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Abstract. Modern iterations of deep learning models contain millions
(billions) of unique parameters—each represented by a b-bit number.
Popular attempts at compressing neural networks (such as pruning and
quantisation) have shown that many of the parameters are superfluous,
which we can remove (pruning) or express with b′ < b bits (quantisa-
tion) without hindering performance. Here we look to go much further
in minimising the information content of networks. Rather than a chan-
nel or layer-wise encoding, we look to lossless whole-network quantisa-
tion to minimise the entropy and number of unique parameters in a
network. We propose a new method, which we call Weight Fixing Net-
works (WFN) that we design to realise four model outcome objectives:
i) very few unique weights, ii) low-entropy weight encodings, iii) unique
weight values which are amenable to energy-saving versions of hardware
multiplication, and iv) lossless task-performance. Some of these goals are
conflicting. To best balance these conflicts, we combine a few novel (and
some well-trodden) tricks; a novel regularisation term, (i, ii) a view of
clustering cost as relative distance change (i, ii, iv), and a focus on whole-
network re-use of weights (i, iii). Our Imagenet experiments demonstrate
lossless compression using 56x fewer unique weights and a 1.9x lower
weight-space entropy than SOTA quantisation approaches. Code and
model saves can be found at github.com/subiawaud/Weight Fix Networks1.

Keywords: Compression, Quantization, Minimal Description Length,
Deep Learning Accelerators

1 Introduction

Deep learning models have a seemingly inexorable trajectory toward growth.
Growth in applicability, performance, investment, and optimism. Unfortunately,
one area of growth is lamentable - the ever-growing energy and storage costs
required to train and make predictions. To fully realise the promise of deep
learning methods, work is needed to reduce these costs without hindering task
performance.

Here we look to contribute a methodology and refocus towards the goal of
reducing both the number of bits to describe a network as well the total number
of unique weights in a network. The motivation to do so is driven both by prac-
tical considerations of accelerator designs [1, 2], as well as the more theoretical

1 Paper Published: 978-3-031-20082-3, ECCV 2022, Part XI, LNCS 13671
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persuasions of the Minimal Description Length (MDL) principle [3–5] as a way
of determining a good model.
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Fig. 1. WFN reduces the total number of weights and the entropy of a network far
further than other quantisation works. Left: The total number of unique parameters
left after quantisation is 56x fewer than APoT for ResNet-18 trained on the Imagenet
dataset and 71x for the ResNet-34 model. Right: The entropy of the parameters across
the network is 1.9x and 1.65x smaller when using the WFN approach over APoT.

The Minimal Description Length. Chaitin’s hypothesis captures the think-
ing behind the MDL principle with the statement “comprehension is compres-
sion” [6, 7]. That is, to learn is to compress. In this setting, the best model
minimises the combined cost of describing both the model and the prediction
errors. Deep learning models have shown themselves adept at minimising the
latter, but it is not clear that we sufficiently compress the model description
through unbounded standard gradient descent training. One way to think about
MDL in relation to deep learning compression is the following 2:

Imagine that Bob wants to communicate ground-truth targets to Alice. To
achieve this, he can forward both a predictive model and its errors, compressed
to as few bits as possible without losing any information. Given these two com-
ponents, Alice can pass the input data into the model and, given the commu-
nicated errors from Bob, make any adjustments to its output to retrieve the
desired ground truth. This formulation is the two-part compression approach
to the problem of learning [6]. The MDL principle says that the best model is
obtained by minimising the sum of the lengths of the codes for model and errors.

Although the MDL treatment of learning is largely theoretical, it has mo-
tivated the design of compressed network architectures [8–10]. We believe that
a more direct optimisation to minimise the information theoretic content could
bear fruit for downstream hardware translations, but let us start by setting out
the description quantities we wish to minimise.
Describing a Solution. Describing a classification model’s error is well cap-
tured with the cross-entropy loss. From an information-theoretic perspective, the

2 originally posed in ‘Keeping neural networks simple by minimizing the description
length of the weights’ [8]
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cross-entropy loss measures the average message length per data point needed to
describe the difference in predicted and target output distributions. Essentially,
large errors cost more to describe than small errors.

The cost of describing a model is more complex, requiring two elements to
be communicated – the weight values, and their arrangement. A metric used
to capture both components is the representation cost, as outlined in Deep K-
means [11] (Equation 5 below). Here, the cost of describing the model is defined
as the summed bit-width of each weight representation times the number of
times each weight is used in an inference calculation.
Minimising the Representation Costs in Accelerators. Importantly, this
representation cost as a model description can be translated directly into acceler-
ator design savings, as shown by the seminal work in Deep Compression [12] and
subsequent accelerator design, EIE [2]. Here the authors cluster neural networks’
weights and use Huffman encoding to represent/describe the network cheaply.
From an information-theoretic perspective, the motivation for Huffman encoding
is simple; this encoding scheme is likely to give us a compressed result closest to
our underlying weight-space entropy. However, this work was not focused on the
information content, so why was it advantageous to an accelerator design? For
this, we need to look at where the computation costs are most concentrated.

The most expensive energy costs in inference calculations lie in memory
reads [13, 14]. For every off-chip DRAM data read, we pay the equivalent of
over two hundred 32-bit multiplications in energy costs3 [13]. This energy cost
concentration has led to the pursuit of data movement minimisation schemes
using accelerator dataflow mappings [2, 15–17]. These mappings aim to store
as much of the network as possible close to computation and maximise weight
re-use. From an algorithmic perspective, this makes networks with low entropy
content desirable. To make use of a low entropy weight-space, a dataflow map-
ping can store compressed codewords for each weight which, when decoded, point
to the address of the full precision weight, which itself is stored in cheaper access
close-to-compute memory. The idea is that the addition of the codeword storage
and access costs plus the full weight value access costs can be much smaller than
in the unquantised network [11,18]. Several accelerator designs have successfully
implemented such a scheme [1,2].

As a simple illustrative example, let us define a filter in a network post-
quantisation with the values [900, 104, 211, 104, 104, 104, 399, 211, 104]. This net-
work has an entropy of 1.65, meaning each weight can be represented, on average,
using a minimum of 1.65 bits, compared to the 9.8bits (log(900)) needed for an
uncompressed version of the same network. Using Huffman encoding, we get
close to this bound by encoding the network weights as w 7→ c(w) with:

c(104) = 1, c(211) = 01, c(399) = 001, c(900) = 000

and the complete filter can be represented as “000101111001011”, totalling just
15 bits, 1.66 bits on average per value. Each decoded codeword points a corre-
sponding weight in the reduced set of unique weights required for computation.

3 45nm process
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These unique weights (since there are very few of them) can be stored close
to compute on memory units, processing element scratchpads or SRAM cache
depending on the hardware flavour [19, 20], all of which have minimal (almost
free) access costs. The storage and data movement cost of the encoded weights
plus the close-to-compute weight access should be smaller than the storage and
movement costs of directly representing the network with the weight values.
This link – between minimising the model description and reducing accelerator
representational costs – motivates our approach.

Objectives. So we ask ourselves what we could do algorithmically to maximise
the benefit of accelerator dataflows and minimise the description length. Since
Huffman encoding is used extensively in accelerator designs, we focus on find-
ing networks that reduce the network description when compressed using this
scheme. To do this, we first focus on reducing the number of unique weights a
network uses. Fewer unique weights whilst fixing the network topology and the
total number of parameters will mean that more weights are re-used more often.
Further gains can be achieved if we can concentrate the distribution of weights
around a handful of values, enabling frequently used weights to be stored cheaply,
close to compute. Finally, we ask what the ideal values of these weights would
be. From a computational perspective, not all multiplications are created equal.
Powers-of-two, for example, can be implemented as simple bit-shifts. Mapping
the weights used most to these values offers potential further optimisation in
hardware. Putting these three requirements together: few unique weights; a low-
entropy encoding with a distribution of weights highly concentrated around a
tiny subset of values; and a focus on powers-of-two values for weights — all moti-
vated to both minimise the MDL as well as the computation costs in accelerator
designs — we present our contribution.

Weight Fixing Networks. Our work’s overarching objective is to transform
a network comprising many weights of any value (limited only by value pre-
cision) to one with the same number of weights but just a few unique values
and concentrate the weights around an even smaller subset of weights. Rather
than selecting the unique weights a priori, we let the optimisation guide the pro-
cess in an iterative cluster-then-train approach. We cluster an ever-increasing
subset of weights to one of a few cluster centroids in each iteration. We map
the pre-trained network weights to these cluster centroids, which constitute a
pool of unique weights. The training stage follows standard gradient descent
optimisation to minimise performance loss with two key additions. Firstly, only
an ever decreasing subset of the weights are free to be updated. We also use a
new regularisation term to penalise weights with large relative distances to their
nearest clusters. We iteratively cluster subsets of weights to their nearest cluster
centre, with the way we determine which subset to move a core component of
our contribution.

Small Relative Distance Change. Rather than selecting subsets with small
Euclidean distances to cluster centres, or those that have small magnitude [21],
we make the simple observation that the relative – as opposed to absolute –
weight change matters. We find that the tolerated distance δwi we can move a



Weight Fixing Networks 5

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

= 0.05

Noise Type
Relative
Absolute

0 2 4 6 8

= 0.1

0 2 4 6 8

= 0.2

0 2 4 6 8
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

= 0.3

0 2 4 6 8
Layer Index

= 0.4

0 2 4 6 8
Layer Index

= 0.5

Fig. 2. We explore adding relative vs absolute noise to each of the layers (x-axis). The
layer index indicates which layer was selected to have noise added. Each layer index is
a separate experiment with the 95% confidence intervals shaded.

weight wi when quantised depends on the relative distance |(δwi/wi)|. When the
new value wi+δwi = 0 — as is the case for pruning methods — then the magni-
tude of the weight is the distance. However, this is not the case more generally.
We demonstrate the importance of quantising with small relative changes using
simple empirical observations. Using a pre-trained ResNet-18 model, we mea-
sure changes to network accuracy when adding relative vs absolute noise to the
layers’ weights and measure the accuracy change. For relative noise we choose
a scale parameter β|wli| for each layer-l weight wli, and set wli ← wli + β|wli|ε,
ε ∼ N (0, 1). For additive noise perturbations, all weights wli are perturbed by

the mean absolute value of weights |wl| in layer l scaled by β: wli ← wli +β|wl|ε.

We run each layer-β combination experiment multiple times – to account
for fluctuation in the randomised noise – and present the results in Figure 2.
Even though the mean variation of noise added is the same, noise relative to
the original weight value (multiplicative noise) is much better tolerated than
absolute (additive noise). Since moving weights to quantisation centres is analo-
gous to adding noise, we translate these results into our approach and prioritise
clustering weights with small relative distances first. We find that avoiding sig-

nificant quantisation errors requires ensuring that |δwi|
|wi| is small for all weights.

If this is not possible, then performance could suffer. In this case, we create an
additional cluster centroid in the vicinity of an existing cluster to reduce this
relative distance. Our work also challenges the almost universal trend in the lit-
erature [22–27] of leaving the first and last layers either at full precision or 8-bit.
Instead, we attempt a full network quantisation. The cost of not quantising the
first layer – which typically requires the most re-use of weights due to the larger
resolution of input maps – and the final linear layer – which often contains the
largest number of unique weight values – is too significant to ignore.
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With multiple stages of training and clustering, we finish with an appreciably
reduced set of unique weights. We introduce a regularisation term that encour-
ages non-uniform, high probability regions in the weight distribution to induce
a lower-entropy weight-space. The initial choice of cluster centroids as powers-
of-two helps us meet our third objective – energy-saving multiplication. Overall
we find four distinct advantages over the works reviewed:

– We assign a cluster value to all weights — including the first and last layers.
– We emphasise a low entropy encoding with a regularisation term, achieving

entropies smaller than those seen using 3-bit quantisation approaches – over
which we report superior performance.

– We require no additional layer-wise scaling, sharing the unique weights across
all layers.

– WFN substantially reduces the number of unique parameters in a network
when compared to existing SOTA quantisation approaches.

2 Related Work

Clip and Scale Quantisation. Typical quantisation approaches reduce the
number of bits used to represent components of the network. Quantisation has
been applied to all parts of the network with varying success; the weights, gra-
dients, and activations have all been attempted [23, 25, 28–31]. Primarily, these
approaches are motivated by the need to reduce the energy costs of the multi-
plication of 32-bit floating-point numbers. This form of quantisation maps the
weight wi to w′i = s round(wi), where round() is a predetermined rounding
function and s a scaling factor. The scaling factor (determined by a clipping
range) can be learned channel-wise [24, 32], or more commonly, layerwise in
separate formulations. This results in different channels/layers having a diverse
pool of codebooks for the network weights/activations/gradients. Quantisation
can be performed without training — known as post-training quantisation, or
with added training steps – called quantisation-aware training (QAT). Retrain-
ing incurs higher initial costs but results in superior performance.

A clipping+scaling quantisation example relevant to our own is the work
of [21], where the authors restrict the layerwise rounding of weights to powers-of-
two. The use of powers-of-two has the additional benefit of energy-cheap bit-shift
multiplication. A follow-up piece of work [22] suggests additive powers-of-two
(APoT) instead to capture the pre-quantised distribution of weights better.

Weight Sharing Quantisation. Other formulations of quantisation do not use
clipping and scaling factors [11,33,34]. Instead, they adopt clustering techniques
to cluster the weights and fix the weight values to their assigned group cluster
centroid. These weights are stored as codebook indices, allowing for compressed
representation methods such as Huffman encoding to squeeze the network fur-
ther.

We build on these methods, which, unlike clipping+scaling quantisation tech-
niques, share the pool of weights across the entire network. The work by [11]
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is of particular interest since both the motivation and approach are related to
ours. Here the authors use a spectrally relaxed k-means regularisation term to
encourage the network weights to be more amenable to clustering. In their case,
they focus on a filter-row codebook inspired by the row-stationary dataflow used
in some accelerator designs [15]. However, their formulation is explored only for
convolution, and they restrict clustering to groups of weights (filter rows) rather
than individual weights due to computational limitations as recalibrating the
k-means regularisation term is expensive during training.

Similarly, [33,35] focus on quantising groups of weights into single codewords
rather than the individual weights themselves. Weight-sharing approaches simi-
lar to ours include [36]. The authors use the distance from an evolving Gaussian
mixture as a regularisation term to prepare the clustering weights. Although it
is successful with small dataset-model combinations, the complex optimisation
— particularly the additional requirement for Inverse-Gamma priors to lower-
bound the mixture variance to prevent mode collapse — limits the method’s
practical applicability due to the high computational costs of training. In our
formulation, the weights already fixed no longer contribute to the regularisation
prior, reducing the computational overhead. We further reduce computation by
not starting with a complete set of cluster centres but add them iteratively when
needed.

3 Method

Quantisation. Consider a network N parameterised by N weights W = {w1,
..., wN}. Quantising a network is the process of reformulating N ′ ← N where
the new network N ′ contains weights which all take values from a reduced pool
of k cluster centres C = {c1, ..., ck} where k � N . After quantisation, each of
the connection weights in the original network is replaced by one of the cluster
centres wi ← cj , W

′ = {w′i|w′i ∈ C, i = 1, · · · , N}, |W ′| = k, where W ′ is the set
of weights of the new network N ′, which has the same topology as the original
N .

Method Outline. WFN is comprised of T fixing iterations where each iteration
t ∈ T has a training and a clustering stage. The clustering stage is tasked with
partitioning the weights into two subsets W = W t

fixed ∪ W t
free. W t

fixed is the set of
weights set equal to one of the cluster centre values ck ∈ C. These fixed weights
wi ∈ W t

fixed are not updated by gradient decent in this, nor any subsequent
training stages. In contrast, the free-weights denoted by W t

free remain trainable
during the next training stage. With each subsequent iteration t we increase the

proportion pt =
|W t

fixed|
|W | of weights that take on fixed cluster centre values, with

p0 < p1 . . . < pT = 1. By iteration T , all weights will be fixed to one of the
cluster centres. The training stage combines gradient descent on a cross-entropy
classification loss, along with a regularisation term that encourages tight-clusters,
in order to maintain lossless performance as we fix more of the weights to cluster
centres.
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Algorithm 1: Clustering Npt weights at the tth iteration.

while |W t+1
fixed| ≤ Npt do

ω ← 0
fixednew ← [ ]
while fixednew is empty do

Increase the order ω ← ω + 1

for each i = 1 . . . , |W t+1
free |

cω∗ (i) = minc∈C̃ω D
+
rel(wi, c)

for each cluster centre cωk ∈ C̃ω
nωk =

∑
i I[c

ω
k = cω∗ (i)]

k∗ = arg maxk n
ω
k

Sort: [w′1, . . . , w
′
N ]← [w1, . . . , wN ], w′i = wπ(i), π permutation

where D+
rel(w

′
i, c

ω
k∗) < D+

rel(w
′
i+1, c

ω
k∗)

i = 1, mean = D+
rel(w

′
1, c

ω
k∗)

while mean ≤ δt do
fixednew ← w′i
mean← i

i+1
∗mean + 1

i+1
D+

rel(w
′
i+1, c

ω
k∗)

i← i+ 1

Assign all the weights in fixednew to cluster centre cω∗ (i), moving them
from W t+1

free to W t+1
fixed

Clustering Stage. In the clustering stage, we work backwards from our goal of
minimising the relative distance travelled for each of the weights to determine
which values cluster centres ci ∈ C should take. For a weight wi ∈W and cluster

centre cj ∈ C we define a relative distance measure Drel(wi, cj) =
|wi−cj |
|wi| . To use

this in determining the cluster centres, we enforce a threshold δ on this relative
distance, Drel(wi, cj) ≤ δ for small δ. We can then define the cluster centres
cj ∈ C which make this possible using a simple recurrence relation. Assume
we have a starting cluster centre value cj , we want the neighbouring cluster
value cj+1 to be such that if a network weight wi is between these clusters

wi ∈ [cj ,
cj+1+cj

2 ] then Drel(wi, cj) ≤ δ. Plugging in
cj+1+cj

2 and cj into Drel and
setting it equal to δ we have:

| cj+1+cj
2 − cj |
cj+1+cj

2

= δ, leading to cj+1 = cj(
1 + δ

1− δ
), 0 < δ < 1, (1)

a recurrence relation that provides the next cluster centre value given the previ-
ous one. With this, we can generate all the cluster centres given some boundary
condition c0 = δ0. δ0 is the lower-bound cluster threshold, and all weights wi for
|wi| < δ0 are set to 0 (pruned). This lower bound serves two purposes: firstly, it
reduces the number of proposal cluster centres which would otherwise increase
exponentially in density around zero, and additionally, the zero-valued weights
makes the network more sparse. This will allow sparsity-leveraging hardware to
avoid operations that use these weights, reducing the computational overhead.
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As an upper-bound, we stop the recurrence once a cluster centre is larger than
the maximum weight in the network, maxj |cj | ≤ maxi |wi|, wi ∈W, cj ∈ C.
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Fig. 3. The accuracy vs model size trade-off can be controlled by the δ parameter. All
experiments shown are using the ImageNet dataset, accuracy refers to top-1.

Generating the Proposed Cluster Centres. Putting this together, we have
a starting point c0 = δ0, a recurrence relation to produce cluster centres given c0
that maintains a relative distance change when weights are moved to their near-
est cluster centre, and a centre generation stopping condition cj ≤ maxi∈W |wi|,
cj ∈ C. We use the δ0 value as our first proposed cluster centre c0 with the
recurrence relation generating a proposed cluster set of size s. Since all these
values will contain only positive values, we join this set with its negated version
along with a zero value to create a proposal cluster set CS = {a( 1+δ

1−δ )jδ0 | j =
0, 1 · · · s; a = +1, 0,−1} of size 2s+ 1.

To account for the zero threshold δ0 and for ease of notation as we advance,
we make a slight amendment to the definition of the relative distance function
Drel(wi, cj):

D+
rel(wi, cj) =

{
|wi−cj |
|wi| , if |wi| ≥ δ0

0 otherwise.
(2)

Reducing k with Additive Powers-of-two Approximations. Although us-
ing all of the values in CS as centres to cluster the network weights would meet
the requirement for the relative movement of weights to their closest cluster to
be less than δ, it would also require a large number of k = |CS | clusters. In
addition, the values in CS are also of full 16-bit precision, and we would prefer
many of the weights to be powers-of-two for ease of multiplication in hard-
ware. With the motivation of reducing k and encouraging powers-of-two clusters
whilst maintaining the relative distance movement where possible, we look to a
many-to-one mapping of the values of CS to further cluster the cluster centres.
Building on the work of others [21, 22], we map each of the values ci ∈ CS to
their nearest power-of-two, round(ci) = sgn(ci)2

blog2(ci)e and, for flexibility, we
further allow for additive powers-of-two rounding. With additive powers-of-two
rounding, each cluster value can also come from the sum of powers-of-two values
(b-bit) up to order ω where the order represents the number of powers-of-two
that can contribute to the approximation.
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Minimalist Clustering. We are now ready to present the clustering procedure
for a particular iteration t, which we give the pseudo-code for in Algorithm 1.
We start the iteration with ω = 1 and a set of weights not yet fixed W t

free.

For the set of cluster centres C̃ω of order ω, let cω∗ (i) = minc∈C̃ω D
+
rel(wi, c)

be the one closest to weight wi. n
ω
k =

∑
i I[cωk = cω∗ (i)] counts the number

of weights assigned to cluster centre cωk ∈ C̃ω, where the indicator function
I[x] is 1 if x is true and 0 otherwise. Let k∗ = arg maxk n

ω
k so that cωk∗ is the

modal cluster. For the cluster k∗ let permutation π of {1, . . . , N} that maps
wi 7→ w′π(i), be such that the sequence (w′1(k∗), w′2(k∗), . . . , w′N (k∗)) is arranged
in ascending order of relative distance from the cluster cωk∗ . In other words,
D+

rel(w
′
i(k
∗), cωk∗) ≤ D+

rel(w
′
i+1(k∗), cωk∗), for i = 1, . . . , (N − 1). We choose n to

be the largest integer such that:

n∑
i=1

D+
rel(w

′
i(k
∗), cωk∗) ≤ nδ, and

n+1∑
i=1

D+
rel(w

′
i(k
∗), cωk∗) > (n+ 1)δ, (3)

and define {w′1, w′2, . . . , w′n} to be the set of weights to be fixed at this stage
of the iteration. These are the weights that can be moved to the cluster centre
cωk∗ without exceeding the average relative distance δ of the weights from the
centre. The corresponding weight indices from the original network N are in
{π−1(1), . . . , π−1(n)}, and called fixednewin the algorithm. If there are no such
weights that can be found, i.e., for some cluster centre l∗, the minimum relative
distance D+

rel(w
′
1(l∗), cl∗) > δ, the corresponding set fixednew is empty. In this

case, there are no weights that can move to this cluster centre without breaking
the δ constraint and we increase order ω ← ω+1 to compute a new cωk∗ , repeating
the process until |fixednew| > 0. Once fixednew is non-empty, we fix the identified
weights {w′1, w′2, . . . , w′n} to their corresponding cluster centre value cωk∗ and
move them into W t+1

fixed. We continue the process of identifying cluster centres and
fixing weights to these centres until |W t+1

fixed| ≥ Npt, at which point the iteration t
is complete and the training stage of iteration t+1 begins. Our experiments found
that a larger δ has less impact on task performance during early t iterations and
so we use a decaying δ value schedule to maximise compression: δt = δ(T−t+1),
t ∈ T . We will show later that, with a small δ, over 75% of the weights can be
fixed with ω = 1 and over 95% of weights with ω ≤ 2.
Training Stage. Despite the steps taken to minimise the impact of the clus-
tering stage, without retraining, performance would suffer. To negate this, we
perform gradient descent to adjust the remaining free weights W t

free. This allows
the weights to correct for any loss increase incurred after clustering where train-
ing aims to select values W t

free that minimise the cross entropy loss Lcross-entropy

whilst Wfixed remain unchanged.
Cosying up to Clusters. Having the remaining W t

free weights closer to the
cluster centroids C post-training makes clustering less damaging to performance.
We coerce this situation by adding to the retraining loss a regularisation term

Lreg =

N∑
i∈Wfree

k∑
j

D+
reg(wi, cj)p(cj |wi), (4)
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where p(cj |wi) = e
−D+

reg(wi,cj)∑k
l e

−D
+
reg(wi,cl)

. The idea is to penalise the free-weights W t
free

in proportion to their distance to the closest cluster. Clusters that are unlikely
to be weight wi’s nearest — and therefore final fixed value — do not contribute
much to the penalisation term. We update the gradients of the cross-entropy
training loss with the regularisation term:

w← w − η
(
∇wLcross−entropy + α

Lcross−entropy

Lreg
∇wLreg

)
,

with α a hyper-parameter, and η the learning rate schedule. In our implemen-
tation we name α times the ratio of loss terms as γ, and we detach γ from the
computational graph and treat it as a constant.
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Fig. 4. Exploring the hyper-parameter space with ResNet18 model trained on the
CIFAR-10 dataset. Columns; Left: varying the regularisation ratio α, Middle: varying
the distance change value δ, Right: whether we fix the batch-norm variables or not.
Rows; Top: top-1 accuracy test-set CIFAR-10, middle: total number of unique weights,
bottom: entropy of the weights.

4 Experiment Details

We apply WFN to fully converged models trained on the CIFAR-10 and Im-
ageNet datasets. Our pre-trained models are all publicly available with strong
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baseline accuracies4: Resnet-(18,34,50) [37] and, GoogLeNet [38]. We run ten
weight-fixing iterations for three epochs, increasing the percentage of weights
fixed until all weights are fixed to a cluster. In total, we train for 30 epochs per
experiment using the Adam optimiser [39] with a learning rate 2×10−5. We use
grid-search to explore hyper-parameter combinations using ResNet-18 models
with the CIFAR-10 dataset and find that the regularisation weighting α = 0.4
works well across all experiments reducing the need to further hyper-parameter
tuning as we advance. The distance threshold δ gives the practitioner control
over the compression-performance trade-off (see Figure 3), and so we report a
range of values. We present the results of a hyper-parameter ablation study using
CIFAR-10 in the Figure 4.

5 Results
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Fig. 5. Far left: We increase the number of weights in the network that are fixed
to cluster centres with each fixing iteration. Middle left: Decreasing the δ threshold
increases the number of cluster centres, but only towards the last few fixing iterations,
which helps keep the weight-space entropy down. Middle right: The majority of all
weights are order 1 (powers-of-two), the increase in order is only needed for outlier
weights in the final few fixing iterations. Far right: The weight distribution (top-15
most used show) is concentrated around just four values.

We begin by comparing WFN for a range of δ values against a diverse set of
quantisation approaches that have comparable compression ratios (CR) in Table
1. The 3-bit quantisation methods we compare include: LSQ [40], LQ-Net [24]
and APoT [22]. We additionally compare with the clustering-quantisation meth-
ods using the GoogLeNet model: Deep-k-Means [11] whose method is similar to
ours, KQ [41], and GreBdec [42]. Whilst the results demonstrate WFN’s lossless
performance with SOTA CR, this is not the main motivation for the method.
Instead, we are interested in how WFN can reduce the number of unique param-
eters in a network and corresponding weight-space entropy as well as the network

4 CIFAR-10 models : https://github.com/kuangliu/pytorch-cifar, ImageNet models:
torchvision



Weight Fixing Networks 13

Table 1. A comparison of WFN against other quantisation and weight clustering
approaches. The WFN pipeline is able to achieve higher compression ratios than the
works compared whilst matching or improving upon baseline accuracies.

Accuracy (%) Accuracy (%)
Model Method Top-1 Top-5 CR Model Method Top-1 Top-5 CR

ResNet-18 Baseline 68.9 88.9 1.0 ResNet-34 Baseline 73.3 90.9 1.0
LQ-Net 68.2 87.9 7.7 LQ-Net 71.9 90.2 8.6
APoT 69.9 89.2 10.2 APoT 73.4 91.1 10.6

LSQ 70.2+ 89.4+ 9.0* LSQ 73.4+ 91.4+ 9.2*

WFN δ = 0.015 67.3 87.6 13.4 WFN δ = 0.015 72.2 90.9 12.6
WFN δ = 0.01 69.7 89.2 12.3 WFN δ = 0.01 72.6 91.0 11.1

WFN δ = 0.0075 70.3 89.1 10.2 WFN δ = 0.0075 73.0 91.2 10.3
ResNet-50 Baseline 76.1 92.8 1.0 GoogLeNet Baseline 69.7 89.6 1.0

LQ-Net 74.2 91.6 5.9 Deep k-Means 69.4 89.7 3.0
APoT 75.8 92.7 9.0 GreBdec 67.3 88.9 4.5

LSQ 75.8+ 92.7+ 8.1* KQ 69.2 - 5.8
WFN δ = 0.015 75.1 92.1 10.3 WFN δ = 0.015 70.5 89.9 9.0
WFN δ = 0.01 75.4 92.5 9.8 WFN δ = 0.01 70.5 90.0 8.4

WFN δ = 0.0075 76.0 92.7 9.5 WFN δ = 0.0075 70.9 90.2 8.4

* Estimated from the LSQ paper model size comparison graph, we over-estimate to be as fair as
possible.

+ Open-source implementations have so far been unable to replicated the reported results:
https://github.com/hustzxd/LSQuantization.

representational cost, as defined in [11]. This metric has been tested and verified
to linearly correlate with energy estimations deduced using the energy-estimation
tool proposed in [43]: Rep(N ′) = |W |NwBw.
Here, the representation cost is measured as the product of Nw, the number of
operations weight w is involved in, Bw its bit-width and |W |, the number of
unique weights in the network, respectively.

Due to the low weight-space entropy we achieve, we suggest Huffman en-
coding to represent the network weights (as is used by various accelerator de-
signs [1, 2]). Given that the weight-representational bit-width will vary for each
weight, we amend the original formulation to account for this, introducing

RepMixed(N ′) =
∑
wi∈W

NwiBwi (5)

Here Nwi
is the number of times wi is used in an inference computation, and

Bwi its Huffman-encoded representation bit-width of wi.
The authors of the APoT have released the quantised model weights and

code. We use the released model-saves5 of this SOTA model to compare the
entropy, representational cost, unique parameter count, model size and accu-
racy in Table 2. Our work outperforms APoT in weight-space entropy, unique
parameter count and weight representational cost by a large margin. Taking
the ResNet-18 experiments as an example, the reduction to just 164 weights
compared with APoT’s 9237 demonstrates the effectiveness of WFN. This huge
reduction is partly due to our full-network quantisation (APoT, as aforemen-
tioned, does not quantise the first, last and batch-norm parameters). However,

5 https://github.com/yhhhli/APoT Quantization
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Table 2. A full metric comparison of WFN Vs. APoT. Params refers to the total
number of unique parameter values in the network. No BN-FL refers to the unique
parameter count not including the first-last and batch-norm layers. WFN outper-
forms APoT even when we discount the advantage gained of taking on the challenge
of quantising all layers. Model sizes are calculated using LZW compression.

Model Method Top-1 Entropy Params No BN-FL RepMixed Model Size
ResNet-18 Baseline 68.9 23.3 10756029 10276369 1.000 46.8MB

APoT (3bit) 69.9 5.77 9237 274 0.283 4.56MB
WFN δ = 0.015 67.3 2.72 90 81 0.005 3.5MB
WFN δ = 0.01 69.7 3.01 164 153 0.007 3.8MB

WFN δ = 0.0075 70.3 4.15 193 176 0.018 4.6MB
ResNet-34 Baseline 73.3 24.1 19014310 18551634 1.000 87.4MB

APoT (3bit) 73.4 6.77 16748 389 0.296 8.23MB
WFN δ = 0.015 72.2 2.83 117 100 0.002 6.9MB
WFN δ = 0.01 72.6 3.48 164 130 0.002 7.9MB

WFN δ = 0.0075 73.0 3.87 233 187 0.004 8.5MB
ResNet-50* Baseline 76.1 24.2 19915744 18255490 1.000 97.5MB

WFN δ = 0.015 75.1 3.55 125 102 0.002 9.3MB
WFN δ = 0.01 75.4 4.00 199 163 0.002 10.0MB

WFN δ = 0.0075 76.0 4.11 261 217 0.003 10.2MB
* The APoT model weights for ResNet-50 were not released so we are unable to conduct a

comparison for this setting.

this does not tell the full story; even when we discount these advantages and
look at weight subsets ignoring the first, last and batch-norm layers, WFN uses
many times fewer parameters and half the weight-space entropy — see column
‘No BN-FL’ in Table 2. Finally, we examine how WFN achieves the reduced
weight-space entropy in Figure 5. Here we see that not only do WFN networks
have very few unique weights, but we also observe that the vast majority of all
of the weights are a small handful of powers-of-two values (order 1). The other
unique weights (outside the top 4) are low frequency and added only in the final
fixing iterations.

6 Conclusion

We have presented WFN, a pipeline that can successfully compress whole neu-
ral networks. The WFN process produces hardware-friendly representations of
networks using just a few unique weights without performance degradation. Our
method couples a single network codebook with a focus on reducing the entropy
of the weight-space along with the total number of unique weights in the net-
work. The motivation is that this combination of outcomes will offer accelerator
designers more scope for weight re-use and the ability to keep most/all weights
close to computation to reduce the energy-hungry data movement costs. Addi-
tionally, we believe our findings and method offer avenues of further research in
understanding the interaction between network compressibility and generalisa-
tion, particularly when viewing deep learning through the minimal description
length principle lens.
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