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Abstract. Current polarimetric 3D reconstruction methods, including
those in the well-established shape from polarization literature, are all
developed under the orthographic projection assumption. In the case of a
large field of view, however, this assumption does not hold and may result
in significant reconstruction errors in methods that make this assump-
tion. To address this problem, we present the perspective phase angle
(PPA) model that is applicable to perspective cameras. Compared with
the orthographic model, the proposed PPA model accurately describes
the relationship between polarization phase angle and surface normal un-
der perspective projection. In addition, the PPA model makes it possible
to estimate surface normals from only one single-view phase angle map
and does not suffer from the so-called π-ambiguity problem. Experiments
on real data show that the PPA model is more accurate for surface nor-
mal estimation with a perspective camera than the orthographic model.

Keywords: Polarization Image, Phase Angle, Perspective Projection,
3D Reconstruction

1 Introduction

The property that the polarization state of light encodes geometric information
of object surfaces has been researched in computer vision for decades. With the
development of the division-of-focal-plane (DoFP) polarization image sensor [23]
in recent years, there has been a resurgent interest in 3D reconstruction with
polarization information. In the last decade, it has been shown that polarization
information can be used to enhance the performance of traditional reconstruc-
tion methods of textureless and non-Lambertian surfaces [17,2,21,26]. For accu-
rate reconstruction of objects, shape from polarization and photo-polarimetric
stereo can recover fine-grain details [26,10] of the surfaces. For dense mapping
in textureless or specular scenes, multi-view stereo can also be improved with
polarimetric cues [7,30,5,21].
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Fig. 1. Comparison of polarization phase angle maps of a black glossy board in three
views. The first column shows intensity images. The second column shows the ground-
truth phase angle maps calculated from polarization images. The third and the fourth
columns show the phase angle maps calculated from the OPA model and our proposed
PPA model, respectively.

In computer vision and robotics, the use of perspective cameras is common.
However, in all the previous literature on polarimetric 3D reconstruction, to the
best of our knowledge, the use of polarization and its derivation are without
exception under the orthographic projection assumption. Therefore, the dense
maps or shapes generated by these methods from polarization images captured
by perspective cameras will be flawed without considering the perspective ef-
fect. In this paper, we present an accurate model of perspective cameras for
polarimetric 3D reconstruction.

One of the key steps in polarimetric 3D reconstruction is the optimization of
depth maps with a linear constraint on surface normals by the polarization phase
angles. In this paper, we refer to this constraint as the phase angle constraint.
This constraint was first proposed in [27] under the orthographic projection
assumption and has become a standard practice of utilizing the phase angles. In
the literature, this constraint has been derived from a model, which we refer to
as the orthographic phase angle (OPA) model in this paper, where the azimuth
of the normal is equivalent to the phase angle [20,7]. If observed objects are in
the middle of the field of view in a 3D reconstruction application, orthographic
projection could be a reasonable assumption. However, for dense mapping and
large objects, this assumption is easily violated.

In this work, an alternative perspective phase angle (PPA) model is developed
to solve this problem. The PPA model is inspired by the geometric properties
of a polarizer in [13]. Different from the OPA model, the proposed PPA model
defines the phase angle as the direction of the intersecting line of the image plane
and the plane of incident (PoI) spanned by the light ray and the surface normal
(see Fig. 2 for details). As shown in Fig. 1, given the ground-truth normal of the
black board in the images, the phase angle maps calculated using the proposed
PPA model are much more accurate than those using the OPA model. Under
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perspective projection, we also derive a new linear constraint on the surface
normal by the phase angle, which we refer to as the PPA constraint. As a useful
by-product of our PPA model, the PPA constraint makes it possible to estimate
surface normal using only one single-view phase angle map without suffering
from the well-known π-ambiguity problem, which requires at least two views
to resolve as shown in previous works [27,19]. In addition, the PPA constraint
leads to improved the accuracy of normal estimation from phase angle maps of
multiple views [27,15]. The main contributions of this paper are summarized as
follows:

– A perspective phase angle model and a corresponding constraint on sur-
face normals by polariztion phase angles are proposed. The model and the
constraint serve as the basis for accurately estimating surface normals from
phase angles.

– A novel method is developed to estimate surface normals from a single-view
phase angle map. The method does not suffer from the π-ambiguity problem
as does a method using the orthographic phase angle model.

– We make use of the proposed model and the corresponding constraint to
improve surface normal estimation from phase angle maps of multiple views.

The rest of this paper is organized as follows. Section 2 overviews related
works. Section 3 reviews the utilization of polarization phase angles under or-
thographic projection. Section 4 describes our proposed PPA model, PPA con-
straint and normal estimation methods. Experimental evaluation is presented in
Section 5. The conclusion of this paper and the discussions of our future work
are presented in Section 6.

2 Related Works

The proposed PPA model is fundamental to polarimetric 3D reconstruction and
thus it is related to the following three topics: 1) shape and depth estimation
from single-view polarization images, 2) multi-view reconstruction with addi-
tional polarization information and 3) camera pose estimation with polarization
information.

2.1 Polarimetric Single-view Shape and Depth Estimation

This topic is closely related to two lines of research: shape from polarization
(SfP) and photo-polarimetric stereo. SfP first estimates surface normals that are
parameterized in the OPA model by azimuth and zenith angles from polariza-
tion phase angles and degree of linear polarization and then obtains Cartesian
height maps by integrating the normal maps [17,2]. With additional spectral
cues, refractive distortion [12] of SfP can be solved [11]. Alternatively, it has
been shown that the surface normals, refractive indexes, and light directions can
be estimated from photometric and polarimetric constraints [18]. The recent
work of DeepSfP [4] is the first attempt to use a convolutional neural network
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(CNN) to estimate normal maps from polarization images. It is reasonable to
expect more accurate surface normal estimation when these methods parameter-
ize the surface normal with the help of the proposed PPA model in perspective
cameras. In fact, a recent work shows that learning-based SfP can benefit from
considering the perspective effect [14]. Regardless, as a two-stage method, SfP
is sensitive to noise.

As a one-stage method, photo-polarimetric stereo directly estimates a height
map from polarization images and is able to avoid cumulative errors and suppress
noise. By constructing linear constraints on surface heights from illumination and
polarization, height map estimation is solved through the optimization of a non-
convex cost function [22]. Yu et al. [31] derives a fully differentiable method that
is able to optimize a height map through non-linear least squares optimization.
In [26], variations of the photo-polarimetric stereo method are unified as a frame-
work incorporating different optional photometric and polarimetric constraints.
In these works, the OPA constraint is a key to exploiting polarization during
height map estimation. In perspective cameras, the proposed PPA constraint
can provide a more accurate description than the OPA constraint.

2.2 Polarimetric Multi-view 3D Reconstruction

Surface reconstruction can be solved by optimizing a set of functionals given
phase angle maps of three different views [20]. To address transparent objects, a
two-view method [17] exploits phase angles and degree of linear polarization to
solve correspondences and polarization ambiguity. Another two-view method [3]
uses both polarimetric and photometric cues to estimate reflectance functions
and reconstruct shapes of practical and complex objects. By combining space
carving and normal estimation, [16] is able to solve polarization ambiguity prob-
lems and obtain more accurate reconstructions of black objects than pure space
carving. Fukao et al. [10] models polarized reflection of mesoscopic surfaces and
proposes polarimetric normal stereo for estimating normals of mesoscopic sur-
faces whose polarization depends on illumination (i.e., polarization by light [6]).
These works are all based on the OPA model without considering the perspective
effect.

Recently, traditional multi-view 3D reconstruction methods enhanced by po-
larization prove to be able to densely reconstruct textureless and non-Lambertian
surfaces under uncalibrated illumination [7,30,21]. Cui et al. [7] proposes polari-
metric multi-view stereo to handle real-world objects with mixed polarization
and solve polarization ambiguity problems. Yang et al. [30] proposes a polarimet-
ric monocular dense SLAM system that propagates sparse depths in textureless
scenes in parallel. Shakeri et al. [21] uses relative depth maps generated by a
CNN to solve the π/2-ambiguity problem robustly and efficiently in polarimet-
ric dense map reconstruction. In these works, iso-depth contour tracing [33] is a
common step to propagate sparse depths on textureless or specular surfaces. It is
based on the proposition that, with the OPA model, the direction perpendicular
to the phase angle is the tangent direction of an iso-depth contour [7]. However,
in a perspective camera, this proposition is only an approximation.
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Besides, the OPA constraint can be integrated in stereo matching [5], depth
optimization [30] and mesh refinement [32]. However, only the first two com-
ponents of the surface normal are involved in the constraint, in addition to its
inaccuracy in perspective cameras. With the proposed PPA model, all three com-
ponents of a surface normal are constrained and the constraint is theoretically
accurate for a perspective camera.

2.3 Polarimetric Camera Pose Estimation

The polarization phase angle of light emitted from a surface point depends on
the camera pose. Therefore, it is intuitive to use this cue for camera pose esti-
mation. Chen et al. [6] proposes polarimetric three-view geometry that connects
the phase angle and three-view geometry and theoretically requires six triplets of
corresponding 2D points to determine the three rotations between the views. Dif-
ferent from using only phase angles in [6], Cui et al. [8] exploits full polarization
information including degree of linear polarization to estimate relative poses so
that only two 2D-point correspondences are needed. The method achieves com-
petitive accuracy with the traditional five 2D-point method. Since both works are
developed without considering the perspective effect, the proposed PPA model
can be used to generalize them to a perspective camera.

3 Preliminaries

In this section, we review methods for phase angle estimation from polarization
images, as well as the OPA model and the corresponding OPA constraint that
are commonly adopted in the existing literature.

3.1 Phase Angle Estimation

As a function of the orientation of the polarizer ϕ, the intensity of unpolarized
light is attenuated sinusoidally as I(ϕ) = Iavg + ρIavg cos(2(ϕ − φ)). The pa-
rameters of polarization state are the average intensity Iavg, the degree of linear
polarization (DoLP) ρ and the phase angle φ. The phase angle is also called the
angle of linear polarization (AoLP) in [32,28,24,21]. In this paper, we uniformly
use the term “phase angle” to refer to AoLP.

Given images captured through a polarizer at a minimum of three different
orientations, the polarization state can be estimated by solving a linear system
[30]. For a DoFP polarization camera that captures four images I(0), I(π4 ), I(

π
2 )

and I( 3π4 ) in one shot, the polarization state can be extracted from the Stokes
vector s = [s0, s1, s2]

T as follows:

Iavg =
s0
2
, φ =

1

2
arctan2(s2, s1), ρ =

√
s21 + s22
s0

(1)

where so = I(0) + I(π2 ), s1 = I(0) − I(π2 ) and s1 = I(π4 ) − I( 3π4 ). Although it
has been shown that further optimization of the polarization state from multi-
channel polarization images is possible [25], for this paper, Eq. (1) is sufficiently
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accurate for us to generate ground-truth phase angle maps from polarization
images.

3.2 The OPA Model

The phase angles estimated from polarization images through Eq. (1) are directly
related to the surface normals off which light is reflected. It is this property
that is exploited in polarimetric 3D reconstruction research to estimate surface
normal from polarization images. Model of projection, which defines how light
enters the camera, is another critical consideration in order to establish the
relationship between the phase angle and the surface normal.

The OPA model assumes that all light rays enter the camera in parallel, as
shown by the blue plane in Fig. 2, so that the azimuth angle of the surface normal
n is equivalent to the phase angle φo up to a π/2-ambiguity and a π-ambiguity
[32]. Specifically, n can be parameterized by the phase angle φo and the zenith
angle θ in the camera coordinate system:

n =
[
nx, ny, nz

]T
=

[
cosφo sin θ, − sinφo sin θ, cos θ

]T
(2)

With this model, φo can be calculated from n as

φo = − arctan2(ny, nx) (3)

We can use Eq. (3) to evaluate the accuracy of the OPA model. I.e., if the OPA
model is accurate, then the phase angle calculated by Eq. (3) should agree with
that estimated from the polarization images. Although this model is based on
the orthographic projection assumption, it is widely adopted in polarimetric 3D
reconstruction methods even when polarization images are captured by a camera
with perspective projection. In addition, Eq. (2) defines a constraint on n by φo,
i.e., the OPA constraint: [

sinφo, cosφo, 0
]
· n = 0 (4)

This linear constraint is commonly integrated in depth map optimization [7,30,26].
It is also the basis of iso-depth contour tracing [1,7] as it gives the tangent di-
rection of an iso-depth contour. Obviously, this constraint is strictly valid only
in the case of orthographic projection.

4 Phase Angle Model under Perspective Projection

In the perspective camera model, light rays that enter the camera are subject to
the perspective effect as illustrated by the red plane in Fig. 2. As a result, the
estimated phase angle by Eq. (1) not only depends on the direction of the surface
normal n but also on the direction v in which the light ray enters the camera. In
this section, the PPA model is developed to describe the relationship between the
polarization phase angle and the surface normal. The PPA constraint naturally
results from the PPA model as well as two methods for normal estimation from
the phase angles.
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Fig. 2. Definitions of the polarization phase angle of the two models under ortho-
graphic projection (φo) and perspective projection (φp). O is the optical center of the
camera. The blue plane and the red plane are the two PoIs, corresponding to the two
(orthographic and perspective) projection models.

4.1 The PPA Model

The geometric properties of a polarizer in [13] inspire us to model the phase
angle as the direction of the intersecting line of the image plane and the PoI
spanned by the light ray and the surface normal. As shown in Fig. 2, there is
an obvious difference between the two definitions of the phase angle, depending
upon the assumed type of projection.

Specifically, let the optical axis be z = [0, 0, 1]T and the light ray be v =
[vx, vy, vz]

T = K−1x/∥K−1x∥, for an image point at the pixel coordinates x =
[u, v, 1]T and a camera with intrinsic matrix K. From Fig. 2, the PPA model
can be formulated as follows:

z× (v × n) =
[
−vznx + vxnz, −vzny + vynz, 0

]T
= c · d (5)

where z, v and n are normalized to 1, c is a constant and d = [cosφp,− sinφp, 0]
T .

From Eq. (5), the phase angle φp can be obtained from n and v as:

φp = − arctan 2(−vzny + vynz, −vznx + vxnz) (6)

Similar to Eq. (3), Eq. (6) can also be used for evaluating the accuracy of the
PPA model. Different from φo, φp not only depends on the surface normal n but
also on the light ray v.

In addition, n can be parameterized by φp and θ as n = −(eθa
∧
p )v where

ap = d × v/∥d × v∥ is the normal of the PoI and r∧ represents the skew-
symmetric matrix of r ∈ R3. Eq. (2) can also be reformulated into a similar form
as n = −(eθa

∧
o )v where ao = [− sinφo, cosφo, 0]

T . Obviously, the difference of
the two parameterizations of n is the axis about which v rotates.
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With the PPA model, the PPA constraint can be derived from Eq. (5) as
follows: [

sinφp, cosφp, − (vy cosφp + vx sinφp)

vz

]
· n = 0 (7)

Note that Eq. (7) can be used just as the OPA constraint Eq. (4), without
the knowledge of object geometry since v is a scene-independent directional
vector. Compared with Eq. (4), Eq. (7) has an additional constraint on the third
component of the normal. This additional constraint is critical in allowing us to
estimate n of a planar surface from a single view as we will show in the next
section. Table 1 summaries the definitions of the phase angle, the normal and
the constraint of the OPA and PPA models.

Table 1. Summary of the OPA and PPA models

OPA model PPA model

Phase angle − arctan2(ny, nx)
− arctan 2(− vzny + vynz,

− vznx + vxnz)

Normal n = −eθa
∧
o · v n = −eθa

∧
p · v

Constraint


sinφo

cosφo

0


T

· n = 0


sinφp

cosφp

− (vy cosφp + vx sinφp)

vz


T

· n = 0

4.2 Relations with the OPA Model

Comparing the two constraints in Table 1, the coefficient−(vy cosφp+vx sinφp)/vz
implies that there exist four cases in which the two models are equivalent:

1. v = [0, 0, 1]T , when the light ray is parallel to the optical axis, which corre-
sponds to orthographic projection.

2. [vx, vy]
T ∥ [cosφp,− sinφp]

T ∥ [nx, ny]
T , when the PoI is perpendicular to

the image plane.

3. nz → 1, when the normal tends to be parallel to the optical axis. In this
case, the PoI is also perpendicular to the image plane.

4. nz = 0, when the normal is perpendicular to the optical axis.

Besides, according to Eq. (3) and Eq. (4), if nz = 1, the OPA model and the
OPA constraint will become degenerate whereas ours will still be useful.
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(a) (b)

Fig. 3. Two cases of surface normal estimation from phase angle map(s). (a) Single-
view normal estimation and (b) Multi-view normal estimation.

4.3 Normal Estimation

Theoretically, a surface normal can be solved from at least its two observations
with the PPA constraint. The observations can either be the phase angles from
multiple pixels in the same phase angle map or from phase angle maps of multiple
views as shown in Fig. 3. The two cases lead to the following two methods.

Single-view Normal Estimation. In the same phase angle map, if a set of
phase angles of the points share the same surface normal, e.g., points in a lo-
cal plane or points in different parallel planes, they can be used for estimating the
normal. Letm denote the coefficients in Eq. (7) asm = [sinφp, cosφp,−(vy cosφp

+vx sinφp)/vz]
T . Given P points that have the same normal n, a coefficient ma-

trix M1 can be constructed from their coefficients:

M1 =
[
mT

1 , · · · , mT
P

]T
(8)

then n can be obtained by the eigen decomposition of MT
1 M1. This method

directly solves n with only one single-view phase angle map and does not suffer
from the π-ambiguity problem, while previous works based on the OPA model
require at least two views [27,19]. Ideally the rank of M1 should be exactly
two so that n can be solved. In practice, with image noise, we can construct a
well-conditioned M1 with more than two points that are on the same plane for
solving n as we will show in Section 5.3.

Multi-view Normal Estimation. If a point is observed in K views, another
coefficients matrix M2 can be constructed as follows:

M2 =
[
mT

1 R1, · · · , mT
KRK

]T
(9)

where Rk (k = 1, 2, · · · ,K) is a camera rotation matrix. The normal n can be
solved as in the case of single-view normal estimation above. Similar to M1, n
can be solved if the rank of M2 is two and well conditioned. Therefore, observa-
tions made from sufficiently different camera poses are desirable. This method
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DoFP
polarization
camera

Glossy plastic board

Fig. 4. The capture setup of polarization images of the dataset. The glossy and black
plastic board is captured by the DoFP polarization camera at random view points. The
AR tags are used for estimating the ground-truth poses of the camera and the board.

is the generalization of the method proposed in [27,15] to the case of perspec-
tive projection. We will verify that a method using the PPA constraint is more
accurate in a perspective camera than using the OPA constraint in Section 5.3.

5 Experimental Evaluation

In this section, we present the experimental results that verify the proposed PPA
model and PPA constraint in a perspective camera. Details on the experimental
dataset and experimental settings are provided in Section 5.1. In Section 5.2, we
evaluate the accuracy of the PPA model and analyze its phase angle estimation
error. To verify that the PPA model is beneficial to polarimetric 3D reconstruc-
tion, we conduct experiments on normal estimation in Section 5.3 and on contour
tracing in Section 5.4.

5.1 Dataset and Experimental Settings

An image capture setup is shown in Fig. 4. Our camera has a lens with a focal
length of 6 mm and a field of view of approximately 86.6◦. Perspective projection
is therefore appropriate to model its geometry. We perform camera calibration
first to obtain its intrinsics, and use the distortion coefficients to undistort the
images before they are used in our experiments. The calibration matrix K is
used to generate the light ray v in homogeneous coordinates.

We capture a glossy and black plastic board with a size of 300 mm by 400
mm on a table by a handheld DoFP polarization camera [9]. The setting is such
that: 1) the board is specular-reflection-dominant so that the π/2 ambiguity
problem can be easily solved and 2) the phase angle maps of the board can be
reasonably estimated. Although this setting could be perceived as being limited,
it is carefully chosen to verify the proposed model accurately and conveniently.

We create a dataset that contains 282 groups of grayscale polarization images
(four images per group) of the board captured at random view points. The
camera poses and the ground-truth normal of the board are estimated with
the help of AR tags placed on the table. Ground-truth phase angle maps are
calculated from polarization images by Eq. (1). To reduce the influence of noise,
we only use the pixels with DoLP higher than 0.1 in the region of the board,
and apply Gaussian blur to the images before calculating phase angle maps and
DoLP maps. This dataset is used in all the following experiments.
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Fig. 5. The phase angle error distributions of the two models. The first row shows the
distributions of the OPA model and the second row corresponds to the PPA model.
Each column in one subfigure represents the one-dimension error distribution of a
specific angle. The density is expressed in the form of pseudo color.

5.2 Accuracy of the PPA Model

To evaluate the accuracy of the OPA model and the PPA model, we calculate
the phase angle of every pixel with Eq. (3) and Eq. (6), respectively, given the
ground-truth normals, and compare the results to the estimated phase angle by
Eq. (1). The mean and the root mean square error (RMSE) of the phase angle
errors of the OPA model are −0.18◦, and 20.90◦ respectively, and the ones of our
proposed PPA model are 0.35◦ and 5.90◦ respectively. Although the phase angle
error of both the OPA and the PPA models is unbiased with a mean that is
close to zero, the RMSE of the phase angle estimated by the PPA model is only
28% of that by the OPA model in relative terms, and small in absolute terms
from a practical point of view. As shown in Fig. 1, the PPA model accurately
describes the spatial variation of the phase angle while the phase angle maps of
the OPA model are spatially uniform and inaccurate, in comparison with the
ground truth.

In addition, we plot the error distributions with respect to the viewing angle
(the angle between the light ray and the normal), the azimuth difference (the
angle between the azimuths of the light ray and the normal) and the zenith angle
of the normal. As shown in Fig. 5, the deviations of the PPA error are much
smaller than those of the OPA error. It is shown that pixels closer to the edges
of the views have larger errors with the OPA model. Additionally, the errors are
all close to zeros in the first three equivalent cases stated in Section 4.2. The
high density at viewing angles near 40◦ in the first column of Fig. 5 is likely a
result of the nonuniform distribution of the positions of the board in the images
since they correspond to the pixels at the edges of the views.

5.3 Accuracy of Normal Estimation

Single-view Normal Estimation. As has been mentioned, it is possible to
estimate surface normal from a single view by a polarization camera. Meth-
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Fig. 6. Histogram and cumulative distribution function curves of angular errors of
three-view normal estimation.
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Fig. 7. Angular error with the increase of the number of views.

ods based on the OPA model however suffer from the π-ambiguity problem. In
contrast, given a single-view phase angle map, surface normal estimation can be
solved with the proposed PPA constraint without suffering from the π-ambiguity
problem. Therefore, we only evaluate our method developed in Section 4.3 with
the PPA constraint for the normal of a planar surface.

In this experiment, for every image in the dataset introduced in Section 5.1,
we use the phase angles of the pixels in the region of the black board in Fig. 4 to
estimate its normal. The number of the pixels contributing to the normal in one
estimation varies from 100,000 to 300,000, depending on the size of area of the
board in the image. We obtain 282 estimated normals among the 282 images (see
the estimated normals in our supplementary video). The mean and the RMSE of
the angular errors of these estimated normals are 2.68◦ and 1.16◦, respectively.
Such excellent performance is in part due to our highly accurate PPA model in
describing the image formation process and in part due to the simplicity of the
scene (planar surface) and a large number of measurements available.

Multi-view Normal Estimation. As well, it is possible to estimate surface
normal from multiple views of a polarization camera. To establish the superiority
of our proposed model, we compare the accuracy of multi-view normal estimation
with the proposed method using the PPA constraint developed in Section 4.3
and the one using the OPA constraint proposed in [27,19], respectively.

In this experiment, we randomly sample 10, 000 3D points on the board
among the 282 images and individually estimate the normals of the points from
multiple views. For every point, the number of views for its normal estimation
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(a) (b)

Fig. 8. Contours of a plane generated by the iso-depth contour tracing and our method
respectively. (a) Contours from iso-depth tracing using the OPA model and (b) Con-
tours using our PPA model. The viewing direction is parallel to the plane and the black
line represents the plane.

varies from two to 20, and the views are selected using the code of ACMM [29]
and the ground-truth poses of the camera and the board are used to resolve the
pixel correspondences among the multiple views.

Fig. 6 shows the distribution of the angular errors of the three-view case. 80%
of the results of our method have errors smaller than 25◦ compared with only 26%
of the one using the OPA constraint. Fig. 7 shows the normal estimation errors
with different number of views. Although the accuracy of these two methods can
be improved with the increase of the number of views, the errors of our method
with three views are already 50% smaller than those using the OPA model
with more than ten views. The results of this experiment can be visualized in
our supplementary video. Note that the error of the estimated normal in this
case is significantly larger than that in the single-view case, mostly because
of the small number of measurements (2-20) used in estimating each normal
and the uncertainty in the relative camera poses used to solve data association.
Nonetheless, the superiority of the PPA model over the OPA model is clearly
established.

5.4 Comparison of Contour Tracing

This experiment is designed to illustrate the influence of the perspective effect
on the iso-depth surface contour tracing with the OPA model and to show the
accuracy of the proposed PPA model. We sample 20 seed 3D points on the edge
of the board and propagate their depths to generate contours of the board. With
the OPA model, the iso-depth contour tracing requires only the depths and a
single-view phase angle map. However, according to the proposed PPA model,
the iso-depth contour tracing is infeasible in perspective cameras. Therefore, we
estimate the normals of the points through the method developed in Section 4.3
with two views for generating surface contours. To clearly compare the quality
of the contours, our method is set to generate 3D contours that have the same
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2D projections on the image plane as those by iso-depth contour tracing. The
propagation step size is set to 0.5 pixel, which is the same as that in [7].

The iso-depth contours of the board are expected to be straight in perspec-
tive cameras. However, as shown in Fig. 8, the contours generated by iso-depth
contour tracing using the OPA model are all curved and lie out of the ground-
truth plane, while those generated by our PPA model are well aligned with the
ground-truth plane. We also compute the RMSE of the distances between the
points on the contours and the plane. The RMSE of the contours using our PPA
model is 2.2 mm, 25% of that using the OPA model which is 9.6 mm.

6 Conclusions and Future Work

In this paper, we present the perspective phase angle (PPA) model as a su-
perior alternative to the orthographic phase angle (OPA) model for accurately
utilizing polarization phase angles in 3D reconstruction with perspective polar-
ization cameras. The PPA model defines the polarization phase angle as the
direction of the intersecting line of the image plane and the plane of incident,
and hence allows the perspective effect to be considered in estimating surface
normals from the phase angles and in defining the constraint on surface normal
by the phase angle. In addition, a novel method for surface normal estimation
from a single-view phase angle map naturally results from the PPA model that
does not suffer from the well-known π-ambiguity problem as in the traditional
orthographic model. Experimental results on real data validate that our PPA
model is more accurate than the commonly adopted OPA model in perspective
cameras. Overall, we demonstrate the necessity of considering the perspective
effect in polarimetric 3D reconstruction and propose the PPA model for realizing
it.

As a limitation of our work, we have so far only conducted experiments on
surface normal estimation and contour tracing. We have not used our model in
solving other problems related to polarimetric 3D reconstruction. Our immediate
future plan includes improving polarimetric 3D reconstruction methods with the
proposed PPA model. We are also interested in synthesizing polarization images
with open-source datasets and the PPA model for data-driven approaches. We
leave the above interesting problems as our future research.
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