Skip to main content

CostDCNet: Cost Volume Based Depth Completion for a Single RGB-D Image

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13662))

Abstract

Successful depth completion from a single RGB-D image requires both extracting plentiful 2D and 3D features and merging these heterogeneous features appropriately. We propose a novel depth completion framework, CostDCNet, based on the cost volume-based depth estimation approach that has been successfully employed for multi-view stereo (MVS). The key to high-quality depth map estimation in the approach is constructing an accurate cost volume. To produce a quality cost volume tailored to single-view depth completion, we present a simple but effective architecture that can fully exploit the 3D information, three options to make an RGB-D feature volume, and per-plane pixel shuffle for efficient volume upsampling. Our CostDCNet framework consists of lightweight deep neural networks (\(\sim \)1.8M parameters), running in real time (\(\sim \)30 ms). Nevertheless, thanks to our simple but effective design, CostDCNet demonstrates depth completion results comparable to or better than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/kamse/CostDCNet.

References

  1. Boulch, A., Puy, G., Marlet, R.: FKAConv: feature-kernel alignment for point cloud convolution. In: Proceedings of Asian Conference on Computer Vision (ACCV) (2020)

    Google Scholar 

  2. Cao, Z., Li, A., Yuan, Z.: Self-supervised depth completion via adaptive sampling and relative consistency. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 3263–3267 (2021)

    Google Scholar 

  3. Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. arXiv preprint arXiv:1709.06158 (2017)

  4. Chen, Y., Yang, B., Liang, M., Urtasun, R.: Learning joint 2D–3D representations for depth completion. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 10023–10032 (2019)

    Google Scholar 

  5. Cheng, X., Wang, P., Guan, C., Yang, R.: CSPN++: learning context and resource aware convolutional spatial propagation networks for depth completion. In: Proceedings of AAAI Conference on Artificial Intelligence, vol. 34, pp. 10615–10622 (2020)

    Google Scholar 

  6. Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolutional spatial propagation network. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 103–119 (2018)

    Google Scholar 

  7. Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial propagation network. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 42(10), 2361–2379 (2019)

    Article  Google Scholar 

  8. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: minkowski convolutional neural networks. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 3075–3084 (2019)

    Google Scholar 

  9. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  10. Dai, A., Nießner, M.: 3DMV: joint 3D-multi-view prediction for 3D semantic scene segmentation. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 452–468 (2018)

    Google Scholar 

  11. Fu, C., Dong, C., Mertz, C., Dolan, J.M.: Depth completion via inductive fusion of planar lidar and monocular camera. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10843–10848 (2020)

    Google Scholar 

  12. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

  13. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2495–2504 (2020)

    Google Scholar 

  14. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 3273–3282 (2019)

    Google Scholar 

  15. Harrison, A., Newman, P.: Image and sparse laser fusion for dense scene reconstruction. In: Howard, A., Iagnemma, K., Kelly, A. (eds) Proceedings of Field and Service Robotics (FSR), vol 62, pp. 219–228. Springer, Heidelberg (2010). DOIurlhttps://doi.org/10.1007/978-3-642-13408-1_20

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  17. Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PeNet: towards precise and efficient image guided depth completion. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 13656–13662 (2021)

    Google Scholar 

  18. Huang, Y.K., Wu, T.H., Liu, Y.C., Hsu, W.H.: Indoor depth completion with boundary consistency and self-attention. In: Proceedings of IEEE International Conference on Computer Vision Workshops (ICCVW) (2019)

    Google Scholar 

  19. Huynh, L., Nguyen, P., Matas, J., Rahtu, E., Heikkilä, J.: Boosting monocular depth estimation with lightweight 3D point fusion. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 12767–12776 (2021)

    Google Scholar 

  20. Im, S., Jeon, H.G., Lin, S., Kweon, I.S.: DPSNet: End-to-end deep plane sweep stereo. arXiv preprint arXiv:1905.00538 (2019)

  21. Imran, S., Liu, X., Morris, D.: Depth completion with twin surface extrapolation at occlusion boundaries. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2583–2592 (2021)

    Google Scholar 

  22. Imran, S., Long, Y., Liu, X., Morris, D.: Depth coefficients for depth completion. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 12438–12447 (2019)

    Google Scholar 

  23. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 66–75 (2017)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Lee, B.U., Lee, K., Kweon, I.S.: Depth completion using plane-residual representation. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 13916–13925 (2021)

    Google Scholar 

  26. Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C., et al.: A multi-scale guided cascade hourglass network for depth completion. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 32–40 (2020)

    Google Scholar 

  27. Liao, Y., Huang, L., Wang, Y., Kodagoda, S., Yu, Y., Liu, Y.: Parse geometry from a line: monocular depth estimation with partial laser observation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 5059–5066 (2017)

    Google Scholar 

  28. Liu, J., Gong, X.: Guided depth enhancement via anisotropic diffusion. In: Huet, B., Ngo, C.-W., Tang, J., Zhou, Z.-H., Hauptmann, A.G., Yan, S. (eds.) PCM 2013. LNCS, vol. 8294, pp. 408–417. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03731-8_38

    Chapter  Google Scholar 

  29. Liu, T.Y., Agrawal, P., Chen, A., Hong, B.W., Wong, A.: Monitored distillation for positive congruent depth completion. arXiv preprint arXiv:2203.16034 (2022)

  30. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 5695–5703 (2016)

    Google Scholar 

  31. Ma, F., Karaman, S.: Sparse-to-dense: Depth prediction from sparse depth samples and a single image. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803 (2018)

    Google Scholar 

  32. Murez, Z., van As, T., Bartolozzi, J., Sinha, A., Badrinarayanan, V., Rabinovich, A.: Atlas: end-to-end 3D scene reconstruction from posed images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 414–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_25

    Chapter  Google Scholar 

  33. Park, J., Joo, K., Hu, Z., Liu, C.-K., So Kweon, I.: Non-local spatial propagation network for depth completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 120–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_8

    Chapter  Google Scholar 

  34. Qiu, J., et al.: Deeplidar: deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 3313–3322 (2019)

    Google Scholar 

  35. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 5533–5541 (2017)

    Google Scholar 

  36. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  37. Shen, Z., Dai, Y., Rao, Z.: CFNet: cascade and fused cost volume for robust stereo matching. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 13906–13915 (2021)

    Google Scholar 

  38. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR). pp. 1874–1883 (2016)

    Google Scholar 

  39. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Proceedings of European Conference on Computer Vision (ECCV). pp. 746–760. Springer (2012)

    Google Scholar 

  40. Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: NeuralRecon: real-time coherent 3D reconstruction from monocular video. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 15598–15607 (2021)

    Google Scholar 

  41. Tang, J., Tian, F.P., Feng, W., Li, J., Tan, P.: Learning guided convolutional network for depth completion. IEEE Trans. Image Process. (TIP) 30, 1116–1129 (2020)

    Article  Google Scholar 

  42. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2589–2597 (2018)

    Google Scholar 

  43. Wong, A., Fei, X., Tsuei, S., Soatto, S.: Unsupervised depth completion from visual inertial odometry. IEEE Robot. Autom. Lett. (RA-L) 5(2), 1899–1906 (2020)

    Google Scholar 

  44. Wong, A., Soatto, S.: Unsupervised depth completion with calibrated backprojection layers. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 12747–12756 (2021)

    Google Scholar 

  45. Xu, B., Xu, Y., Yang, X., Jia, W., Guo, Y.: Bilateral grid learning for stereo matching networks. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 12497–12506 (2021)

    Google Scholar 

  46. Zbontar, J., LeCun, Y.: Computing the stereo matching cost with a convolutional neural network. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 1592–1599 (2015)

    Google Scholar 

  47. Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: GA-Net: guided aggregation net for end-to-end stereo matching. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 185–194 (2019)

    Google Scholar 

  48. Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-D image. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 175–185 (2018)

    Google Scholar 

  49. Zhong, Y., Wu, C.Y., You, S., Neumann, U.: Deep RGB-D canonical correlation analysis for sparse depth completion. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Science and ICT, Korea, through IITP grants (SW Star Lab, 2015-0-00174; AI Innovation Hub, 2021-0-02068; Artificial Intelligence Graduate School Program (POSTECH), 2019-0-01906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungyong Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14023 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kam, J., Kim, J., Kim, S., Park, J., Lee, S. (2022). CostDCNet: Cost Volume Based Depth Completion for a Single RGB-D Image. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics