to computational blocks so that a computational block can be skipped or executed. However, such inference mechanisms are prone to suffer instability in the optimization of dynamic inference networks. First, a dynamic inference network is more sensitive to its routers than its computational blocks. Second, the components executed by the network vary with samples, resulting in unstable feature evolution throughout the network. To alleviate the problems above, we propose SP-Nets to slow down the progress from two aspects. First, we design a dynamic auxiliary module to slow down the progress in routers from the perspective of historical information. Moreover, we regularize the feature evolution directions across the network to smoothen the feature extraction in the aspect of information flow. As a result, we conduct extensive experiments on three widely used benchmarks and show that our proposed SP-Nets achieve state-of-the-art performance in terms of efficiency and accuracy.

H. Wang and W. Zhang—Equal contribution to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2654–2662. Curran Associates, Inc. (2014)

    Google Scholar 

  2. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  3. Chen, Z., Zhang, L., Cao, Z., Guo, J.: Distilling the knowledge from handcrafted features for human activity recognition. IEEE Trans. Ind. Inf. 14, 4334–4342 (2018)

    Article  Google Scholar 

  4. Du, X., Li, Z., Ma, Y., Cao, Y.: Efficient network construction through structural plasticity. IEEE J. Emerg. Sel. Top. Circ. Syst. 9, 453–464 (2019)

    Article  Google Scholar 

  5. Figurnov, M., et al.: Spatially adaptive computation time for residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  6. French, G., Mackiewicz, M., Fisher, M.H.: Self-ensembling for visual domain adaptation. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  7. Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born-again neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 1602–1611 (2018)

    Google Scholar 

  8. Gao, X., Zhao, Y., Dudziak, L., Mullins, R., Xu, C.: Dynamic channel pruning: feature boosting and suppression. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  9. Ghodrati, A., Bejnordi, B.E., Habibian, A.: FrameExit: conditional early exiting for efficient video recognition. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  10. Guo, Q., Yu, Z., Wu, Y., Liang, D., Qin, H., Yan, J.: Dynamic recursive neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  11. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: Proceedings of the International Conference on Learning Representations (2016)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Proceedings of the Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  14. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-scale dense networks for resource efficient image classification. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  15. Ioannou, Y., Robertson, D., Shotton, J., Cipolla, R., Criminisi, A.: Training CNNs with low-rank filters for efficient image classification. In: Proceedings of the International Conference on Learning Representations (2016)

    Google Scholar 

  16. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: Proceedings of the British Machine Vision Conference (2014)

    Google Scholar 

  17. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: Proceedings of the International Conference on Learning Representations (2017)

    Google Scholar 

  18. Leroux, S., Molchanov, P., Simoens, P., Dhoedt, B., Breuel, T., Kautz, J.: IamNN: iterative and adaptive mobile neural network for efficient image classification. arXiv:1804.10123 (2018)

  19. Li, H., Zhang, H., Qi, X., Yang, R., Huang, G.: Improved techniques for training adaptive deep networks. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  20. McIntosh, L., Maheswaranathan, N., Sussillo, D., Shlens, J.: Convolutional neural networks with low-rank regularization. In: Proceedings of the International Conference on Learning Representations (2016)

    Google Scholar 

  21. McIntosh, L., Maheswaranathan, N., Sussillo, D., Shlens, J.: Recurrent segmentation for variable computational budgets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  22. Meng, Y., et al.: AR-Net: adaptive frame resolution for efficient action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 86–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_6

    Chapter  Google Scholar 

  23. Perone, C.S., Ballester, P.L., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. arXiv preprint arXiv:1811.06042 (2018)

  24. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  25. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  26. Shafiee, M.S., Shafiee, M.J., Wong, A.: Dynamic representations toward efficient inference on deep neural networks by decision gates. In: Proceedings of the CVPR Workshop (2019)

    Google Scholar 

  27. Su, Z., Fang, L., Kang, W., Hu, D., Pietikäinen, M., Liu, L.: Dynamic group convolution for accelerating convolutional neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 138–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_9

    Chapter  Google Scholar 

  28. Sun, F., Qin, M., Zhang, T., Liu, L., Chen, Y.K., Xie, Y.: Computation on sparse neural networks: an inspiration for future hardware. arXiv:2004.11946 (2020)

  29. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  30. Teja Mullapudi, R., Mark, W.R., Shazeer, N., Fatahalian, K.: HydraNets: specialized dynamic architectures for efficient inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  31. Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_1

    Chapter  Google Scholar 

  32. Verelst, T., Tuytelaars, T.: Dynamic convolutions: exploiting spatial sparsity for faster inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  33. Wang, H., Li, S., Su, S., Qin, Z., Li, X.: RDI-Net: relational dynamic inference networks. In: Proceedings of the IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  34. Wang, H., Qin, Z., Li, S., Li, X.: CoDiNet: path distribution modeling with consistency and diversity for dynamic routing. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  35. Wang, Y., et al.: Dual dynamic inference: enabling more efficient, adaptive and controllable deep inference. IEEE J. Sel. Top. Signal Process. 14, 623–633 (2020)

    Article  Google Scholar 

  36. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  37. Wu, Z., et al.: BlockDrop: dynamic inference paths in residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  38. Xia, W., Yin, H., Dai, X., Jha, N.K.: Fully dynamic inference with deep neural networks. arXiv:2007.15151 (2020)

  39. Xie, Z., Zhang, Z., Zhu, X., Huang, G., Lin, S.: Spatially adaptive inference with stochastic feature sampling and interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 531–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_31

    Chapter  Google Scholar 

  40. Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., Gonzalez, J.E.: SkipNet: learning dynamic routing in convolutional networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 420–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_25

    Chapter  Google Scholar 

  41. Xu, Y., Du, B., Zhang, L., Zhang, Q., Wang, G., Zhang, L.: Self-ensembling attention networks: addressing domain shift for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5581–5588 (2019)

    Google Scholar 

  42. Yang, L., Han, Y., Chen, X., Song, S., Dai, J., Huang, G.: Resolution adaptive networks for efficient inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  43. Yu, J., Huang, T.S.: Universally slimmable networks and improved training techniques. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  44. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  45. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: Proceedings of the International Conference on Learning Representations (2017)

    Google Scholar 

  46. Zhang, L., Shi, Y., Shi, Z., Ma, K., Bao, C.: Task-oriented feature distillation. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Proceedings of the Advances in Neural Information Processing Systems, pp. 14759–14771 (2020)

    Google Scholar 

  47. Zhang, P., Zhong, Y., Li, X.: SlimYOLOv3: narrower, faster and better for real-time UAV applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Alibaba Innovative Research (AIR) Program, Alibaba Research Intern Program, National Key Research and Development Program of China under Grant 2020 AAA0107400, Zhejiang Provincial Natural Science Foundation of China under Grant LR19F020004, and National Natural Science Foundation of China under Grant U20A20222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3518 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2022). SP-Net: Slowly Progressing Dynamic Inference Networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20083-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20082-3

  • Online ISBN: 978-3-031-20083-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics