Skip to main content

Contrastive and Consistent Learning for Unsupervised Human Parsing

  • Conference paper
  • First Online:
  • 1110 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Abstract

How to learn pixel-level representations of human parts without supervision is a challenging task. However, despite its significance, a few works explore this challenge. In this work, we propose a contrastive and consistent learning network (\(C^{2}L\)) for unsupervised human parsing. \(C^{2}L\) mainly consists of a part contrastive module and a pixel consistent module. We design a part contrastive module to distinguish the same semantic human parts from other ones by contrastive learning, which pulls the same semantic parts closer and pushes different semantic ones away. A pixel consistent module is proposed to obtain spatial correspondence in each view of images, which can select semantic-relevant image pixels and suppress semantic-irrelevant ones. To improve the pattern analysis ability, we perform a sparse operation on the feed-forward networks of the pixel consistent module. Extensive experiments on the popular human parsing benchmark show that our method achieves competitive performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: ICCV. (2015)

    Google Scholar 

  2. Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV (2015)

    Google Scholar 

  3. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR (2016)

    Google Scholar 

  4. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  5. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  6. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: CVPR (2021)

    Google Scholar 

  7. Hung, W.C., Jampani, V., Liu, S., Molchanov, P., Yang, M.H., Kautz, J.: Scops: self-supervised co-part segmentation. In: CVPR (2019)

    Google Scholar 

  8. Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disentangling of object shape and appearance. In: CVPR (2019)

    Google Scholar 

  9. Liu, S., Zhang, L., Yang, X., Su, H., Zhu, J.: Unsupervised part segmentation through disentangling appearance and shape. In: CVPR (2021)

    Google Scholar 

  10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  11. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)

  12. Chuang, C.Y., Robinson, J., Yen-Chen, L., Torralba, A., Jegelka, S.: Debiased contrastive learning. arXiv preprint arXiv:2007.00224 (2020)

  13. Huynh, T., Kornblith, S., Walter, M.R., Maire, M., Khademi, M.: Boosting contrastive self-supervised learning with false negative cancellation. arXiv preprint arXiv:2011.11765 (2020)

  14. Zhong, Y., Yuan, B., Wu, H., Yuan, Z., Peng, J., Wang, Y.X.: Pixel contrastive-consistent semi-supervised semantic segmentation. In: ICCV (2021)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Kuhn, H.W.: The Hungarian method for the assignment problem. NRL 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oord, A.V.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  18. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  20. Donoho, D.L.: Compressed sensing. TIT 52(4), 1289–1306 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. TPAMI 31(2), 210–227 (2008)

    Article  Google Scholar 

  22. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ICML (2009)

    Google Scholar 

  23. Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: unsupervised semantic segmentation using invariance and equivariance in clustering. In: CVPR (2021)

    Google Scholar 

  24. Liang, X., et al.: Deep human parsing with active template regression. TPAMI 37(12), 2402–2414 (2015)

    Article  Google Scholar 

  25. Li, T., Liang, Z., Zhao, S., Gong, J., Shen, J.: Self-learning with rectification strategy for human parsing. In: CVPR (2020)

    Google Scholar 

  26. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  27. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  28. Jia, D., Wei, D., Socher, R., Li, L.J., Kai, L., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  29. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus (2017)

    Google Scholar 

  30. Collins, E., Achanta, R., Süsstrunk, S.: Deep feature factorization for concept discovery. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 352–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_21

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research & Development Program (No. 2020YFC2003901), Chinese National Natural Science Foundation Projects (No. 62206280, 62176256, 61876178, 61976229 and 62106264), the Youth Innovation Promotion Association CAS (No. Y2021131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X. et al. (2022). Contrastive and Consistent Learning for Unsupervised Human Parsing. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics