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Abstract. Recently low-precision deep learning accelerators (DLAs) have
become popular due to their advantages in chip area and energy con-
sumption, yet the low-precision quantized models on these DLAs bring
in severe accuracy degradation. One way to achieve both high accuracy
and efficient inference is to deploy high-precision neural networks on low-
precision DLAs, which is rarely studied. In this paper, we propose the
PArallel Low-precision Quantization (PalQuant) method that approx-
imates high-precision computations via learning parallel low-precision
representations from scratch. In addition, we present a novel cyclic shuf-
fle module to boost the cross-group information communication between
parallel low-precision groups. Extensive experiments demonstrate that
PalQuant has superior performance to state-of-the-art quantization meth-
ods in both accuracy and inference speed, e.g., for ResNet-18 network
quantization, PalQuant can obtain 0.52% higher accuracy and 1.78×
speedup simultaneously over their 4-bit counter-part on a state-of-the-art
2-bit accelerator. Code is available at https://github.com/huqinghao/
PalQuant.
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1 Introduction

Recently various model compression techniques have been proposed to deploy
deep neural networks on resource-constrained edge devices. Among these, fixed-
point quantization [16,30,31] that converts full-precision floating-point operation
to low-bit integer counterpart has become the de facto method due to its hard-
ware efficiency.

At present, most of the commercial CNN accelerators are designed for high-
precision (such as INT16/INT8) arithmetic. One important reason for this is
because the accuracy of a quantized network is hard to retain as the quantization
bit-width narrows. Yet low-precision accelerators lead to orders of magnitude
decrease in chip-area and energy consumption compared to the high-precision
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hardware [10]. This motivates plenty of researchers to study how to improve the
accuracy of quantized networks on low-precision accelerators [31,15,28,22,13].
While these methods focus on designing low-precision quantization algorithms,
the accuracy of quantized networks may be limited by the low computation
precision of accelerators.

Different from the above methods, we try to answer the question: Is it possi-
ble to deploy high-precision networks on the existing well-designed low-precision
accelerator to capture both model accuracy and inference efficiency? To achieve
this, a naive solution is decomposing a high-precision network at the bit level
and conducting inference on low-precision hardware in a nibble iteration manner
[1]. For example, to run an 8-bit network on a 2-bit accelerator, we can split each
8-bit operand into four 2-bit operands so that the original 8-bit multiplication
can be carried out in 4× 4 = 16 steps using 2-bit multipliers with proper shift-
ing. Although the 2-bit operation is much cheaper than the 8-bit counterpart in
terms of chip area and power consumption, there is no gain in inference latency
since the total amount of bit operations is unchanged.

In this paper, we investigate the opportunity of fast and accurate inference
of high-precision CNN models on low-precision hardware from the algorithm
side. We propose PArallel Low-precision Quantization (PalQuant), a hardware-
friendly, simple yet effective quantization method for efficient CNN acceleration.
Different from the naive bit-level decomposition solution, PalQuant reduces the
computational complexity by dividing the expanded low-precision channels into
parallel groups.

To encourage information flowing across different groups, we propose a novel
cyclic shuffle module that fuses features from two consecutive groups cyclically in
a hardware-friendly way. One important property of cyclic shuffle is that it may
serve as a complement to channel shuffle. This is mainly due to that cyclic shuffle
fuses channel features at group level while the channel shuffle fuses a fraction
of channel features from each group. Extensive experiments from both algo-
rithm and hardware sides demonstrate that PalQuant can consistently achieve
the highest accuracy and inference speedup than state-of-the-art methods. The
contribution of this paper can be summarized as follows:

– We propose the PalQuant algorithm that enables efficient high-precision
computation in low-precision accelerators via learning parallel low-precision
representations from scratch.

– We propose a novel cyclic shuffle module to help the information flow across
parallel low-precision convolution groups.

– Extensive experiments on ImageNet benchmark demonstrate that PalQuant
outperforms state-of-the-art quantization methods in terms of both accuracy
and computational cost. We also examine the speed-up of PalQuant on two
CNN accelerators [33,14], which shows that PalQuant achieves 1.7× speed-
ups than state-of-the-arts on ResNet-18.
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2 Related Work

2.1 Quantization Methods

Deep Neural Network Quantization methods have become popular in recent
years as they can reduce energy consumption and inference latency of deep neu-
ral networks. One line of quantization methods aims to reduce the quantization
bit-width, while maintaining the network accuracy. Early quantization methods
mainly focus on high bit-width fixed-point quantization [16,30], e.g. 8bit or 16bit
quantization scheme, which brings in little accuracy degradation. Later, various
binary [11,31,18] and ternary quantization methods [26,25,41] are proposed to
reduce the multiplication operations in the network inference. Another line of re-
search on quantization methods is to learn good quantization parameters such as
quantization step-values, clipping values, and so on. Early quantization meth-
ods use fixed quantization parameters [19,16], dynamic parameters based on
statistics of the data distribution [5,27], or seek the parameters that minimize
the quantization error [31,38]. Recently, researchers propose to use trainable
quantization parameters, e.g. clipping values [23,9] and step-size [13,22]. These
parameters can be learned by gradient back-propagation which minimizes the
task loss. Another related work is WRPN [29] which increases the number of
filter maps and reduces the quantization bit-width of feature maps. Our pro-
posed method differs with WRPN [29] in three aspects. First, Our PalQuant
and WRPN [29] target at different problems. While WRPN [29] mainly tries
to reduce the large memory footprint of high-precision feature maps via wide
reduced-precision representations, our PalQuant enables efficient high-precision
computations on low-precision accelerators. Second, PalQuant reduces compu-
tational complexity and memory access via parallel low-precision computation
scheme, and it achieves higher or comparable network accuracy with less compu-
tational cost than WRPN [29]. Third, we propose a novel cyclic shuffle module
to fuse features across different groups, that further strengthens the model rep-
resentation.

2.2 Hardware Accelerators for CNN

The extremely high computational complexity of CNN poses a significant chal-
lenge to real-world deployment, especially for resource-constraint embedded de-
vices. As a result, energy-efficient FPGA/ASIC-based CNN accelerators have
gained increasing popularity recently in both academia and industry. To main-
tain network accuracy, the computing architecture of early CNN accelerators
mainly exploits floating-point and high-precision fixed-point data types (such
as 16-bit/8-bit). For example, Zhang et al. [37] designs the first FPGA-based
accelerator for floating-point CNN inference. DianNao [7], Eyeriss [8], and TPU
[21] are ASIC-based accelerators designed for 16-bit quantized CNN.

With the rapid development of quantization methods in the deep learning
community, many low-precision CNN accelerators have been proposed to further
improve hardware efficiency. With the help of power-of-two quantization [40], Li
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et al. [24] and Tann et al. [34] propose multiplier-free architectures for area and
power-efficient inference by replacing conventional integer multiplications with
shift-based operations. YodaNN [2] is an ASIC-based accelerator tailored for Bi-
nary Weight Networks [11]. Bit Fusion [33], Bitblade [32], and BPVeC [14] are
precision-scalable CNN accelerators exploiting 2-bit multipliers for arbitrary-
precision computation. Umuroglu et al. [35] and Zhao et al. [39] propose ded-
icated accelerators for Binarized Neural Networks [20], which can achieve the
highest frame-per-second under extremely low area and energy consumption.
Lascorz et al. [12] accelerates CNN inference through hardware/software co-
design, while PalQuant is more general and can be deployed on a variety of
accelerators, including bit-parallel and bit-serial accelerators.

3 Preliminaries

3.1 Notation

The input activation and weight of a fully-connected layer in a deep neural
network are denoted by X ∈ RN×S and W ∈ RT×S , respectively. The layer’s
output Y can be obtained by:

Y = XWT (1)

The quantized input activation and weight are denoted by X̂ ∈ RN×S and
Ŵ ∈ RT×S , respectively. For a convolutional layer, the output Y can also be
obtained by Eq. 1, since the weights and activations can be transformed into
matrices.

3.2 Uniform Quantization

Recently uniform quantizer with trainable quantization parameters [15,23] be-
comes popular. Given a floating-point number x, it first maps x to a range [0, 1]
by the following equation:

xn = clip

(
x− l

u− l
, 0, 1

)
(2)

where clip(·, ·, ·) denotes the clip function, l and u denotes lower bound and up
bound, respectively. Then the integer value xq can be obtained by the quanti-
zation function:xq = ⌊(2b − 1)xn⌉ , where ⌊·⌉ is rounding-to-nearest operation,
and b denotes the quantization bit-width. And the de-quantization function is
given by the following formula:

x̂ =

{
xq

2b−1
x ∈ weight

2(
xq

2b−1
− 0.5) x ∈ activation

(3)

where the formula maps the de-quantized weights to a range [−1, 1], and restricts
the de-quantized activations to be non-negative. An additional parameter α [23]
is required to multiply the output activations of each layer, which adjusts the
output scale of the whole feature map.
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3.3 Bit-level Decomposing

Consider that there is an accelerator that supports only B-bit computation, a
naive solution for running a high-precision (M -bit) model on this accelerator is
to decompose M -bit representations to multiple B-bit at bit-level, then shift and
sum up those B-bit operations results:

Y = X̂ŴT =

G−1∑
i=0

G−1∑
j=0

X̂iŴ
T
j ∗ 2(i+j)∗B (4)

where X̂i and Ŵj are B-bit input and weights that are generated by splitting
M -bit input and weights in bit-level, and G = ceil(M/B). Note that the com-
putational cost is unchanged comparing to the original M -bit computation.

(a) (b)

Fig. 1. (a) The proposed parallel low-precision computation scheme. Here the hyper-
parameter G is fixed to 3. B-bit Quant and B-bit Conv denote a B-bit quantization
layer and B-bit convolutional layer, respectively. (b) The proposed cyclic shuffle module.
Here B-bit Conv denotes a B-bit quantized 1×1 group convolutional layer with G=3

4 Proposed Method

4.1 Parallel Low-Precision Quantization

Since the bit-level decomposing method (Eq.4) has the same amount of bit op-
erations as the original high-precision computation, there is no gain in inference
latency. At first, we try to reduce the inference latency by an approximation to
Eq.4:

minW̄i
= ∥

G−1∑
i=0

G−1∑
j=0

X̂iŴ
T
j ∗ 2(i+j)∗B −

G−1∑
i=0

(X̂iW̄i
T
) ∗ 2i∗B∥2F (5)
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where Ŵj and X̂i are B-bit representations chunked from M -bit Ŵ and X̂, re-
spectively. We found that the B-bit computations in Eq.5 are naturally in paral-
lel G groups, which provides the potential to be hardware-friendly. In addition,
Eq.5 approximates the standard results with only G parallel B-bit computations
while Eq.4 requires G2 B-bit computations. This indicates that the proposed ap-
proximation only costs 1

G computation complexity of the bit-level decomposition
method.

Yet there are two problems in Eq.5. One is that we empirically found that
all G solutions of W̄i degenerate to one similar solution, which results in an
inferior network accuracy. We assume that this phenomenon has relations with
two aspects: 1. B-bit representations are chunked from M -bit ones, thus they
are coupling together with a strong connection4; 2. minimizing the feature map
reconstruction loss easily causes the over-fitting problem. The other problem in
Eq.5 is that chunking M -bit X̂ to multiple B-bit representations tend to be
inferior to learning G× B-bit representations directly by back-propagation, as
mentioned in [29].

To tackle the above problems, we propose the parallel low-precision quan-
tization scheme by learning multiple low-precision representations in parallel.
It inherits the computation efficiency of parallel low-precision computation from
Eq.5, and cures the solution degeneration problem via training B-bit representa-
tions through back-propagation. Specifically, we expand the activation channels
of a convolutional layer by G×, and split these activations into G groups along
the channel dimension. Then we quantize the activations and weights to B-bit in
each group, and there are G groups of B-bit weights in total. Fig.1(a) depicts the
proposed parallel low-precision quantization scheme, which can be implemented
naturally by quantized group convolution with expanded channels.

4.2 Cyclic Shuffle

Although the proposed parallel low-precision computation scheme enjoys won-
derful hardware efficiency, it hinders information flowing across different groups
of feature channels. To cure this problem, we propose a novel cyclic shuffle mod-
ule to enhance information communication across different groups. First, we
adopt cyclic permutation [4] to permute the channels in group-level. Given input

X with shape [N × C ×H ×W ], it can be reshaped to
[
N ×G× Ĉ ×H ×W

]
where Ĉ = C/G. We propose to re-order the channels in group-level via the cyclic
permutation. Specifically, let S = {0, 1, 2, 3 · · ·G−1} denotes group indexing set,
a cyclic permutation function π(·) for S is

π(i) = (i+ 1) mod G (6)

A more clear notation of π(·) by Cauchy’s two-line notation [36] is:(
0 1 2 3 4 · · · G− 2 G− 1
1 2 3 4 5 · · · G− 1 0

)
(7)

4 For example, given the 4-bit number x, the lowest 2-bit number changes from 3 to
0 when x changes from 3 to 4 ([0 0 1 1] → [0 1 0 0])
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where the first line denotes the channel group indexing set S and the second line
denotes the corresponding order after permutation. After cyclic permutation,
the output Y can be represented by:

Y [:, π(i), :, :, :] = X[:, i, :, :, :] (8)

By using Eq.8, we can re-order feature channels by permuting the group-level
feature cyclically. Under this scheme, the information from each group is received
by its following one, which helps the information exchange between feature chan-
nels of different groups. Although we have exchanged the information between
different groups by the cyclic permutation, each group still holds only one group
of feature channels. In order to fuse the feature channels from different groups,
we build a novel module, named cyclic shuffle, that composes of the cyclic per-
mutation and a 1×1 group convolution with short-cut connection. Given the
input X, the output Z of the cyclic shuffle module can be represented by the
following formulas:

Y = CyclicPermute(X) (9)

Z = X +Conv1×1(Y ) (10)

where CyclicPermute(·) denotes the cyclic permutation function (refer to Eq.8).
In the cyclic shuffle module, the cyclic permutation re-orders the feature channels
at group level, then the 1x1 group convolution learns a mapping function for
channel fusing, finally the short-cut connection together with the element-wise
addition operation aggregate feature channels from different groups. Fig. 1(b)
depicts the proposed cyclic shuffle module.

Our proposed cyclic shuffle module enjoys benefits from three aspects: 1.
According to Proposition. 1, after passing through G-1 cyclic shuffle modules,
each group receives the information flows from all groups of feature channels,
that helps cure the side-effect of group convolution. 2. The proposed cyclic shuffle
module fuses feature channels at group level, which makes it possible for the
intermediate results to stay on chip. As a result, it saves data access to the out-
chip memory significantly. 3. Our cyclic shuffle module fuses feature channels in
group-level while channel shuffle aggregates a part of feature channels from each
group. Therefore, cyclic shuffle can be combined with channel shuffle to achieve
higher network accuracy.

Proposition 1 Suppose the number of groups is G, then G-1 cyclic shuffle mod-
ules are enough to assure that each group contains the information flows from
all parallel groups.

Proof. The proof is simple. The cyclic permutation π(·) in Eq.6 is a G-cycle [4],
which means the group indexes will be the same as the original order after G
times cyclic permutation. As each group fuses a the information flow from its
previous group after passing through one cyclic shuffle module, then G-1 cyclic
shuffle modules are enough to assure that each group contains all information
from G group channels.
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Fig. 2. (a) A typical building block of M -bit quantized ResNet network; (b) A typical
building block of PalQuant with G=2;(c) A typical building block of PalQuant with
shuffle modules (stride=2, G=2)

4.3 Overall Framework

In this subsection, we give the overall framework of our proposed method. To
approximate M -bit computations on B-bit accelerator, we propose the parallel
low-precision quantization scheme which expands the channel dimensions of each
layer by G times (G = ceil(M/B)) and splits them into G parallel groups.
Taking ResNet network quantization for an example, PalQuant makes a simple
modification to the standard M -bit basic building block (Fig. 2 (a)): enlarging
the input channels by G× and using B-bit quantized group convolution with the
number of groups equals to G. The basic building block of PalQuant is depicted
in Fig. 2 (b).

To cure the side-effect caused by the group convolution, we propose the cyclic
shuffle module to help information communication between different groups.
Considering that the cyclic shuffle module contains a 1 × 1 group convolution
layer, we only place the cyclic shuffle module at the beginning of each stage
, which brings little extra computational cost. Since cyclic shuffle and channel
shuffle fuse information flows in different ways, we use channel shuffle module
as a complement. As the channel shuffle in the middle of two consecutive group
convolutions will impair the parallel computation flows, we move the channel
shuffle module to the end of the convolution block. A typical building block of
PalQuant with shuffle modules is depicted in Fig.2 (c).

5 Experiments

In this section, we first give details of experiment settings, then we compare our
proposed algorithm PalQuant with state-of-the-art quantization algorithms. To
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demonstrate the hardware efficacy of PalQuant, we further conduct extensive
experiments on CNN accelerators. Finally, we show the ablation study results
and the generalization of PalQuant under different hyper-parameter B and G.
Network Architectures and Datasets. Since ResNet [17] is widely used
in various computer vision tasks, here we adopt ResNet-18 and ResNet-34 as
benchmark networks. All the experiments in this work are conducted on Ima-
geNet dataset which has over 1 million training images and 50,000 validation
images.
Training Details. In this work, we use uniform quantization for the input acti-
vation and weight of each convolutional or fully-connected layer. In the training
stage, a straight-through estimator(STE) [3] is used to approximate the gradi-
ent through the rounding function. Based on this gradient estimator, we learn
the lower bound l, upper bound u, and the scaling factor α through gradient
back-propagation. Following experiment settings in previous work [23,13], the
first and the last layer are not quantized unless otherwise specified. We imple-
ment our method under the Pytorch framework and train all the networks on a
GPU server with eight Nvidia Titan 3090 GPUs. We adopt an SGD optimizer
with the momentum set to 0.9. The weight decay is set to 1e-4, and the learning
rate is initialized to 0.01 and adjusts with a cosine learning rate decay strategy.
Following previous work [13], we train all the models from scratch for 90 epochs
with a batch size of 256. In the training stage, random cropping, resizing, and
horizontal flipping are adopted while only resizing and center cropping are used
in the validation stage.

5.1 Comparison with State-of-the-arts Algorithms

We first compare our proposed PalQuant with state-of-the-art quantization al-
gorithms. All the accuracy results of other methods, except for LSQ [13] and
WRPN [29], are taken from corresponding papers. As LSQ [13] reports the re-
sults of pre-activation ResNet, we re-implement LSQ [13] under Pytorch frame-
work and get the quantization results on standard ResNet. And we re-implement
WRPN [29] via the same quantization function as ours, and get better results
than the reported ones in [29].

Table 1 shows the top-1 accuracy of quantized ResNet-18 and ResNet-34 with
different quantization precision. From the table, we can observe that PalQuant
outperforms state-of-the-art methods in both accuracy and computational com-
plexity. In detail, PalQuant (G=3) achieves +1.66% (72.66% v.s. 70.7%) higher
top-1 accuracy than 4-bit LSQ [13] with 23.4% (22.3G v.s. 29.1G) less compu-
tational cost on ResNet-18. With comparable computational budget, PalQuant
(G=4) outperforms 4-bit EWGS [23] by 1.06% on ResNet-34. Note that both
LSQ[13] and EWGS[23] are finetuned from the pre-trained model, while our
method are trained from scratch. In addition, PalQuant(G=3) obtains slightly
higher top-1 accuracy than WRPN [29] with 23.4% less bitOps on ResNet-18.
These results suggest that the proposed PalQuant has strong feature represen-
tation power, which leads to the highest accuracy in the experiments under less
or equal computational budgets.
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Table 1. Comparison Results of Quantized ResNet-18 and ResNet-34 on
ImageNet. † Results of WRPN [29] on ResNet34 are taken from the paper

Method Strategy Precision
ResNet-18 ResNet-34

BitOps Top1 Acc. BitOps Top1 Acc.

DSQ [15] Fine-tuned 4b A,4b W 29.10G 69.60 58.74G 72.80

FAQ [28] Fine-tuned 4b A,4b W 29.10G 69.80 58.74G 73.30

QIL [22] Fine-tuned 4b A,4b W 29.10G 70.10 58.74G 73.70

EWGS [23] Fine-tuned 4b A,4b W 29.10G 70.60 58.74G 73.90

LSQ [13] Fine-tuned 4b A,4b W 29.10G 70.70 58.74G 73.50

PalQuant(Ours) Scratch B=2,G=2 14.87G 71.12 29.68G 73.90

PalQuant(Ours) Scratch B=2,G=3 22.30G 72.36 44.53G 74.52

PalQuant(Ours) Scratch B=2,G=4 29.73G 72.74 59.37G 74.96

EWGS [23] Fine-tuned 6b A,6b W 65.48G 71.01 132.16G 74.14

LSQ [13] Fine-tuned 6b A,6b W 65.48G 71.59 132.16G 74.43

WRPN [29] Scratch 2×,2b A,2b W 29.10G 72.31 58.74G 73.32†
PalQuant(Ours) Scratch B=2,G=3 22.30G 72.36 44.53G 74.52

FAQ [28] Fine-tuned 8b A,8b W 116.4G 70.00 234.94G 73.70

LSQ [13] Fine-tuned 8b A,8b W 116.4G 71.10 234.94G 73.98

EWGS [23] Fine-tuned 8b A,8b W 116.4G 71.14 234.94G 73.97

WRPN [29] Scratch 2×,2b A,2b W 29.10G 72.31 58.74G 73.32†
PalQuant(Ours) Scratch B=2,G=4 29.73G 72.74 59.37G 74.96

5.2 Efficacy on Hardware Acceleration

We select the state-of-the-art CNN accelerator Bit Fusion [33] and BPVeC [14]
to demonstrate the efficacy of the proposed PalQuant. Bit Fusion [33] is a sys-
tolic array-based accelerator designed for low-precision inference, it employs a
bit-level decomposable fusion unit for 2/4/8-bit multiplication. To further im-
prove hardware efficiency, BPVeC [14] exploits the Narrow Bit-width Vector
Engines (NBVE), an energy and area efficient alternative to conventional MAC
that consists of multiple 2-bit multipliers and an adder tree for SIMD-based
inner-product computation. The basic building blocks of these two accelera-
tors are shown in Fig. 3. In this experiment, we compare our proposed method
against LSQ [13] in terms of inference latency and energy consumption. To mimic
resource-constraint computing platforms, we configure both accelerators to 2-
bit inference mode with a small on-chip buffer. In this scenario, the on-chip
buffer cannot accommodate all weights and activations of a layer, leading to
non-negligible data traffic in the memory hierarchy. We develop a cycle-accurate
simulator to collect statistics of computation and on-chip buffer access. The
power of computational logic and SRAM-based on-chip buffer under 45nm tech-
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Fig. 3. The basic building blocks for 2-bit inference in Bit Fusion and BPVeC

nology are directly drawn from [33] and [14]. For off-chip data traffic, we assume
15pJ/bit per DDR4 access as in [14].

Table. 2 shows the results of hardware acceleration. It is clear to see that
our proposed method consistently outperforms the baseline in performance, en-
ergy efficiency, and accuracy for the same precision of weight and activation. For
example, PalQuant (G=2) obtains 0.52% higher accuracy, 1.78× speedup, and
1.91× energy efficiency simultaneously over 4-bit LSQ [13] on Bit Fusion accel-
erator [33]. The benefit mainly stems from the channel grouping in our method.
On the one hand, channel grouping leads to reduced bitOps, which is the source
of performance gain. On the other hand, channel grouping eliminates the data
dependency between different groups, resulting in reduced on-chip buffer size
and off-chip bandwidth requirement, which contributes to the low energy con-
sumption. Besides, the channel shuffle unit at the end, rather than the middle,
of a block encourages the intermediate results of group convolution staying on
chip, which is another key for saving energy.

In the paper, we evaluate PalQuant on Bit Fusion and BPVeC, yet our al-
gorithm can also witness similar benefits on other bit-parallel accelerators [32,6]
which implement a high-precision multiplication as parallel low-precision mul-
tiplications followed by reduction. The fundamental reason is that compared
to conventional low-precision quantization, our method can always reduce the
number of computations and buffer accesses.

5.3 Ablation Study

In this subsection, we ablate the designs of the PalQuant algorithm based on
the ResNet-18 network with hyper-parameter B=2 and G=2, and all the exper-
iments follow the same training settings as above.

Ablation: Influence of Different Shuffle Modules Here we explore the ben-
efits of the proposed cyclic shuffle module. Table. 3 provides the comparison of
different shuffle modules. The baseline model in this table doesn’t contain either
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Table 2. Comparison of inference latency and energy consumption on two
hardware accelerators. We use hyper-parameter B=2

DLA Method Precision

ResNet-18 ResNet-34

SpeedUp
Energy Top1

SpeedUp
Energy Top1

Efficiency Acc. Efficiency Acc.

LSQ [13] 4b A,4b W 1x 1x 70.70 1x 1x 73.50

Ours G=2 1.78x 1.91x 71.12 1.78x 1.91x 73.90

Bit LSQ [13] 6b A,6b W 1x 1x 71.59 1x 1x 74.43

Fusion [33] Ours G=3 2.52x 2.78x 72.36 2.50x 2.78x 74.52

LSQ [13] 8b A,8b W 1x 1x 71.14 1x 1x 73.97

Ours G=4 3.21x 3.60x 72.71 3.13x 3.60x 74.96

BPVeC [14]

EWGS [23]4b A,4b W 1x 1x 70.60 1x 1x 73.90

Ours G=2 1.77x 1.92x 71.12 1.87x 1.74x 73.90

EWGS [23]6b A,6b W 1x 1x 71.01 1x 1x 74.14

Ours G=3 2.56x 2.84x 72.36 2.46x 2.81x 74.52

EWGS [23]8b A,8b W 1x 1x 71.14 1x 1x 73.97

Ours G=4 3.12x 3.70x 72.71 3.07x 3.67x 74.96

cyclic shuffle or channel shuffle. As we can see, using cyclic shuffle or channel
shuffle separately achieves similar accuracy improvements. This indicates that
both modules help the information communication between different groups.
Besides, using cyclic shuffle and channel shuffle jointly demonstrate the highest
accuracy gain (up to 3.19%) in terms of top-1 accuracy. This phenomenon veri-
fies our assumption that cyclic shuffle and channel shuffle fuse information flow
in different granularities and they may serve as a complement for each other.

We also explore the way to use channel shuffle. Table 3 shows that using
per-stage or per-block channel shuffle has similar performance without cyclic
shuffle. Together with cyclic shuffle, per-stage channel shuffle has higher accu-
racy improvement(+3.19% Top-1 accuracy on ImageNet) than per-block channel
shuffle. In this paper, we use per-stage channel shuffle by default unless otherwise
specified.

Ablation: Importance of Cyclic Permutation. As the cyclic shuffle module
brings in one extra 1×1 group convolution, one may concern that most of the
accuracy gains come from the additional computational cost. Experimental re-
sults in Table. 4 are against this opinion. PalQuant loses 0.76 % top-1 accuracy
after dropping the cyclic permutation and keeping other parts unchanged while
dropping the whole cyclic shuffle module causes 0.9 % top-1 accuracy decline.
This indicates that the gain brought by the cyclic shuffle module is mainly due
to cyclic permutation.
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Table 3. Influence of different shuffle modules

Cyclic Shuffle Channel Shuffle Top1 Acc. Top5 Acc.

67.94 87.90

per-block 70.31 89.58

per-stage 70.24 89.51

✓ 70.22 89.55

✓ per-block 70.62 89.69

✓ per-stage 71.13 89.99

∆ 3.19↑ 2.09↑

Table 4. Importance of cyclic permutation

Module Top1 Acc. Top5 Acc.

PalQuant 71.13 89.99

w.o cyclic permutation 70.37 (−0.76) 89.57 (−0.42)

w.o cyclic shuffle 70.23 (−0.90) 89.51 (−0.48)

5.4 Generalization

Results With Different Numbers of Parallel Groups In this section, we
explore the generalization of PalQuant under different numbers of parallel groups
G. In Table. 5, our proposed method outperforms LSQ [13] consistently on a var-
ious number of parallel groups, which demonstrates the generalization ability of
PalQuant. In addition, PalQuant shows superior performance (nearly 3% higher
top-1 accuracy) than LSQ [13] under the same computational budget.

Table 5. Results with different numbers of parallel groups

Method Precision BitOps Top1 Acc. Top5 Acc.

LSQ [13] 4b A,4b W 29.10G 70.99 89.86
LSQ [13] 4b A,2b W 14.55G 69.18 88.93

PalQuant(Ours) B=2,G=2 14.87G 71.13 89.99

LSQ [13] 6b A,6b W 65.48G 71.58 90.24
LSQ [13] 6b A,2b W 21.83G 69.47 89.06

PalQuant(Ours) B=2,G=3 22.30G 72.36 90.63

LSQ [13] 8b A,8b W 116.40G 71.10 90.10
LSQ [13] 8b A,2b W 29.10G 70.71 89.70

PalQuant(Ours) B=2,G=4 29.73G 72.74 90.90
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Results With Different Quantization Precision Next, we explore the per-
formance of PalQuant under different quantization precision B. Table. 6 shows
that PalQuant outperforms LSQ [13] consistently across different low-precision
bit-width, i.e. B=2, 3, and 4. This result means that our proposed scheme can
be applied to CNNs accelerators with different quantization precision. We also
quantize the weights with only half of activation bit-width in LSQ [13], which
has nearly the same computation complexity as PalQuant. The result shows that
our method outperforms LSQ [13] by a large margin under the comparable com-
putational budget. The result of LSQ[13] with 6/3-bit quantization is provided
in Appendix.

Table 6. Results with different quantization precision

Method Precision BitOps Top1 Acc. Top5 Acc.

LSQ [13] 4b A,4b W 29.10G 70.99 89.86
LSQ [13] 4b A,2b W 14.55G 69.18 88.93

PalQuant(Ours) B=2,G=2 14.87G 71.13 89.99

LSQ [13] 6b A,6b W 65.48G 71.58 90.24
LSQ [13] 6b A,3b W 32.74G 70.896 89.712

PalQuant(Ours) B=3,G=2 33.45G 72.72 90.90

LSQ [13] 8b A,8b W 116.40G 71.10 90.10
LSQ [13] 8b A,4b W 58.20G 71.46 90.15

PalQuant(Ours) B=4,G=2 59.46G 73.48 91.34

6 Conclusion

In this paper, we propose the PalQuant, a parallel low-precision quantization
method that achieves efficient and accurate high-precision network inference on
low-precision accelerators. To help the information flow across parallel groups, we
propose the cyclic shuffle module to aggregate parallel information at group level.
Extensive experiments demonstrate that PalQuant outperforms state-of-the-art
quantization methods in terms of both accuracy and computational complexity.

Acknowledgements This work was supported in part by National Key Re-
search and Development Program of China (Grant No.2021ZD0201504), and
National Natural Science Foundation of China (Grant No.62106267).

Appendix

A Improve ShuffleNet-v2 with Cyclic Shuffle

As mentioned in the main-body of the paper, the proposed cyclic shuffle shows
its well performance on group convoltuions for quantized ResNet-18 and ResNet-
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34. Since we assume that it can serve as a complement of channel shuffle, here
we explore the performance of cyclic shuffle on ShuffleNet-v2.

As we didn’t find the official training codes of ShuffleNet-v2, we re-implemented
the ShuffleNet-v2 training algorithm under Pytorch framework. We adopt an
SGD optimizer with the momentum set to 0.9. The weight decay is set to 1e-4,
and the learning rate initialized by 0.1 is adjusted with a cosine learning rate
decay strategy. All models in this subsection are trained from scratch for 300
epochs with a batch size of 512.

As shown in table 7, we can achieve +0.48% higher top-1 accuracy by adding
one cyclic shuffle module at the beginning of stage3 and stage4 in ShuffleNet
v2. This indicates that our proposed method can be applied on the deep neural
networks that contains group convolutions or channel splitting modules to obtain
higher accuracy.

Table 7. ShuffleNet-V2 with Cyclic Shuffle

Module Top1 Acc. Top5 Acc.

ShuffleNet v2(our impl.) 68.71 88.48

+cyclic shuffle 69.19 (+0.48) 88.65 (+0.17)

B BitOps Definition

Generally speaking, the number of floating-point operations (FLOPS) is the
mainstream computational complexity metric. In Section 5 of the paper, we
use the number of bit operations (BitOps)[42] to measure the computational
complexity of quantized deep neural networks. For a convolutional layer with t
kernels of size c∗k ∗k, let h and w be the height and width of the output feature
map respectively. Then the number of bit operations (BitOps) is:

#BitOps = bw × ba × t× c× k× k× h× w (11)

where bw and ba denotes the bit-with of quantized weights and activations, re-
spectively.

C PalQuant on CNNs without residual connections

To demonstrate the general applicability of PalQuant, we conduct experiments
on Plain-18 network which has the same net architecture as ResNet-18 except
for residual connections. Here we re-implement the baseline Plain-18 and LSQ
method under the same training settings as PalQuant. Table 8 shows that
PalQuant can achieve +0.22% higher top1 accuracy than LSQ with nearly only
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Table 8. Quantization Results of Plain-18 on ImageNet.

Method Precision BitOps Top1 Acc.

Baseline FP32 - 69.96

LSQ 4b A,4b W 29.10G 69.90

PalQuant B=2,G=2 14.87G 70.12

a half of BitOps. This result means that PalQuant can also be applied to deep
networks without residual connections. As such, we think PalQuant can’t be seen
as an extension of ShuffleNet. Besides, PalQuant is a quantization method that
aims to deploy high-precision networks on low-precision accelerators. One key
component of PalQuant is expanding feature map channels and dividing them
into groups. And the proposed cyclic shuffle is another contribution of PalQuant.
These two contributions make PalQuant differ a lot from ShuffleNet.
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