Skip to main content

Data-Driven Hybrid Neural Network Under Model-Driven Supervised Learning for Structural Dynamic Impact Localization

  • Conference paper
  • First Online:
  • 1318 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Abstract

AI-oriented schemes, in particular deep learning schemes, provide superior capabilities of representative learning that leads to innovative estimation paradigm for structural health monitoring (SHM) applications. This paper introduces a model-driven and deep learning-enabled framework for localizing dynamic impact loads on structures. In this paper, finite element modeling (FEM) is conducted to generate enough labeled data for supervised learning. Meanwhile, a hybrid deep neural network (DNN) is established by integrating attentive and recurrent neural networks to exploit the latent features over both sensor-wise and temporal scales. The proposed DNN model is implemented to reveal the multivariate and temporal hidden correlations among complex time-series measurements and to estimate impact localization on structures. The experimental results from both numerical and physical tests demonstrate the superior performance of the proposed methodology.

This work is supported by SGCC Laiwu, Shandong (SGSDLW00SDJS2250019).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representatives (2015)

    Google Scholar 

  2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. https://doi.org/10.48550/arXiv.1406.1078 (2014)

  3. Das, S., Saha, P., Patro, S.K.: Vibration-based damage detection techniques used for health monitoring of structures: a review. J. Civ. Struct. Health Monit. 6(3), 477–507 (2016). https://doi.org/10.1007/s13349-016-0168-5

    Article  Google Scholar 

  4. Fatahi, L., Moradi, S.: Multiple crack identification in frame structures using a hybrid Bayesian model class selection and swarm-based optimization methods. Struct. Health Monit. 17(1), 39–58 (2018). https://doi.org/10.1177/1475921716683360

    Article  Google Scholar 

  5. Flah, M., Nunez, I., Ben Chaabene, W., Nehdi, M.L.: Machine learning algorithms in civil structural health monitoring: a systematic review. Arch. Comput. Methods Eng. 28(4), 2621–2643 (2020). https://doi.org/10.1007/s11831-020-09471-9

    Article  Google Scholar 

  6. Kim, T., Kwon, O.S., Song, J.: Response prediction of nonlinear hysteretic systems by deep neural networks. Neural Netw. 111, 1–10 (2019). https://doi.org/10.1016/j.neunet.2018.12.005

    Article  Google Scholar 

  7. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, December 2014. https://doi.org/10.48550/arXiv.1412.6980

  8. Li, T., Pan, Y., Tong, K., Ventura, C.E., de Silva, C.W.: A multi-scale attention neural network for sensor location selection and nonlinear structural seismic response prediction. Comput. Struct. 248, 106507 (2021). https://doi.org/10.1016/j.compstruc.2021.106507

    Article  Google Scholar 

  9. Li, T., Pan, Y., Tong, K., Ventura, C.E., de Silva, C.W.: Attention-based sequence-to-sequence learning for online structural response forecasting under seismic excitation. IEEE Trans. Syst. Man Cybern. Syst. 52(4), 2184–2200 (2022). https://doi.org/10.1109/TSMC.2020.3048696

    Article  Google Scholar 

  10. Liu, Q., Wang, F., Li, J., Xiao, W.: A hybrid support vector regression with multi-domain features for low-velocity impact localization on composite plate structure. Mech. Syst. Sig. Process. 154, 107547 (2021). https://doi.org/10.1016/j.ymssp.2020.107547

    Article  Google Scholar 

  11. Obuchowski, J., Wyłomańska, A., Zimroz, R.: Selection of informative frequency band in local damage detection in rotating machinery. Mech. Syst. Sig. Process. 48(1), 138–152 (2014). https://doi.org/10.1016/j.ymssp.2014.03.011

    Article  Google Scholar 

  12. Qiu, B., Zhang, M., Xie, Y., Qu, X., Li, X.: Localisation of unknown impact loads on a steel plate using a pattern recognition method combined with the similarity metric via structural stress responses in the time domain. Mech. Syst. Sig. Process. 128, 429–445 (2019). https://doi.org/10.1016/j.ymssp.2019.04.015

    Article  Google Scholar 

  13. Seventekidis, P., Giagopoulos, D., Arailopoulos, A., Markogiannaki, O.: Structural health monitoring using deep learning with optimal finite element model generated data. Mech. Syst. Sig. Process. 145, 106972 (2020). https://doi.org/10.1016/j.ymssp.2020.106972

    Article  Google Scholar 

  14. Sony, S., Laventure, S., Sadhu, A.: A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control. Health Monit. 26(3), e2321 (2019). https://doi.org/10.1002/stc.2321

    Article  Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Zargar, S.A., Yuan, F.G.: Impact diagnosis in stiffened structural panels using a deep learning approach. Struct. Health Monit. 20(2), 681–691 (2021). https://doi.org/10.1177/1475921720925044

    Article  Google Scholar 

  17. Zhang, W., Zhang, Y., Song, R., Liu, Y., Zhang, W.: 3D layout estimation via weakly supervised learning of plane parameters from 2D segmentation. IEEE Trans. Image Process. 31, 868–879 (2021). https://doi.org/10.1109/TIP.2021.3131025

    Article  Google Scholar 

  18. Zhao, B., Cheng, C., Peng, Z., Dong, X., Meng, G.: Detecting the early damages in structures with nonlinear output frequency response functions and the CNN-LSTM model. IEEE Trans. Instrum. Meas. 69(12), 9557–9567 (2020). https://doi.org/10.1109/TIM.2020.3005113

    Article  Google Scholar 

  19. Zhou, J., Dong, L., Guan, W., Yan, J.: Impact load identification of nonlinear structures using deep recurrent neural network. Mech. Syst. Sig. Process. 133, 106292 (2019). https://doi.org/10.1016/j.ymssp.2019.106292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luan, Y., Li, T., Song, R., Zhang, W. (2022). Data-Driven Hybrid Neural Network Under Model-Driven Supervised Learning for Structural Dynamic Impact Localization. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics