Skip to main content

Maintaining Structural Information by Pairwise Similarity for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
  • 1262 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Abstract

Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned from the labeled source domain to the unlabeled target domain. Among them, the source domain and the target domain have the same label space, but the representation distributions of their input space are different. Mainstream approaches resort to domain adversarial training to align input distributions of two domains in the feature space. Although these methods have made remarkable progress, they have the risk of destroying discriminative structural information between different classes in the target domain. To alleviate this risk, we are inspired by the problem reduction method in ensemble methods and binarization techniques, and propose a novel approach Maintaining Structural Information of the target domain based on Pairwise semantic Similarity (whether two instances belong to the same class or not) (MSIPS). Specifically, We introduce Contrastive Learning to obtain feature prototypes for each category on the source domain, and then use these prototypes to predict the similarity of paired target domain samples. Finally, we restrict the target domain to maintain discriminative structural information through such weak information (i.e., pairwise similarity). Extensive experiments of various domain shift scenarios show that our method obtains competitive performance with SOTA, and qualitative visualization can demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Ben-David, S., Blitzer, J., et al.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010). https://doi.org/10.1007/s10994-009-5152-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 627–636 (2019)

    Google Scholar 

  4. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch spectral penalization for adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1081–1090. PMLR (2019)

    Google Scholar 

  5. Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12455–12464 (2020)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  8. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  9. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  10. Gu, X., Sun, J., Xu, Z.: Spherical space domain adaptation with robust pseudo-label loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9101–9110 (2020)

    Google Scholar 

  11. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Advances in Neural Information Processing Systems, vol. 10 (1997)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  14. Hsu, Y.C., Lv, Z., Schlosser, J., Odom, P., Kira, Z.: Multi-class classification without multi-class labels. In: International Conference on Learning Representations (2018)

    Google Scholar 

  15. Jiang, J., Chen, B., Bo, F., Long, M.: Transfer-learning-library. https://github.com/thuml/Transfer-Learning-Library (2020)

  16. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4893–4902 (2019)

    Google Scholar 

  17. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  18. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  19. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217. PMLR (2017)

    Google Scholar 

  20. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  21. Na, J., Jung, H., Chang, H.J., Hwang, W.: Fixbi: bridging domain spaces for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1094–1103 (2021)

    Google Scholar 

  22. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint. arXiv:1807.03748 (2018)

  23. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  24. Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8004–8013 (2018)

    Google Scholar 

  25. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  27. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  28. Sun, B., Feng, J., Saenko, K.: Correlation alignment for unsupervised domain adaptation. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 153–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_8

    Chapter  Google Scholar 

  29. Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8725–8735 (2020)

    Google Scholar 

  30. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms Methods, and Techniques, pp. 242–264. IGI global, Hershey (2010)

    Chapter  Google Scholar 

  31. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  32. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  33. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3801–3809 (2018)

    Google Scholar 

  34. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5031–5040 (2019)

    Google Scholar 

  35. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: International Conference on Machine Learning, pp. 7404–7413. PMLR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Han, Y. (2022). Maintaining Structural Information by Pairwise Similarity for Unsupervised Domain Adaptation. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics