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Abstract. Self-distillation exploits non-uniform soft supervision from
itself during training and improves performance without any runtime
cost. However, the overhead during training is often overlooked, and
yet reducing time and memory overhead during training is increasingly
important in the giant models’ era. This paper proposes an efficient self-
distillation method named Zipf’s Label Smoothing (Zipf’s LS), which
uses the on-the-fly prediction of a network to generate soft supervision
that conforms to Zipf distribution without using any contrastive sam-
ples or auxiliary parameters. Our idea comes from an empirical obser-
vation that when the network is duly trained the output values of a
network’s final softmax layer, after sorting by the magnitude and aver-
aged across samples, should follow a distribution reminiscent to Zipf’s
Law in the word frequency statistics of natural languages. By enforc-
ing this property on the sample level and throughout the whole training
period, we find that the prediction accuracy can be greatly improved.
Using ResNet50 on the INAT21 fine-grained classification dataset, our
technique achieves +3.61% accuracy gain compared to the vanilla base-
line, and 0.88% more gain against the previous label smoothing or self-
distillation strategies. The implementation is publicly available at https:
//github.com/megvii-research/zipfls.

Keywords: Knowledge Distillation, Self Distillation, Label Smoothing,
Image Classification, Zipf’s Law

1 Introduction

A major trend in the study of multi-class classification models is to replace
the one-hot encoding label with more informative supervision signal. This line
of thought witnessed proliferation of great training techniques to improve the
accuracy of a network without any runtime cost, the Knowledge Distillation
being the most famous of them. Perhaps the most counter-intuitive discovery in
this direction is the effectiveness of Self Distillation methods [7,27–29,32] where
a network even benefits from predictions of its own.

Self distillation simplifies the two-stage knowledge distillation framework by
distilling knowledge from itself instead of from the pretrained teacher, and still
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Fig. 1: Comparison between different soft label generation methods. a) Two-stage
knowledge distillation method [7, 12]. b) Auxiliary parameters [8, 13, 33]. c) Pro-
gressive distillation with memory bank storing past predictions of the entire dataset
[2, 14, 31]. d) Contrastive samples [27, 29] with twice training iterations. e) La-
bel smoothing methods [19, 28], with uninformative manual designed distributions.
f) Efficient one-pass Zipf’s Label Smoothing method, generating sample-level non-
uniform soft labels almost without additional cost during training

improves performance significantly without extra cost in inference time. How-
ever, the overhead during training in self-distillation is often overlooked, and
yet reducing time and memory overhead in training is increasingly important in
today’s giant model era. Fig. 1 shows several knowledge distillation paradigms,
and self distillation methods rely on additional contrastive training instances,
auxiliary parameters or intermediate dumped results for each training sample,
which could double the training time and bring non-negligible memory overhead.

This paper aims to find efficient techniques which generate non-uniform su-
pervision signals as informative as expensive self distillation approaches. The
starting point of our construction is the observation of the network’s soft-max
output values. The class that corresponds to the final categorical output usu-
ally has the highest value, but the scores for other classes (which we call the
non-target classes), containing important information of the network’s under-
standing of the input image, also play an important role. Indeed, we surmise
that a good-performing network should obey certain laws in the non-
zero prediction values they make on the non-target classes.

We postulate that a significant part of the efficacy of the distillation tech-
niques comes from enforcing the prediction scores into a shape that best balances
between being “sharp” (so that the final prediction is unambiguous) and being
“soft” (so that inter-class correlation are respected). We test this hypothesis by
inventing a technique, which only uses the on-the-fly prediction of a network to
generate a soft supervision label that conforms to our designated distribution
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(a) different network architectures (b) different datasets

Fig. 2: Distribution of sorted softmax scores from duly-trained networks of a)different
architectures on INAT-21 and b) ResNet-50 on different datasets. The average distri-
bution of sorted softmax values (the solid lines) well follows Zipf’s law (the dashed lines
of the same color). The probability-rank relations form straight lines in the log-log plot.
This inspires us to design the soft supervision similar to this shape

law, and showing that this simple strategy already harvests or even surpasses
the performance gains of many other more complex distillation techniques.

Specifically, we rank the output classes according to the feature output of
the multi-class classification network, and assign to each class a target value
according to Zipf’s Law Distribution:

p ∝ r−α

where p is the confidence distribution of different classes, r is our sorted rank
index of classes (integer values starting from 1), and α is a hyper-parameter that
controls the rate of decay. Divergence to this smoothed label is added as a loss
term in complement to the usual cross-entropy with the one-hot encoded hard
label.

The choice of Zipf’s Law is not arbitrary. Indeed, we experimentally find out
that when a network is trained to its convergence state, the average distribution
of sorted softmax values well follows this law (see Fig. 2). By explicitly enforcing
this shape of the distribution and giving supervision from the very beginning of
training, the performance of the network boots by a significant amount.

Thus we propose an efficient and general plug-and-play technique for self dis-
tillation, named Zipf’s Label Smoothing (Zipf’s LS). Compared to other tech-
niques (see Table 1), our method enjoys the advantage of incurring almost zero
additional cost (during inference or training) as label smoothing and at the
same time strongly preserves the performance gains of the self-distillation. To
summarize, our contributions are as follows:
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Table 1: Comparison between different soft label generation methods. Our Zipf’s
Label Smoothing generates sample-level non-uniform soft labels with little cost during
training. For simplicity, this table only shows top1-accuracy(Acc) from ResNet-18 on
TinyImageNet(Tiny) and ResNet-50 on ImageNet(IMT). More comprehensive results
on other models and datasets are reported in the remaining sections of this paper.
Memory cost and training time test experiments are conducted on ImageNet using 4
2080Ti GPUs with batch size 16

Method
Non-

Uniform

w/o
Pretrain
Teacher

w/o
Contrastive
Samples

w/o
Auxiliary
Parameters

CPU
Memory
Cost

GPU
Memory
Cost

Training
time per
epoch

Tiny
Acc

(gain)

IMT
Acc

(gain)

Baseline ✗ ✓ ✓ ✓ 18G 6.8G 1.82h 56.41 76.48
BAN [7] ✓ ✗ ✓ ✗ 18.9G 7.4G 2.67h (+2.24) (+0.05)
BYOT [33] ✓ ✓ ✓ ✗ 18.2G 38.5G 10.36h (+1.43) (+0.51)
PS-KD [14] ✓ ✓ ✗ ✓ 27.4G 9.8G 2.18h (+1.81) (+0.18)
DDGSD [27] ✓ ✓ ✗ ✓ 18.2G 7.3G 4.30h (+2.11) (+0.46)
CS-KD [29] ✓ ✓ ✗ ✓ 18G 6.8G 2.86h (+1.97) (+0.30)
LS [24] ✗ ✓ ✓ ✓ 18G 6.8G 1.83h (+0.48) (+0.19)
TF-KD [28] ✗ ✓ ✓ ✓ 18G 6.8G 1.82h (+0.26) (+0.08)

Ours ✓ ✓ ✓ ✓ 18G 6.8G 1.83h (+2.84) (+0.77)

– We find that distribution of non-target soft-max values of duly trained model
fits well to Zipf’s law, which could be used as a regularization criterion in
the entire self-training process.

– We propose Zipf’s Label Smoothing method, an efficient self distillation
training technique without relying on additional contrastive training in-
stances or auxiliary parameters.

– We verify our method on comprehensive combinations of models and datasets
(including popular ResNet and DenseNet models, CIFAR, ImageNet and
INAT classification tasks) and show strong results.

2 Related Work

2.1 Label Smoothing

The one-hot label is sub-optimal because objects from more than one class occur
in the same image. Label Smoothing [24] (LS) is proposed to smooth the hard la-
bel to prevent over-confident prediction and improve classification performance.
Müller et al. [19] found that intra-class distance in feature space is more com-
pact when LS is used, which improves generalization. To obtain non-uniform soft
labels, Zhang et al. [31] proposed the online label smoothing method (OLS) by
maintaining the historical predictions to obtain the class-wise soft label. Yuan
et al. [28] discussed the relationship between LS and knowledge distillation, and
proposed a teacher-free knowledge distillation (Tf-KD) method to get better per-
formance than LS. Label smoothing has become one of the best practices in the
current deep learning community [11], but the paradigm of using uniform distri-
bution for the non-target classes limits further improvement of performance.
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2.2 Knowledge Distillation

Instead of imposing a fixed prior distribution, knowledge distillation was first
proposed by Hinton in [12] to provide sample-level non-uniform soft labels. They
demonstrated that the “dark knowledge” lies in the output distributions from a
large capacity teacher network and benefits the student’s representation learn-
ing. Recent works mainly explored to better transfer the “dark knowledge” and
improve the efficiency from various aspects, such as reducing the difference be-
tween the teacher and student [3, 5, 18, 34], designing student-friendly architec-
ture [16,20], improving the distillation efficiency [7,14,27,29] and explaining the
distillation’s working mechanism [1,23].

In this work, we focus on how to transfer the “dark knowledge” in an al-
most free manner. Furlanello et al. [7] proposed to improve the performance
of the student network by distilling a teacher network with the same architec-
ture. However, it is still a two-stage approach, which first trains the teacher and
then distills knowledge to the student. To reduce the training time, many self-
distillation methods were proposed. They gain soft label supervision on the fly
without the pretraining step.

2.3 Self Distillation

There are two categories of self-distillation techniques, namely the auxiliary pa-
rameter methods [2,8, 13,30,33] and contrastive sample methods [14,27,29,31].
Auxiliary model methods exploit additional branches to get extra predictions
besides the main-branch prediction for soft label supervision at the cost of
more parameters overhead. For example, Knowledge Distillation via Collabo-
rative Learning (KDCL) [8] trained multiple parallel student networks at the
same time and ensemble the output as extra soft label supervision for each par-
allel student network. On the other hand, contrastive sample methods get soft
label supervision at the cost of additional data augmentation, enlarged batch
size, or complex sampling strategy. The examples are Data-distortion Guided
Self-Distillation (DDGSD) [27] which gains soft labels from different augmented
views from the same instance and Regularizing Class-wise Predictions via Self-
knowledge Distillation (CS-KD) [29] which gathers data from other samples of
the same class.

As summarized above, Label Smoothing and Knowledge Distillation are two
major techniques to acquire informative soft labels. However, the Label Smooth-
ing methods are limited by the uniform hypothesis, while the Knowledge Distil-
lation methods require much more memory or computation overhead. Our work
aims to improve upon these issues.

3 Method

Zipf’s Label Smoothing aims to combine the best of the two worlds, the effi-
ciency of teacher-free label smoothing and the informative soft label from self
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Fig. 3: The overall Zipf’s soft label generation and training framework. The blue
dashed box outlines the soft label generation process. We apply a shared-classifier on
dense feature maps and count the number of argmax values from the dense prediction,
which could provide ranking information to Zipf’s law distribution generation. For the
non-occurred classes with zero count, we give uniform constant energy to them. Lzipf

is Kullback–Leibler divergence between the prediction of non-target classes and zipf’s
soft label, combined with LCE of the hard label to provide gradient to representation
learning

distillation. It generates non-uniform supervision signals from on-the-fly predic-
tion of the network as shown in Fig. 3. Our method is inspired by the observation
that the value and rank of the softmax output from the duly trained network
follow a distribution reminiscent to the Zipf’s Law on average as shown in Fig.
2, which could be applied as a shape prior to the softmax prediction during
the whole training period. To apply Zipf’s Law to soft-label generation, rank-
ing information of output categories is needed. We propose Dense Classification
Ranking which utilizes local classification results to rank the categories. Finally,
KL-divergence between prediction and Zipf’s soft label within non-target classes
is measured to provide more informative gradients for representation learning.

3.1 Zipf’s Law

Zipf’s law is an empirical law which states that the normalized frequency of an
element should be inversely proportional to the rank of the element, firstly dis-
covered by G.Zipf on linguistic materials [21]. It can be described by an equation
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as:

f(r) =
r−α

∑N
r=1 r

−α

logf(r) = −α log r − log(

N∑

r=1

r−α)

(1)

where r is the rank of the element, N is the total number of elements, f is the
frequency and α is a constant larger than zero which controls the decay rate.

An interesting discovery is that the outputs of softmax networks follow Zipf’s
Law [21] when the network is trained to its convergence state, and this pattern
consistently emerges in different datasets and models as shown in Fig. 2. We
could exploit this shape prior to design a simple and efficient self-distillation
algorithm. To generate a soft label using Zipf’s distribution, ranking information
of categories is a must which is almost impossible to get from annotation.

3.2 Dense Classification Ranking

To realize the Zipf distribution we need to find a way to properly rank the
output categories. The naive thought is to directly sort the softmax prediction
of a sample, which we call the logit-based ranking method. Though this method
already generates performance gain (as shown in section 4.4), we find a finer
treatment of the relative ranking of the top classes to be beneficial.

Common image classification convolution networks extract a feature map F
from an image sample. A global average pooling (GAP ) is then applied to F .
The fully-connected layer FC and soft-max operation will output the logits z
and the final prediction p.

If we used FC directly on every pixel of the dense feature map F , we cat get
local classification results pL:

pL
k = Softmax(FCϕ(F k)), k = 1, 2, ...,H ×W (2)

where L is just a mark to show the difference between global prediction p and
local predictions pL. These predictions give a more complete description of what
the image contains, as the object of the target class usually only occupies part of
the image. We take this information into account by identifying the individual
top-1 class from each location as a vote and aggregate the votes into a histogram.
The classes are finally ranked by their frequency of appearance in the histogram.
The remaining classes will share the same lowest rank.
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3.3 Zipf’s Loss

Zipf’s loss LZipf of image sample x and label y is defined as KL-divergence DKL

between normalized non-target prediction p̂ and the synthetic Zipf’s soft label
p̃ generated from dense classification ranking:

p̂c =
exp (zc)∑C

m=1,m ̸=y exp (zm)

LZipf (x, y) = DKL(p̃||p̂) =
C∑

c=1,c̸=y

p̃clog
p̃c

p̂c

(3)

The synthetic Zipf’s label p̃ of non-target class c should follow the equation
4 of Zipf’s law with the corresponding rank rc:

p̃c =
rc

−α

∑C
m=1,m̸=y rm

−α
(4)

where α is a hyper-parameter that controls the shape of the distribution.
The LCE is the standard cross entropy loss with one-hot ground-truth label.

The combined loss function is as follow:

Loss(x, y) = LCE(x, y) + λLZipf (x, y) (5)

LCE encourages the prediction to be sharp and confident in the target class,
while LZipf regularized the prediction to be soft within non-target classes.λ is a
hyper-parameter which control the regularization strength.
Comparison with Uniform Label Smoothing. The gradient with respect
to non-target logits for Lzipf and LLS are shown as:

∂LZipf (x, y)

∂zc
=

{
0 c = y

p̂c − p̃c c ̸= y

∂LLS(x, y)

∂zc
=

{
pc − (1− β) c = y

pc − β
C−1 c ̸= y

(6)

Label smoothing generates a soft label with a uniform value β
C−1 for all non-

target classes and 1 − β for the target class, where C is the total number of
classes. However, label smoothing suppresses predictions of high-ranked classes
or promotes predictions of low-ranked classes to the same level since β is constant
and rank-irrelevant, which is conceptually sub-optimal.

Our Zipf’s loss is rank-relevant compared with label smoothing. In non-target
classes, it encourages the high-ranked classes to keep larger predictions than low-
ranked ones. Zipf’s law distribution shows empirical success in our experiments
against other rank-relevant distributions such as linear decay, more details are
shown in Section 4.4.
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4 Experiment

Table 2: Top-1 accuracy (%) on CIFAR100, TinyImageNet image classification tasks
with various model architectures. We report the mean and standard deviation over five
runs with different random seeds. Vanilla indicates baseline results from the standard
cross-entropy, the best results are indicated in bold, and the second-best results are
indicated by underline. The performances of state-of-the-art methods are reported for
comparison

Method
CIFAR100 TinyImageNet CIFAR100 TinyImageNet

DenseNet121 ResNet18

Vanilla 77.86±0.26 60.31±0.36 75.51±0.28 56.41±0.20

BAN [7] 78.39±0.14 59.34±0.60 76.96±0.04 58.65±0.83
BYOT [33] 78.93±0.05 60.54±0.02 77.15±0.03 57.84±0.15
PS-KD [14] 78.82±0.10 61.64±0.12 76.74±0.06 58.22±0.17
DDGSD [27] 78.18±0.02 60.80±0.30 76.48±0.13 58.52±0.12
CS-KD [29] 78.31±0.49 62.04±0.09 78.01±0.13 58.38±0.38
LS [19] 78.12±0.45 61.25±0.18 77.31±0.28 56.89±0.16
TF-KD [28] 77.68±0.21 60.17±0.57 77.29±0.15 56.67±0.05

Zipf’s LS 79.03±0.32 62.64±0.30 77.38±0.32 59.25±0.20

4.1 Experimental Detail

Datasets. We conduct experiments in various image classification tasks to
demonstrate our method’s effectiveness and universality. Specifically, we use CI-
FAR100 [15] and TinyImageNet1 for small-scale classification tasks, and Ima-
geNet [6] for large-scale classification task. We also verify fine-grained classifica-
tion performance with INAT21 [25] using the “mini” training dataset.
Training setups. We followed the setups in recent related works [4,8,28,29] and
the popular open-source work2. All experiments use MSRA initialization [10],
SGD optimizer with 0.9 momentum, 0.1 initial learning rate, 1e-4 weight decay,
and standard augmentations including random cropping, and flipping. For small-
scale CIFAR100 and TinyImageNet datasets, we use 32x32 resized input images,
128 batch size, and step learning rate policy which decreased to 1/10 of its
previous value at 100th and 150th in the overall 200 epochs. All small-scale
experiments are trained with single GPU. For large-scale ImageNet and INAT21
datasets, we use 224x224 resized input images, 256 batch size, and step learning
rate policy which decreased to 1/10 of its previous value at 30th, 60th, and 90th
in the overall 100 epochs. All large-scale experiments are trained with 4 GPUs.
Hyper parameters. Our method has two hyperparameters in general, λ and
α. λ controls regularization strength and α controls the decay shape of Zipf’s

1 https://www.kaggle.com/c/tiny-imagenet
2 https://github.com/facebookresearch/pycls
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distribution, which is set to 1.0 in all experiments. β is only recommended for
small resolution datasets such as CIFAR100 and TinyImageNet, to exploit the
higher resolution intermediate feature map and make a more reliable ranking. A
detailed hyperparameters ablation study is shown in the supplement.

Table 3: Top-1 accuracy (%) comparison with state-of-the-art works. Experiments
conduct on ImageNet, INAT21 image classification tasks with ResNet50, and on CI-
FAR100, TinyImageNet with DenseNet121.

Method CIFAR100 TinyImageNet ImageNet INAT21

Vanilla 77.86 60.31 76.48 62.43

CS-KD [29] 78.31 62.04 76.78 65.45
LS [19] 78.12 61.25 76.67 65.16
TF-KD [28] 77.68 60.17 76.56 62.61

Zipf’s LS 79.03 62.64 77.25 66.04

4.2 General Image Classification Tasks

First, we conduct experiments on CIFAR100 dataset and TinyImageNet dataset
to compare with other related state-of-the-art methods, including self-knowledge
distillation methods (BAN [7]), online knowledge distillation methods (DDGSD [27],
CS-KD [29]), and label smoothing regularization method (label smoothing [19],
TF-KD [28]). Table 2 shows the classification results of each method based on
different network architectures. All experiments of the above methods keep the
same setups for a fair comparison, details can be seen in 4.1 Training setups.
For other hyper-parameters, we keep their original settings.

Comparison with two-stage knowledge distillation. Two-stage knowledge
distillation methods improve model accuracy using their previous models’ dark
knowledge. These methods rely on a pretrained model, which means they take
twice or more training time than our method. We make a big advantage beyond
BAN [7] (one step) as Table 2 shows, specifically, Zipf’s LS surpasses BAN [7]
by 0.64% and 3.28% respectively on CIFAR100 and TinyImageNet based on
DenseNet121.

Comparison with self-distillation. As one type self-distillation utilizing con-
trastive samples, DDGSD and CS-KD realize respectively exploiting instance-
wise and class-wise consistency regularization techniques. The data process of
DDGSD or the pair sample strategy of CS-KD brings double iterations per train-
ing epoch. As shown in Table 2, Zipf’s LS achieves 0.9% and 0.73% gains com-
pared with DDGSD [27] respectively on CIFAR100 and TinyImageNet based on
ResNet18 without more training iterations. As another type self-distillation with
auxiliary parameters, BYOT [33] squeeze deeper knowledge into lower network.
Zipf’s LS surpasses BYOT obviously on TinyImageNet.
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Comparison with label smoothing regularization. Label smoothing [19]
is a general effective regularizing method with manually designed soft targets.
In Table 2, Zipf’s LS beats label smoothing by 2.36% and 1.39% advantage on
TinyImageNet respectively based on ResNet18 and DenseNet121.

Table 4: Top-1 accuracy (gain) (%) on ImageNet and INAT21 image classification
tasks with various model architectures. Vanilla indicates baseline results from the cross-
entropy, and the best results are indicated in bold

Architecture Method ImageNet INAT21

ResNet18
Vanilla 70.47 54.31

Label Smooth 70.53(+0.06) 55.17(+0.86)
Zipf’s LS 70.73 (+0.26) 56.36 (+2.03)

ResNet50
Vanilla 76.48 62.43

Label Smooth 76.67(+0.19) 65.16(+2.73)
Zipf’s LS 77.25 (+0.77) 66.04 (+3.61)

ResNet101
Vanilla 77.83 65.60

Label Smooth 78.12(+0.29) 67.14(+1.54)
Zipf’s LS 78.58 (+0.75) 68.45 (+2.85)

ResNeXt50 32x4d
Vanilla 77.54 66.36

Label Smooth 77.72(+0.18) 67.51(+1.15)
Zipf’s LS 78.07 (+0.53) 69.24 (+2.88)

ResNeXt101 32x8d
Vanilla 79.51 70.35

Label Smooth 79.69(+0.18) 71.52(+1.17)
Zipf’s LS 80.03 (+0.52) 72.18 (+1.83)

DenseNet121
Vanilla 75.56 63.75

Label Smooth 75.59(+0.03) 64.60(+0.85)
Zipf’s LS 75.98 (+0.42) 66.60 (+2.85)

MobileNetV2
Vanilla 65.52 55.75

Label Smooth 65.71(+0.19) 56.29(+0.54)
Zipf’s LS 66.03 (+0.51) 56.45 (+0.70)

4.3 Large-scale and Fine-grained Image Classification Tasks

Comparison with state-of-the-art methods. Our method is one-pass with
almost zero extra computational or memory cost. Label smoothing and TF-
KD are the two most related works with ours as shown in Fig. 1 and Table 1.
And CS-KD is the most superior method on small-scale datasets besides ours as
shown in Table 2. So we further compare our method with CS-KD, label smooth-
ing and TF-KD on large-scale and fine-grained datasets. As shown in Table 3,
our method shows much more superior performance while label smoothing and
CS-KD methods have already improved baseline with significant margins. For
instance, we surpass the second-best method by 0.47% and 0.59% respectively
on ImageNet and INAT21 based on ResNet50.
Improvements on various architectures. We evaluate our method on vari-
ous network architectures on ImageNet and INAT21. Not only the widely used
families of ResNet [9] and ResNeXt [26] are considered, but also the lighter
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architectures (such as MobileNetV2 [22]) are evaluated. Table 4 shows our sig-
nificant improvements compared with vanilla cross-entropy training on various
network architectures based on ImageNet and INAT21 datasets. For instance,
our method boosts baseline by 0.75% and 2.85% respectively on ImageNet and
INAT21 with ResNet101.

Table 5: Dense classification ranking v.s. logits-based ranking on TinyImageNet with
ResNet18. CE indicates the standard cross-entropy loss. LR indicates that using the
logits ranks. Dense1 indicates that using the last dense feature map of the last stage.
Dense2 indicates that using the last dense feature map of the penultimate stage

Method CE LR Dense1 Dense2 Top-1 acc(%)(gain)

Vanilla ✓ 56.41
Logits-based ✓ ✓ (+1.70)
Voting-based ✓ ✓ ✓ (+2.40)
Voting-based ✓ ✓ ✓ ✓ (+2.84)

4.4 Ablation Study

Dense classification ranking v.s. Logits-based ranking. We introduced
two ranking metrics in section 3.2, logits-based ranking and dense classification
ranking. While logits-based ranking indeed boosts performance compared to the
baseline (1.7% as shown in the second row of Table 5), we still find our strategy,
the dense classification ranking, is necessary for optimal performance. When we
replace the rank by the dense votes from the last few feature maps, the accuracy
improvement goes to as high as 2.84% (last row in Table 5).
Comparison of different distributions. We constraint the logits rank or
dense vote rank to obey Zipf’s law due to the discovery that the output of
deep neural network trained for a classification task follows the law as well. To
demonstrate Zipf’s priority, we conduct constant style, random style and decay
style distributions on various datasets. As shown in Table 6, Zipf makes the best
performance among these distributions. It’s worth noting that, although inferior
to Zipf’s distribution, constant distribution also achieves satisfying performance
which benefits from regularizing only non-target classes different from normal
label smoothing. We speculate that label smoothing coupled with the target
class that might hurt performance.

5 Discussion

Zipf’s soft labels results in more reasonable predictions. Fig. 4 illus-
trates the top-5 predictions of our proposed method compared with the baseline
method. The images are sampled from ImageNet and INAT21 respectively. Our
method makes more reasonable predictions. Not only the top-1 prediction is cor-
rect, but also more similar concepts arise in the top-5 prediction. This results
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Fig. 4: Comparison of top-5 predictions visualization. The dark green, light green,
and red colors denote ground-truth, similar and irrelevant categories respectively. More
informative supervision and prediction are gained since categories that are more similar
to ground truth arise top in Zipf’s soft label (thimble and strainer vs oil filter).

from more informative soft labels from Zipf’s LS, which provides meaningful
representations as knowledge distillation for the network to better grasp the
concept of similar categories.

Table 6: Comparison of the top-1 accuracy (%) of different distributions and label
smoothing. Experiments are conducted on TinyImageNet, ImageNet and INAT21. Zipf
makes the best performance among these distributions

Distribution TinyImageNet ImageNet INAT21

Vanilla 56.41 76.48 62.43

LS 56.89 76.67 65.16
Constant 58.76 77.09 65.86
Random Uniform 58.24 76.89 65.61
Random Pareto 58.52 76.61 65.9
Linear Decay 58.39 76.87 65.86

Zipf 59.25 77.25 66.04

Zipf’s Label Smoothing achieves better representation learning for
generalization. We compare our Zipf’s LS techniques with cross-entropy train-
ing and uniform label smoothing training on the TinyImageNet dataset. As
shown in Fig. 5, the intra-class distance in feature space learned from Zipf’s
label smoothing is more compact and the inter-class distance is more separate.
Zipf’s Label Smoothing achieves better representation learning for generaliza-
tion. More discussion for generalization is shown in supplements.
Non-target class dense classification ranking design. To better rank the
classes in the soft label, we exploit dense classification ranking instead of logits-
based ranking. Thus, larger objects are favored and small object classification
performance might degrade. In our design, the target class is excluded in LZipf
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Fig. 5: T-SNE [17] visualization on 50 random sampled classes of TinyImageNet for
CE, Label Smoothing and Zipf’s label smoothing.

Fig. 6: Comparison of small objects results between CE(above) and Zipf’s LS(below).

and included in LCE only, ensuring the target class provides the correct gradient
regardless of the object size. To verify the small object performance, we collect
the five smallest objects from each class3, Zipf’s LS still beat CE(69.25% vs
67.72%). The cam visualization for the small object case is shown in Fig 6

Limitation. Zipf’s LS does not help in binary classification cases, since the Lzipf

only considers non-target class and would always be zero. Further, as mentioned
in the method section, we exploit dense classification ranking to get more reliable
ranking information than logit-based ranking, which is only available in image
data but not in modals such as speech and language. To make Zipf’s LS work
in multi-modal data is considered as future work.

3 https://image-net.org/data/bboxes_annotations.tar.gz
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6 Conclusion

In this work, we propose an efficient and effective one pass self-distillation
method named Zipf’s Label Smoothing, which not only generates soft-label
supervision in a teacher-free manner as efficient as label smoothing but also
generates non-uniform ones as informative as more expensive self distillation
approaches. Zipf’s Label Smoothing consistently performs better than the uni-
form label smoothing method and other parameters-free one pass self-distillation
methods, it could be one of the plug-and-play self-distillation techniques in your
deep learning toolbox.
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1 Explanation to empirical observation

We find that the Zipf’s prior could help generate non-uniform supervision for
non-target classes in a one-pass way. In this section, we provide a simple in-
tuition to explain why Zipf’s law should occur for predictions from multi-class
classification.

We postulate that one main source of the non-zero network predictions is the
inevitable non-orthogonality of the inter-class feature vectors as more and more
classes are packed into the finite-dimensional feature space. In a simplified model,
we assume that the decision vectors corresponding to each class are uniformly
distributed on a high-dimensional unit sphere. Then for another random query
vector on the sphere, their inner-products with it distribute in the shape of a
Gaussian when the dimension is high enough.

We propose a toy experiment to verify that softmax Gaussian logits fit Zipf’s
law well. As shown in Algorithm 1, first, we sampled random vectors from multi-
variate normal distribution N (0, I1000) as logits of different samples. Then logits
for each sample are sorted and applied with softmax to get probabilities. At last,
we average the sorted probabilities across all samples and plot the probabilities-

Fig. 1: softmax Gaussian logits fit Zipf’s law well
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rank relation for the top 32 categories in log-log space. It could be seen that a
straight line pattern shows up in Figure 1.

Algorithm 1: simulation of ranking softmax Gaussian logits
# generate Gaussian logits,1000 samples, 1000 classes

logits = np.random.randn(1000, 1000)

# sort in class dimension

sorted logits = np.sort(logits, axis=1)

# probability predictions by applying soft-max on the logits

sorted preds = np.exp(sorted logits) /

np.sum(np.exp(sorted logits),axis=1)[:,None]

# averaged across samples

mean sorted preds = np.mean(sorted preds, axis=0)

# top 32 ranks considered

top32 sorted preds = mean sorted preds[::-1][:32]

We also compare several most frequently-used distributions of long-tail shapes
(Zipf’s law, exponential and log-normal) to fit the empirical softmax scores,
as shown in Table 1. All parameters of distributions are estimated by most-
likelihood estimation. Common statistical test metrics such as R square are
measured. Zipf’s law outperforms the other two in all kinds of metrics.

Table 1: Statistical test of how well different distributions fit on empirical aver-
aged predictions on INAT-21. The top 50 categories are considered. For tests such as
Chisquare and Kolmogorov–Smirnov which heavily rely on the amount of the samples,
we sample 105 instances from the empirical distribution. D is the Kolmogorov–Smirnov
statistic and p is the p-value. Zipf’s law outperforms the other two by all kinds of met-
rics.

Metric Zipf’s law Exponential Log-normal

R2 0.99992 0.6768 0.9672

Kullback–Leibler divergence 0.0000667 0.315 0.0219

Jensen–Shannon divergence 0.0000167 0.063 0.00544

Chisquare 13.3 451677 4499

Kolmogorov–Smirnov D=0.00278 D=0.265 D=0.0823
p=0.42 p=0.0 p=0.0

2 More Experiment Details and Discussion

2.1 Hyperparameters

Hyperparameters setting rules. Table 2 shows the detail of hyperparame-
ters settings for different tasks. α controls the decay shape of Zipf’s distribution,
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Table 2: The detail of hyper parameters for different datasets.

Dataset λ α dense layer β

CIFAR100 0.1 1.0 2 0.1
TinyImageNet 1.0 1.0 2 0.5
ImageNet 0.1 1.0 1 /
INAT21 1.0 1.0 1 /

and is set to 1.0 in all tasks. λ controls the regularization strength, which is
set to 0.1 for CIFAR100 and ImageNet, and 1.0 for TinyImageNet and NAT21.
For datasets with large-resolution inputs, such as ImageNet and INAT, using
the final dense feature maps would be sufficient, and no more dense layers are
required. For low-resolution tasks such as CIFAR100 and TinyImageNet, we use
one more dense layer to get enough votes for dense ranking. In this case, we need
β to weigh the cross-entropy loss for learning the extra classifier. β is set to 0.1
and 0.5 respectively on CIFAR100 and TinyImageNet.

Hyperparameters ablation study. 1) α is not sensitive where α ∈ [0.5, 1.5].
2) λ is to control regularization strength and is positively correlated with the
train/val acc gap. For tasks that are prone to overfitting(TinyImageNet and
INAT whose train/val gap are 35% and 25%), λ is 1.0. For tasks that are less
overfitting(ImageNet train/val gap is 4%), λ is 0.1. 3) β is optional and only
recommended for small resolution tasks. It should be less than 0.5 to avoid
shadow learning of deeper layers. See Table 3 for details.

Table 3: Ablation study of hyperparameters α,λ and β

α 0.1 0.5 1.0 1.5 2.0

CIFAR100 77.21±0.29 77.26±0.13 77.38±0.32 77.12±0.24 76.45±0.12
TinyImageNet 58.85±0.16 59.06±0.21 59.25±0.20 58.64±0.18 53.35±0.41

λ 0.01 0.1 0.5 1.0 1.5

CIFAR100 76.59±0.15 77.38±0.32 76.62±0.24 76.79±0.04 76.92±0.17
TinyImageNet 56.86±0.36 57.65±0.01 58.41±0.17 59.25±0.20 58.03±0.27

β(optional) 0.05 0.1 0.3 0.5 0.7

CIFAR100 77.24±0.22 77.38±0.32 76.75±0.31 76.39±0.16 76.49±0.24
TinyImageNet 58.71±0.17 58.77±0.18 59.48±0.31 59.25±0.20 59.00±0.12

2.2 SNR of Ranking

Ranking the classes accurately is a key factor to generate proper Zipf’s law distri-
bution for the sample. In the method section, we propose a finer ranking method
named dense classification ranking which exploits spatial classification results
from the last few feature maps. A consequence of this voting-based method is
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(a) SNR-Rank relation across all
classes

(b) SNR-Rank relation across top
40 classes

Fig. 2: SNR-Rank relation plot for trained ResNet-50 model in INAT21 dataset. It can
be seen that only the top 40 rankings have SNR larger than 1, which makes it hard to
give reliable ranks for tailing class on the fly.

that we have to clip the Zipf’s values to a uniform one after a certain rank,
as they would not receive sufficient votes to be distinguished individually. To
illustrate that ranking only a few top non-target classes is sufficient, we study
the signal-to-noise ratio of rankings. The signal and noise of specific rank r are
calculated as the average and standard deviation among r-th probabilities from
different sorted samples respectively. As shown in Figure.2, we plot the SNR-
rank curve on the INAT21 dataset, only the top 40 out of 10000 ranks whose
SNR is larger than one. It’s a good trade-off to just give power-law decayed
probabilities to the top-ranking class since the SNR of tailing ranks is too low
to give reliable ranks.

2.3 More Zipf’s Soft Label Examples

Figure 4 illustrates more results of the top-5 predictions of our proposed method
compared with the baseline method. The top three rows are sampled from Im-
ageNet while the bottom three rows are sampled from INAT21. It can be seen
that: (1) There are several categories similar to the target class shown up in
Zipf’s soft labels, which provide meaningful label representations for the net-
work to better grasp the concept of the target class. (2) Fine-grained categories
of the target class emerge in Zipf’s soft labels, which can provide similar “dark
knowledge” as knowledge distillation.
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Fig. 3: Comparison of loss landscape with efficient teacher-free methods

2.4 Generalization: Performance on downstream tasks

To measure the power of generalization of Zipf’s LS, we conducted the transfer
learning task by fine-tuning ImageNet pre-trained models on MS-COCO, as
shown in Table 4. Besides, we visualize loss landscapes [?] of several efficient
teacher-free methods(see Fig 3), Zipf’s LS achieves more flat convergence, which
is a possible hint for better generalization [?].

Table 4: ImageNet pretrained ResNet50 for object detection

Method Vanilla(CE) TF-KD PS-KD Zipf’s LS(Ours)

AP 36.4% 36.4% 36.5% 36.6%
AP@0.5 58.3% 56.7% 56.7% 58.8%
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Fig. 4: Top-5 predictions visualization of our proposed method (Zipf’s label smoothing)
compared with the baseline method (cross-entropy). The dark green, light green and
red denote ground-truth, similar and irrelevant categories respectively. “GT” denotes
the ground truth label and thus the hard label of the baseline method. The baseline
prediction is acquired under the supervision of the hard label and misclassified on the
samples. Our method exploits target-relevant categories to better represent the image,
and obtains better results.


