
Enabling Negotiating Agents to Explore
Very Large Outcome Spaces

Thimjo Koça1(B) , Catholijn M. Jonker2,3 , and Tim Baarslag1,4

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{thimjo.koca,T.Baarslag}@cwi.nl
2 TU Delft, Delft, The Netherlands

c.m.jonker@tudelft.nl
3 Leiden University, Leiden, The Netherlands

4 Utrecht University, Utrecht, The Netherlands

Abstract. This work presents BIDS (Bidding using Diversified
Search), an algorithm that can be used by negotiating agents to search
very large outcome spaces. BIDS provides a balance between being
rapid, accurate, diverse, and scalable search, allowing agents to search
spaces with as many as 10250 possible outcomes on very run-of-the-mill
hardware. We show that our algorithm can be used to respond to the
three most common search queries employed by 87% of all agents from
the Automated Negotiating Agents Competition. Furthermore, we val-
idate one of our techniques by integrating it into negotiation platform
GeniusWeb, to enable existing state-of-the-art agents (and future agents)
to scale their use to very large outcome spaces.

Keywords: Automated negotiation · Very large negotiation domain ·
Search

1 Introduction

Over the last decades, more and more processes and information are being digi-
tized, allowing the implementation of new technologies that can reduce the dura-
tion and complexity of business processes. Automated negotiations is a promising
example of such technologies that can bring benefits to various fields, including
procurement [8], supply chain management [24], and resource allocation [2].

In such fields, negotiations can take place over high number of finite issues
(roughly 100 issues or more). For instance, suppose a buyer (Bob) is trying to
negotiate with one of his suppliers (Sally) over the delivery of 100 shipments for
the next year, as depicted in Fig. 1. For each shipment there are 365 possible
delivery dates, resulting in an outcome space with 365100 possibilities. Every
time Bob has to propose a new offer to Sally, he needs to define some criteria
that his next offer must fulfill (e.g. bring him a certain level of utility, lie within a
utility interval, conform some trade-off between his own preferences and Sally’s)
and then search the enormous outcome space for a bid that best fits his criteria.
c© Springer Nature Switzerland AG 2022
F. S. Melo and F. Fang (Eds.): AAMAS 2022 Workshops, LNAI 13441, pp. 67–83, 2022.
https://doi.org/10.1007/978-3-031-20179-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20179-0_4&domain=pdf
http://orcid.org/0000-0002-8889-8008
http://orcid.org/0000-0003-4780-7461
http://orcid.org/0000-0002-1662-3910
https://doi.org/10.1007/978-3-031-20179-0_4

68 T. Koça et al.

Moreover, since Bob and Sally keep their preferences private, to increase the
chances in achieving an agreement, he needs to: (a) exchange a high number of
offers with Sally; (b) propose offers that, over time, are qualitatively as diverse
as possible, i.e. sample broadly the outcome space. Hence, Bob needs a scalable
way to search the enormous outcome space in a manner that is timely, accurate,
and diverse.

Fig. 1. A negotiation example.

However, searching a large discrete outcome space in the context of auto-
mated negotiation is a difficult task, mainly for two reasons. First, because the
search process often translate to combinatorial problems that are impossible to
solve exactly and challenging to solve approximately. Second, because it is not
straightforward to design search algorithms that scale well, have accuracy guar-
antees, and explore the outcome space rapidly and in a diverse way, since there
are trade-offs between the four properties.

Search mechanisms proposed by state-of-the-art agents and automated nego-
tiation platforms perform poorly in very large outcome spaces (as we will see
in Sect. 5), because of their underlying assumptions. In particular, they assume
that: (a) either that the outcome space is small enough to be enumerated and
explored rapidly [21,27], and are therefore not scalable; (b) or that the space can
be randomly sampled [11,23,25], and as a result perform poorly in very large
spaces; (c) or that search goals can be defined deterministically for each individ-
ual negotiation issue [18], which can lead to poor accuracy in finite domains as
well as narrow exploration of the outcome space.

In this work, we propose BIDS (Bidding using Diversified Search) — an
algorithm that can search outcome spaces with as many as 10250 possible out-
comes given that the user’s preferences are expressed by the widely-used additive
utility function (i.e. with no issue interdependencies). The algorithm employs a
dynamic-programming approach to exploit the additive structure of the utility
function. We show that our methodology is accurate since it identifies approxi-
mate solutions with arbitrary error bounds to the search problem and can pro-
vide diversity since it is able to explore the outcome space broadly. Furthermore,
we show that our methodology is generic by first surveying the search queries
used by the agents that have participated in the Automated Negotiating Agents
Competition (ANAC), and then use our algorithm to implement the three most
common search queries employed by 87% of ANAC agents — the utility-lookup
query, the utility-sampling query, and the trade-off query. Lastly, we validate

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 69

BIDS by integrating it into negotiation platform GeniusWeb so that state-of-
the-art (and future) agents that need the utility-lookup query can use it.

2 Problem Setting

Our purpose in this work is to propose algorithms that tackle three search queries
that are commonly used by negotiating agents in a manner that is scalable, rapid,
accurate, and provides diversity. To do so, we need to first formalize each of the
queries and discuss the associated challenges.

2.1 Negotiation Model

Agents in our setting negotiate over a finite set of issues I = {1, . . . , n} and each
issue i ∈ I has an associated finite set of values Vi. For instance, in the task-
scheduling scenario of Fig. 1, the issues to negotiate upon are the 100 deliveries
and the possible values per issue are the 365 d. All possible combinations of
values form the outcome space, which is denoted by Ω =

∏
i∈I Vi. Each element

ω ∈ Ω is called a negotiation outcome and whenever it is convenient we will
denote the component of ω corresponding to issue i ∈ I by ωi ∈ Vi.

The private preferences of each party over Ω are expressed through a utility
function u : Ω → [0, 1]. We focus in this work on utility functions that are
additive with respect to the utilities of each issue:

u(ω) =
∑

i∈I
λi · ui(ωi)

where λi ≥ 0 ∧ ∑
i∈I λi = 1 are the weights defined for each issue, and ui :

Vi → [0, 1],∀i ∈ I are utility functions defined over each individual issue. There
are no dependencies between individual issues since the utility function is a
convex sum of individual issue utilities. The reasons why we picked additive
utility functions are that they are widely used [4,6,14,15,28] and because, as we
will see in Sect. 4, their structure allows for some scalable, rapid, accurate, and
diverse search of the outcome space. Note that additive utility functions can code
rather complex preference structures, since we do not make any assumptions on
ui, and as consequence we can define over each issue arbitrary utility functions
(i.e. not necessarily linear).

A negotiation protocol (e.g. the Alternating Offers Protocol (AOP) [26])
regulates how the agents exchange offers during the negotiation. We consider
protocols that allow in each round the communication of one or several bids,
i.e. possible outcome(s) ω to agree upon, or a special message — for instance,
a message that indicates acceptance of the opponent’s latest offer, or a message
informing a walk-away.

70 T. Koça et al.

2.2 Typical Search Queries

There are many negotiating agents in literature, each with their own negotiation
strategy and learning methodologies [5,11,12,18,19,24]. However, despite the
richness of negotiating strategies, when an agent decides on a bid to propose
next, it generally complies to the following pattern: It first sets some criteria
that the proposed bid need to satisfy – examples include an appropriate utility
target, a utility interval of interest, a trade-off between the own preferences and
the opponent’s — and subsequently tries to identify the most appropriate bids
that meet one of three important search queries (illustrated in Fig. 2).

Fig. 2. Illustration of the three most common search queries over a utility diagram.
The x-axis shows the agent’s own utility and the y-axis the opponent’s utility. Dots
represent possible bids and the continuous curve represents the Pareto-frontier. While
the blue line illustrates the possible picks for the utility-lookup query, the red rectangle
illustrates the possible options for the utility-sampling query and the green rectangle
the possibilities for the trade-off query. (Color figure online)

The utility-lookup is the simplest among the three queries. Agents define in
each round a utility target ut ∈ R and search for bid(s) with utility as close as
possible to the target utility (illustrated by the blue line in Fig. 2). The target
can be determined through a time-based strategy (e.g. Agent K [19]), a behavior-
based strategy (e.g. Nice-Tic-For-Tac Agent [5]), or through some other criteria
(e.g. through a resource-based tactic [13]). Formally, it can be defined as a min-
imization problem:

argmin
ω∈Ω

|u(ω) − ut| (1)

The second query is the sampling-utility query. In each round, agents search
for one or more bids with utility that lies within a utility interval [umin, umax] ⊆
R (illustrated by the red rectangle in Fig. 2). Most works in literature determine
the bounds of the interval through a time-based strategy (e.g. Agent M [25]).
Formally, the query can be expressed as identifying a set S containing outcomes

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 71

within a certain utility interval:

S ⊆ {ω ∈ Ω : u(ω) ∈ [umin, umax]} (2)

The third query considers some trade-offs while generating a new bid. Agents
search for bids that optimize some objective function f : Ω → R, while asking
for at least a minimum utility for themselves (illustrated by the green rectangle
in Fig. 2). Typical objective functions model the opponent’s preferences in some
way, for instance by estimating the opponent’s utility function (e.g. The Fawkes
Agent [20]) or by minimizing distance to the opponent’s offers (e.g. Similarity-
Tactic [12]). Formally, it can be defined as a constrained optimization problem:

argmin
ω∈Ω

f(ω)

subject to u(ω) ≥ ut

(3)

The three queries are rather generic. In fact, when surveying the search
queries used by the participants of the Automated Negotiating Agents Com-
petition (ANAC) [6] since its inception (2010–2021), we find 87% of all partic-
ipating agents use one of the three identified queries (see Table 1). Given their
ubiquity, it is important to have a generic, well-founded way to answer these
queries, either as part of a well-known negotiation framework (for instance [21],
or [23]) or as a module available to future agents. This would aid to decouple
the negotiation strategies of agents from their search methods, and as a result
make the comparison of negotiation strategies easier.

Table 1. Typical search queries used by ANAC agents.

Search query % of agents per ANAC year total

2021 2018 2017 2016 2015 2014 2013 2012 2011 2010

Utility-lookup 23% 57% 14% 17% 4% 9% 11% 20% 33% 13% 20%

Utility-sampling 33% 19% 52% 78% 70% 50% 45% 40% 56% 29% 50%

Trade-off 33% 19% 5% 5% 13% 27% 22% 30% 11% 29% 17%

Other 11% 5% 29% 0% 13% 14% 22% 10% 0% 29% 13%

2.3 Design Specification of Search Algorithms Used by Negotiating
Agents

Algorithms that can answer the three discussed queries need to provide a good
balance between four specifications. First, the search need to be scalable, since we
want agents to be able and negotiate in realistic scenarios, over even more than
100 issues (e.g. in fields such are supply-chain management and procurement).
Second, algorithms need to be accurate so that negotiation strategies operate

72 T. Koça et al.

with minimal error. Third, since negotiation parties keep their preferences pri-
vate, search algorithms need to be rapid so that the agents can exchange a high
number of offers and therefore increase their chances in achieving an agreement.
Four, the algorithms need to provide diversity, so that there are higher chances
to achieve an agreement that is Pareto efficient (i.e. a win-win agreement) even
though the opponent’s preferences are not known.

Example 1 (Importance of diversity). To understand the importance of diversity
suppose a buyer negotiates with the seller to obtain a TV considering price {low,
average, high} and quality {low, moderate, high}. The buyer aspires for a high-
quality TV at low price, while the seller seeks a high price and is indifferent about
the quality. If the buyer concedes regularly among the two issues he will offer
to pay a low price for a high-quality TV, then an average price for a moderate-
quality TV, and finally agree to a high price for a low-quality TV. The regular
concession among issues, i.e. exploration of the outcome space with no diversity,
made it impossible to agree on a high-quality TV for a high price, which is a
better deal for the buyer and still acceptable for the seller.

Designing search algorithms (especially) with such specifications is challeng-
ing, mainly because of two reasons. First, the optimization problems associated
with our three queries are hard to solve exactly and difficult to approximate
rapidly. Second, guaranteeing all four specifications at once is difficult because
often there are trade-offs between them. For instance, enumerating all possi-
ble outcomes of an outcome space, as in GeniusWEB [21], provides high accu-
racy and some diversity, but it is not scalable. Similarly, a search implemented
through random sampling, as in NegMas [23], is scalable, diverse, and rapid, but
it becomes really inaccurate as the number of negotiation issues increases.

3 Related Work

Most works in the fields of automated negotiations abstract away the outcome-
space search method and assume there is an efficient way to implement it because
the main topics of interest in field are the proposal of negotiation strategies and
the design of negotiation protocols.

Jonker & Treur [18] propose the attribute-planning method, the earliest
outcome-space search algorithm we are aware of. The authors in each round
determine a utility target for the offer to be proposed and use it to define a
utility target for each issue (additive utility functions are used). The method
scales well and is rapid, however, it can have accuracy problem when applied to
discrete issues and also the heuristic used to alter the target utility for each issue
provides almost no diversity. The well known negotiation platform GENIUS [21]
provides a default search method through which all possible outcomes are enu-
merated during a search process. The method provides high accuracy and some
diversity, however, it does not scale well and it gets slow for moderately large
outcome spaces. In NegMas [23] the proposed search method is based on ran-
dom sampling and is therefore scalable and has high diversity, however because

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 73

Table 2. Comparison of search algorithms from literature with respect to the four
design specifications, as well as their space & time complexity. In the table, |I| repre-
sents the number of negotiation issues, |V | represents the highest number of possible
values for one issue (|V | = maxi |Vi|), and |Im(d)| is the number of image points of the
discretization operator d that BIDS uses (see Sect. 4.1) for more details.

Scalable Rapid Accurate Diverse Space Time

BIDS � � � � O(|I| · |Im(d)|) O(1)

Attribute-Planning [18] � � ? × O(1) O(|I| · |V |)
Enumeration [21] × × � � O(|I| · |V |) O(|V ||I|)

Random Sampling [23] � � × � O(1) O(1)

MCTS [7] � × � � O(|V ||I|) O(|V ||I|)

NB3 [7] � × � � O(|V ||I|) O(|V ||I|)

it is tuned to be rapid it is not accurate on very large spaces. Participants of
ANAC 2014 [3] were given the task to negotiate over large outcome spaces, under
nonlinear preferences. Several meta-heuristics were proposed to implement the
search, including simulated annealing [25] and genetic algorithm [11]. Similarly
to random sampling, the proposed methods are scalable and provide high diver-
sity, however, there is a trade-off in their tuning between being accurate and
rapid. Buron et al. [7] propose a bidding strategy that uses Monte Carlo Tree
Search [9] to explore the outcome space. Their method is heavily coupled with
their negotiation strategy and while it can be scalable, accurate, and provide
diversity, it is designed to operate under no time pressure.

In some other relevant works, Amini & Fathian [1] compare the performance
of different stochastic search techniques in certain scenarios, with space sizes
ranging from 59, 049 to 1, 048, 576 possible outcomes, while de Jonge & Sierra [10]
propose NB3, a search algorithm in a setting where utility functions are pub-
licly known, but computationally expensive (NP-hard) to calculate and there
is no time pressure. Lastly, there is body of works which assumes dependencies
between issues, represents them by graphs, and proposes negotiating strategies
(and as a consequence search techniques) over them [16,17,22], however, the
methods do not scale to the space sizes we are interested in.

4 Searching Through BIDS

We propose BIDS (Bidding using Diversified Search) — an algorithm that
exploits the additive structure of a utility function to rapidly search very large
outcome spaces providing accuracy & diversity. BIDS can answer the utility-
lookup query, and it can also serve as a building block to tackle the utility-
interval-sampling query and the trade-off query. To provide a tractable solution
of the utility-lookup query, BIDS discretizes the codomain of the utility func-
tion and applies a dynamic-programming-based search to obtain an approximate
solution to the associated optimization problem.

74 T. Koça et al.

4.1 Looking for Bid(s) that Satisfy a Utility Target Through BIDS

A useful property of the utility-lookup query (see Eq. 1) is that its solution can
be expressed through a recurrent relationship. Intuitively, if we suppose we know
the solutions of Eq. 1 for n− 1 issues and all possible utility thresholds no larger
than ut, then to solve the problem for n issues we have to simply pick the value
of the nth issue that minimizes our objective function.

To formalize the idea we firstly need to consider partial outcomes: A partial
outcome ω|I is an outcome defined over only some issues I ⊂ I, while ΩP is
the set of all partial outcomes over all possible subsets of issues. Furthermore,
given a utility function u : Ω → [0, 1], we will denote by uP : ΩP → [0, 1] the
extension of u over ΩP :

uP (ω|I) =
∑

i∈I

λi · ui(ωi) (4)

We define also the concatenating operator + through which a value v ∈ Vj for
an issue j ∈ I \ I is attached to a partial outcome ω|I = (ω1, . . . , ωi):

ω|I + vj = (ω1, . . . , ωi, vj). (5)

Given this and denoting by σk(ut) the solution of Eq. 1 for a target utility
ut when the first k issues of Ω are used, the recurrent equation of utility-lookup
query is:

σk(ut) =

{
argminω1∈V1

|u(ω1) − ut|, k = 1
argminωk∈Vk

u[σk−1(ut − uP (ωk)) + ωk], otherwise
(6)

An algorithm that uses (6) to solve Eq. 1 will have exponential time complex-
ity with respect to the number of negotiation issues. This is a result of the fact
that the utility codomain is continuous and therefore the sub-problems created
while solving the original problem are almost always non-overlapping. In other
words, to provide a solution to recurrence (6), exponentially many sub-problems
need to be solved.

Example 2 (Non-overlapping sub-problems). Suppose we want to find a bid close
to utility target ut = 0.7 in a negotiation over only three delivery dates of the
example in Fig. 1. To calculate σ3(0.7), 365 sub-problems of calculating σ2(·)
need to be solved, each requiring yet another 365 partial solutions to σ1(·). In
general, since each issue-utility ranges over a continuous interval, there will be
no overlap between the sub-problems that need to be solved, resulting in 3653

calculations in the worst case.

The key to a tractable solution of Eq. 1 is to discretize the utility codomain
and induce optimal sub-structure to the problem. BIDS does exactly this (see
Algorithm 1) and as a consequence, can apply dynamic programming to calculate

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 75

an approximate solution. To discretize the codomain while preventing negative
utility thresholds from arising, BIDS uses the following discretization mapping:

dp(ut) =

{
	ut
p, u ≥ 0,

0, otherwise
(7)

where 	
p : R → Q rounds a real number at its pth decimal.

Algorithm 1. BIDS
Signature: BIDS(ut, I = {1, . . . , k})
1: if k = 1 then
2: return argminω1∈V1

|uP (ω1) − ut|
3: end if
4: return argminωk∈Vk

uP [BIDS(dp(ut − uP (ωk)), {1, . . . , k − 1}) + ωk]

The table used by dynamic programming has |I| · |Im(d)| entries, where |I|
is the number of issues and |Im(d)| is the number of image points of d (i.e.
points in the grid defined over the utility codomain). As a consequence, the
space computational complexity of BIDS is O(|I| · |Im(d)|). Moreover, given
that there are no more than |V | possible values per issue, the time complexity
of an implementation of BIDS that computes the dynamic programming table
before the beginning of the negotiation and only searches the table in run-time is
O(|I| · |V | · |Im(d)|) for the table-construction and O(1) to search it during run-
time. Lastly, there are trade-offs between the approximation accuracy of BIDS
and its computational complexity.

Trading Computational Complexity for Approximation Accuracy. For
simplicity, assume we use a regular grid over the utility codomain, with each
point being 10−p apart from its closest neighbors and where p ∈ N is the pre-
cision parameter which we can tune. Then the approximation error the method
introduces in each iteration is at most 10−p. Given that there are |I| issues,
the algorithm runs |I| iterations for each solution. Therefore, the absolute error
the method can introduce is |I| · 10−p, which means the higher the precision,
the smaller the introduced error. On the other hand, having grid points 10−p

apart implies that the grid is composed of 10p points, which means the space
complexity of the algorithm is O(|I| · 10p) and the time complexity of the table-
construction is O(|I| · |V | · 10p). Consequently, the more precise the algorithm
is, the more space and construction time is going to require.

4.2 Using BIDS to Implement the Sampling-Utility Query
and the Trade-off Query

BIDS can be used as a building block for algorithms that address the sampling-
utility and the trade-off queries.

76 T. Koça et al.

Algorithm 2 presents Sampling-BIDS, a method that provide ns samples
within a specified utility interval I = [umin, umax] in scalable, rapid, accurate,
and diverse manner. The algorithm uses some arbitrary distribution — typically
uniform — to sample ns utility targets Ut ⊂ I (line 1 in the pseudo-code) and
then uses BIDS to identify bids the utility of which is as close as possible to each
of the targets. Its space complexity is the same as BIDS, i.e. O(|I| · |Im(d)|),
while the time complexity of an ”offline” implementation is O(ns).

Algorithm 2. Sampling BIDS
Signature: Sampling-BIDS(ns, I, [umin, umax])
1: Ut := determineUtilSamples(ns, umin, umax)
2: B := ∅
3: for ut ∈ Ut do
4: B := B ∪ {BIDS(ut, I)}
5: end for
6: return B

Similarly, Algorithm 3 presents Optimizing-BIDS, a method that builds upon
Sampling-BIDS to approximately solve the trade-off query. Its space and time
complexities are identical with Sampling-BIDS, i.e. O(|I| · |Im(d)|) space com-
plexity and O(ns) time complexity. Note that while Optimizing-BIDS improves
the state-of-the-art by being scalable, rapid, and diverse, it does not provide
accuracy guarantees.

Algorithm 3. Optimizing-BIDS
Signature: Optimizing-BIDS(ns, I, ut)
1: B := SamplingBIDS(ns, I, [ut, 1.0])
2: return argminω∈B f(ω)

5 Experiments

BIDS permits the implementation of the three most used search queries for out-
come spaces. To validate the utility-lookup query, we have implemented it in
GeniusWEB [21], so that state-of-art agents can use it. Furthermore, to verify
that it complies to the four design specifications, we have designed two experi-
ments: In Experiment 1 we investigate how scalable and rapid BIDS is by imple-
menting a simple agent that uses the algorithm to explore the outcome space
and compare it to various other agents. In Experiment 2 we isolate the search
problem and compare BIDS with the scalable methods of the first experiment
in terms of accuracy and diversity.

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 77

5.1 Setup

We run simulations for scenarios with arbitrary outcome spaces, containing 50
to 300 issues, with each issue having 10 possible values. We assign to each party
an arbitrary utility profile over the generated spaces, i.e. an additive utility with
random weights and random issue utilities.

First, we compare a simple agent that uses BIDS (BAgent) to all ANAC2021
participants. Since we are interested in the search process and not the negotiation
strategy as a whole, in each round BAgent refuses the opponent’s offer, sets an
arbitrary utility target ut, and uses BIDS with a precision p = 5 to identify
the bid with utility as close as possible to ut. In order to obtain an upper
bound for scalability for a fixed negotiation time, we allow each agent to use as
much time as possible, by letting them negotiate against an opponent that uses
minimal time to respond since it always rejects the opponent’s offer and proposes
a random bid as a counter-offer. Next, to obtain some accuracy and diversity
results for very large outcome spaces, we compare BIDS to other scalable search
algorithms. In particular, we compare it to attribute-planning [18], an adaptation
of AgentM’s [25] Simulated Annealing that answers the utility-lookup query, and
GANGSTER’s [11] Genetic Algorithm adapted to the utility-lookup query (for
all three search methods we use the parameters proposed by their authors).

Lastly, note that we do not need any extensive computational resources. We
run our simulations in a laptop with an i7 core and 16 GB of RAM.

5.2 Metrics to Quantify Scalability, Speed, Accuracy, and Diversity

Each search algorithm is scored on a number of metrics. To measure scalability,
we count the highest number of issues for which an agent is able to exchange
at least one offer. To also have a sense of how rapid each method is, we run
negotiation sessions that last 2 min since ANAC2021 agents are designed to
participate in negotiations of that length. Accuracy for the utility-lookup query
is estimated by calculating the mean absolute error of the query’s response from
the defined target utility. More specifically, assume we pose queries for n different
utility targets Ut = {utj}n

j=1 and get one response per each {ω1, . . . , ωn}. Then
we mean error, which we use to measure accuracy is:

e =
1
n

n∑

j=1

|utj − u(ωj)|

Lastly, to estimate diversity we quantify the change for two consecutive bids
composition, i.e. we calculate the variability (through the standard error) of the
concession rates among issues for two consecutive bids. More specifically, we
define variability v(ωj) of a bid ωj with respect to its predecessor ωj−1 in the
following way:

v(ωj) =
1

|I|
|I|∑

i=1

[ui(ω
j
i) − ui(ω

j−1
i)]

78 T. Koça et al.

Then for a series bids S = {ω1, . . . , ωn} that answer queries we measure the
series variability v(S) as:

v(S) = SE({v(ω2), . . . , v(ωn)})

where SE stands for the standard error.

5.3 Experiment 1 - Scalability and Rapidness of BIDS

In the first experiment we investigate the scalability and rapidness of BIDS
algorithm and compare it to ANAC2021 agents.

Fig. 3. Scalability results for BAgent and ANAC2021 participants.

Our results show that (see Fig. 3) BIDS can enable an agent to negotiate over
250 issues — over outcome spaces with 10250 possible outcomes — within a 2-
minutes session, while the best performing ANAC2021 participant can negotiate
upon a maximum of 25 issues — or over outcome spaces with 1025 possible
outcomes. The poor performance of ANAC2021 comes as a result of their search
method, with each agent using either: (a) exhaustive enumeration and cannot
negotiate over more than 10 issues; or (b) some random sampling with no time
constrains and are able to generate at least one offer for domains with up to
25 issues. Our BAgent cannot negotiate over more than 250 issues within 2 min
since the initialization of the dynamic-programming table takes too long.

The results of Experiment 1 support our claim over the scalability of BIDS.
However, if we focus solely on scalability, similar results can be achieved by
letting BAgent use other search methods (see Fig. 4). Nonetheless, apart from
scalability given some time restrictions, search accuracy and diversity play a
crucial role in the quality of a search algorithm.

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 79

Fig. 4. Scalability results for BIDS, Attribute-Planning, Simulated Annealing, and
Genetic Algorithm.

5.4 Experiment 2 - Accuracy and Diversity

In the second experiment we isolate the search problem to evaluate the search
accuracy and diversity of BIDS algorithm and compare it with the other scalable
methods (the attribute-planning, simulated annealing, and genetic algorithm)
to get an insight of which algorithms can perform better in very large outcome
spaces. To do so, we define a series of utility targets from 0 up to 1 with a regular
step of 0.1 and use each search method to respond the utility-lookup query.

Fig. 5. Mean standard error for each scalable search method as we vary the number
of issues in the outcome space. The smaller the error, the more accurate the search
method is.

Our results on accuracy show (see Fig. 5) a clear ranking among the search
methods. BIDS is more accurate since the way it explores the outcome space
allows it to consider outcomes smartly and guarantee small error bounds (see
Error Analysis in Sect. 4.1). Attribute-planning comes second penalized by the
fact that it determines individual issue utility targets, which can lead to higher
errors in discrete spaces. To illustrate this, suppose that in a given space for a
particular issue ωi there are only 2 possible values that can bring issue-utilities

80 T. Koça et al.

of 0.1 and 0.2 and that for that issue the weight is λi = 0.5. This means that if
attribute-planning assigns a target utility for this issue uti = 0.8, it will intro-
duce an error of 0.3. Lastly, the meta-heuristics perform poorly with respect to
accuracy, penalized by their randomness combined with their trade-off between
search-time and accuracy.

Fig. 6. Mean variability for each scalable search method as we vary the number of
issues in the outcome space. The higher the variability, the more diverse the search
method is.

The results on diversity show (see Fig. 6) a different ranking. Here the ran-
domness used by Simulated Annealing and Genetic Algorithm gives them the
lead; BIDS comes after with a diversity around the middle of best and worst
performing methods; and attribute-planning comes last penalized by the very
regular way its heuristic distributes concession among different issues.

To summarize, BIDS can scale to spaces with up to 250 issues. Moreover, even
though attribute-planning and the meta-heuristics scale higher, our method pro-
vides higher accuracy and satisfactory diversity, having overall a better balance
among the properties.

6 Conclusions and Future Work

This work presents BIDS — an algorithm that exploits the additive structure of
the utility function to search very large outcome spaces while providing search
accuracy and diversity. We find that BIDS can increase drastically the domain
size in which negotiating agents can still function, while providing very high accu-
racy and significant outcome diversity. Therefore, BIDS algorithm can enable
state-of-the-art (and future) agents to negotiate over very large realistic domains
such as the ones found in procurement and supply-chain management.

Future work may build on this one to evaluate the robustness of specific
negotiation strategies on the accuracy and diversity of the used search method, or

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 81

investigate how strategies that do not consider the space size perform compared
to strategies designed for large spaces. Moreover, the existing experimental setup
can be extended to evaluate the performance of BIDS when used for the utility-
sampling and the trade-off queries.

Acknowledgements. The research reported in this article is part of Vidi research
project VI.Vidi.203.044, financed by the Dutch Research Council (NWO).

References

1. Amini, M., Fathian, M.: Optimizing bid search in large outcome spaces for auto-
mated multi-issue negotiations using meta-heuristic methods. Decis. Sci. Lett.
10(1), 1–20 (2021)

2. An, B., Lesser, V.R., Irwin, D.E., Zink, M.: Automated negotiation with decom-
mitment for dynamic resource allocation in cloud computing. In: AAMAS, vol. 10,
pp. 981–988 (2010)

3. Aydogan, R., et al.: A baseline for non-linear bilateral negotiations: the full results
of the agents competing in ANAC 2014 (2016)

4. Aydoğan, R., Fujita, K., Baarslag, T., Jonker, C.M., Ito, T.: ANAC 2017: repeated
multilateral negotiation league. In: Ito, T., Zhang, M., Aydoğan, R. (eds.) ACAN
2018. SCI, vol. 905, pp. 101–115. Springer, Singapore (2021). https://doi.org/10.
1007/978-981-15-5869-6 7

5. Baarslag, T., Hindriks, K., Jonker, C.: A tit for tat negotiation strategy for real-
time bilateral negotiations. In: Complex Automated Negotiations: Theories, Mod-
els, and Software Competitions, pp. 229–233. Springer (2013). https://doi.org/10.
1007/978-3-642-30737-9 18

6. Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The first automated nego-
tiating agents competition (ANAC 2010). In: New Trends in Agent-based Complex
Automated Negotiations, pp. 113–135. Springer (2012). https://doi.org/10.1007/
978-3-642-24696-8 7

7. Buron, C.L.R., Guessoum, Z., Ductor, S.: MCTS-based automated negotiation
agent. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern,
R. (eds.) PRIMA 2019. LNCS (LNAI), vol. 11873, pp. 186–201. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-33792-6 12

8. Byde, A., Yearworth, M., Chen, K.Y., Bartolini, C.: Autona: a system for auto-
mated multiple 1–1 negotiation. In: EEE International Conference on E-Commerce
2003. CEC 2003, pp. 59–67. IEEE (2003)

9. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75538-8 7

10. De Jonge, D., Sierra, C.: NB3: A multilateral negotiation algorithm for large, non-
linear agreement spaces with limited time. Auton. Agent. Multi-agent Syst. 29(5),
896–942 (2015). https://doi.org/10.1007/s10458-014-9271-3

11. de Jonge, D., Sierra, C.: GANGSTER: an automated negotiator applying genetic
algorithms. In: Fukuta, N., Ito, T., Zhang, M., Fujita, K., Robu, V. (eds.) Recent
Advances in Agent-based Complex Automated Negotiation. SCI, vol. 638, pp. 225–
234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30307-9 14

https://doi.org/10.1007/978-981-15-5869-6_7
https://doi.org/10.1007/978-981-15-5869-6_7
https://doi.org/10.1007/978-3-642-30737-9_18
https://doi.org/10.1007/978-3-642-30737-9_18
https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-030-33792-6_12
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/s10458-014-9271-3
https://doi.org/10.1007/978-3-319-30307-9_14

82 T. Koça et al.

12. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make negoti-
ation trade-offs. In: Proceedings Fourth International Conference on MultiAgent
Systems, pp. 119–126. IEEE (2000)

13. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for
autonomous agents. Robot. Auton. Syst. 24(3–4), 159–182 (1998)

14. Fujita, K., Aydoğan, R., Baarslag, T., Hindriks, K., Ito, T., Jonker, C.: The sixth
automated negotiating agents competition (ANAC 2015). In: Fujita, K., et al.
(eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI,
vol. 674, pp. 139–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51563-2 9

15. Fujita, K., et al.: The second automated negotiating agents competition (ANAC
2011). In: Complex Automated Negotiations: Theories, Models, and Software Com-
petitions, pp. 183–197. Springer (2013). https://doi.org/10.1007/978-3-642-30737-
9 11

16. Hadfi, R., Ito, T.: Modeling complex nonlinear utility spaces using utility hyper-
graphs. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) MDAI 2014. LNCS (LNAI),
vol. 8825, pp. 14–25. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12054-6 2

17. Ito, T., Hattori, H., Klein, M.: Multi-issue negotiation protocol for agents: exploring
nonlinear utility spaces. In: IJCAI, vol. 7, pp. 1347–1352 (2007)

18. Jonker, C.M., Treur, J.: An agent architecture for multi-attribute negotiation. In:
International Joint Conference on Artificial Intelligence, vol. 17, pp. 1195–1201.
LAWRENCE ERLBAUM ASSOCIATES LTD (2001)

19. Kawaguchi, S., Fujita, K., Ito, T.: Compromising strategy based on estimated
maximum utility for automated negotiation agents competition (ANAC-10). In:
Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE
2011. LNCS (LNAI), vol. 6704, pp. 501–510. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21827-9 51

20. Koeman, V.J., Boon, K., van den Oever, J.Z., Dumitru-Guzu, M., Stanculescu,
L.C.: The fawkes agent—the ANAC 2013 negotiation contest winner. In: Fujita, K.,
Ito, T., Zhang, M., Robu, V. (eds.) Next Frontier in Agent-based Complex Auto-
mated Negotiation. SCI, vol. 596, pp. 143–151. Springer, Tokyo (2015). https://
doi.org/10.1007/978-4-431-55525-4 10

21. Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.: Genius:
an integrated environment for supporting the design of generic automated nego-
tiators. Comput. Intell. 30(1), 48–70 (2014)

22. Marsa-Maestre, I., Klein, M., Jonker, C.M., Aydoğan, R.: From problems to pro-
tocols: towards a negotiation handbook. Decis. Support Syst. 60, 39–54 (2014)

23. Mohammad, Y., Nakadai, S., Greenwald, A.: NegMAS: a platform for situated
negotiations. In: Aydoğan, R., Ito, T., Moustafa, A., Otsuka, T., Zhang, M. (eds.)
ACAN 2019. SCI, vol. 958, pp. 57–75. Springer, Singapore (2021). https://doi.org/
10.1007/978-981-16-0471-3 4

24. Mohammad, Y., Viqueira, E.A., Ayerza, N.A., Greenwald, A., Nakadai, S., Mori-
naga, S.: Supply chain management world. In: Baldoni, M., Dastani, M., Liao,
B., Sakurai, Y., Zalila Wenkstern, R. (eds.) PRIMA 2019. LNCS (LNAI), vol.
11873, pp. 153–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
33792-6 10

25. Niimi, M., Ito, T.: AgentM. In: Fukuta, N., Ito, T., Zhang, M., Fujita, K., Robu,
V. (eds.) Recent Advances in Agent-based Complex Automated Negotiation. SCI,
vol. 638, pp. 235–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30307-9 15

https://doi.org/10.1007/978-3-319-51563-2_9
https://doi.org/10.1007/978-3-319-51563-2_9
https://doi.org/10.1007/978-3-642-30737-9_11
https://doi.org/10.1007/978-3-642-30737-9_11
https://doi.org/10.1007/978-3-319-12054-6_2
https://doi.org/10.1007/978-3-319-12054-6_2
https://doi.org/10.1007/978-3-642-21827-9_51
https://doi.org/10.1007/978-3-642-21827-9_51
https://doi.org/10.1007/978-4-431-55525-4_10
https://doi.org/10.1007/978-4-431-55525-4_10
https://doi.org/10.1007/978-981-16-0471-3_4
https://doi.org/10.1007/978-981-16-0471-3_4
https://doi.org/10.1007/978-3-030-33792-6_10
https://doi.org/10.1007/978-3-030-33792-6_10
https://doi.org/10.1007/978-3-319-30307-9_15
https://doi.org/10.1007/978-3-319-30307-9_15

Enabling Negotiating Agents to Explore Very Large Outcome Spaces 83

26. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press (1994)
27. TU Delft: GeniusWeb platform (2019). https://ii.tudelft.nl/GeniusWeb/

technicians.html. Accessed 04 Jan 2022
28. Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: An overview of the

results and insights from the third automated negotiating agents competition
(ANAC2012). In: Marsa-Maestre, I., Lopez-Carmona, M.A., Ito, T., Zhang, M.,
Bai, Q., Fujita, K. (eds.) Novel Insights in Agent-based Complex Automated Nego-
tiation. SCI, vol. 535, pp. 151–162. Springer, Tokyo (2014). https://doi.org/10.
1007/978-4-431-54758-7 9

https://ii.tudelft.nl/GeniusWeb/technicians.html
https://ii.tudelft.nl/GeniusWeb/technicians.html
https://doi.org/10.1007/978-4-431-54758-7_9
https://doi.org/10.1007/978-4-431-54758-7_9

	Enabling Negotiating Agents to Explore Very Large Outcome Spaces
	1 Introduction
	2 Problem Setting
	2.1 Negotiation Model
	2.2 Typical Search Queries
	2.3 Design Specification of Search Algorithms Used by Negotiating Agents

	3 Related Work
	4 Searching Through BIDS
	4.1 Looking for Bid(s) that Satisfy a Utility Target Through BIDS
	4.2 Using BIDS to Implement the Sampling-Utility Query and the Trade-off Query

	5 Experiments
	5.1 Setup
	5.2 Metrics to Quantify Scalability, Speed, Accuracy, and Diversity
	5.3 Experiment 1 - Scalability and Rapidness of BIDS
	5.4 Experiment 2 - Accuracy and Diversity

	6 Conclusions and Future Work
	References

