Skip to main content

Optimization over Disentangled Encoding: Unsupervised Cross-Domain Point Cloud Completion via Occlusion Factor Manipulation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13662))

Included in the following conference series:

Abstract

Recently, studies considering domain gaps in shape completion attracted more attention, due to the undesirable performance of supervised methods on real scans. They only noticed the gap in input scans, but ignored the gap in output prediction, which is specific for completion. In this paper, we disentangle partial scans into three (domain, shape, and occlusion) factors to handle the output gap in cross-domain completion. For factor learning, we design view-point prediction and domain classification tasks in a self-supervised manner and bring a factor permutation consistency regularization to ensure factor independence. Thus, scans can be completed by simply manipulating occlusion factors while preserving domain and shape information. To further adapt to instances in the target domain, we introduce an optimization stage to maximize the consistency between completed shapes and input scans. Extensive experiments on real scans and synthetic datasets show that ours outperforms previous methods by a large margin and is encouraging for the following works. Code is available at https://github.com/azuki-miho/OptDE.

J. Gong and F. Liu—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aberman, K., Li, P., Lischinski, D., Sorkine-Hornung, O., Cohen-Or, D., Chen, B.: Skeleton-aware networks for deep motion retargeting. ACM Trans. Graph. (TOG) 39(4), 62-1 (2020)

    Google Scholar 

  2. Barlow, H.B., Kaushal, T.P., Mitchison, G.J.: Finding minimum entropy codes. Neural Comput. 1(3), 412–423 (1989)

    Article  Google Scholar 

  3. Bau, D., et al.: Semantic photo manipulation with a generative image prior. In: SIGGRAPH (2020)

    Google Scholar 

  4. Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. In: 2017 International Conference on 3D Vision (3DV), pp. 667–676. IEEE Computer Society (2017)

    Google Scholar 

  5. Chang, A.X., et al.: ShapeNet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  6. Chen, X., Chen, B., Mitra, N.J.: Unpaired point cloud completion on real scans using adversarial training. In: International Conference on Learning Representations (2020)

    Google Scholar 

  7. Cosmo, L., Norelli, A., Halimi, O., Kimmel, R., Rodolà, E.: LIMP: learning latent shape representations with metric preservation priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 19–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_2

    Chapter  Google Scholar 

  8. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  9. Fu, H., et al.: 3d-future: 3d furniture shape with texture. arXiv preprint arXiv:2009.09633 (2020)

  10. Fumero, M., Cosmo, L., Melzi, S., Rodolà, E.: Learning disentangled representations via product manifold projection. In: ICML (2021)

    Google Scholar 

  11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  12. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  13. Gonzalez-Garcia, A., van de Weijer, J., Bengio, Y.: Image-to-image translation for cross-domain disentanglement. In: NeurIPS (2018)

    Google Scholar 

  14. Hou, J., Dai, A., Nießner, M.: RevealNet: seeing behind objects in RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2098–2107 (2020)

    Google Scholar 

  15. Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-Net: point fractal network for 3d point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670 (2020)

    Google Scholar 

  16. Kim, H., Mnih, A.: Disentangling by factorising. In: International Conference on Machine Learning (ICML), pp. 2649–2658. PMLR (2018)

    Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  18. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  19. Liu, A.H., Liu, Y.C., Yeh, Y.Y., Wang, Y.C.F.: A unified feature disentangler for multi-domain image translation and manipulation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 2595–2604 (2018)

    Google Scholar 

  20. Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network for dense point cloud completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11596–11603 (2020)

    Google Scholar 

  21. Liu, Y.C., Yeh, Y.Y., Fu, T.C., Wang, S.D., Chiu, W.C., Wang, Y.C.F.: Detach and adapt: learning cross-domain disentangled deep representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8867–8876 (2018)

    Google Scholar 

  22. Ma, F., Ayaz, U., Karaman, S.: Invertibility of convolutional generative networks from partial measurements. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  23. Pan, L., et al.: Variational relational point completion network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8524–8533 (2021)

    Google Scholar 

  24. Peng, X., Huang, Z., Sun, X., Saenko, K.: Domain agnostic learning with disentangled representations. In: International Conference on Machine Learning, pp. 5102–5112. PMLR (2019)

    Google Scholar 

  25. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)

    Google Scholar 

  26. Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Comput. 4(6), 863–879 (1992)

    Article  Google Scholar 

  27. Shu, D.W., Park, S.W., Kwon, J.: 3d point cloud generative adversarial network based on tree structured graph convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3859–3868 (2019)

    Google Scholar 

  28. Sigal, L., Balan, A., Black, M.: Combined discriminative and generative articulated pose and non-rigid shape estimation. Adv. Neural. Inf. Process. Syst. 20, 1337–1344 (2007)

    Google Scholar 

  29. Straßer, W.: Schnelle kurven-und flächendarstellung auf grafischen sichtgeräten. Ph.D. thesis (1974)

    Google Scholar 

  30. Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S.: TopNet: structural point cloud decoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 383–392 (2019)

    Google Scholar 

  31. Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud pre-training via occlusion completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9782–9792 (2021)

    Google Scholar 

  32. Wang, X., Ang Jr, M.H., Lee, G.H.: Cascaded refinement network for point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 790–799 (2020)

    Google Scholar 

  33. Wen, X., Han, Z., Cao, Y.P., Wan, P., Zheng, W., Liu, Y.S.: Cycle4completion: unpaired point cloud completion using cycle transformation with missing region coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13080–13089 (2021)

    Google Scholar 

  34. Wen, X., Li, T., Han, Z., Liu, Y.S.: Point cloud completion by skip-attention network with hierarchical folding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1939–1948 (2020)

    Google Scholar 

  35. Wen, X., et al.: PMP-Net: point cloud completion by learning multi-step point moving paths. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7443–7452 (2021)

    Google Scholar 

  36. Wu, R., Chen, X., Zhuang, Y., Chen, B.: Multimodal shape completion via conditional generative adversarial networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 281–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_17

    Chapter  Google Scholar 

  37. Wu, X., Huang, H., Patel, V.M., He, R., Sun, Z.: Disentangled variational representation for heterogeneous face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9005–9012 (2019)

    Google Scholar 

  38. Wu, Z., et al.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  39. Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W.: GRNet: gridding residual network for dense point cloud completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 365–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_21

    Chapter  Google Scholar 

  40. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)

    Google Scholar 

  41. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737. IEEE (2018)

    Google Scholar 

  42. Zhang, J., et al.: Unsupervised 3d shape completion through GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1768–1777 (2021)

    Google Scholar 

  43. Zhang, W., Yan, Q., Xiao, C.: Detail preserved point cloud completion via separated feature aggregation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 512–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_31

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Key Research and Development Program of China (No. 2019YFC1521104), the National Natural Science Foundation of China (No. 61972157,72192821), Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), Shanghai Sailing Program (22YF1420300), Shanghai Science and Technology Commission (21511101200) and SenseTime Collaborative Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Xie or Lizhuang Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 11410 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, J. et al. (2022). Optimization over Disentangled Encoding: Unsupervised Cross-Domain Point Cloud Completion via Occlusion Factor Manipulation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics