Skip to main content

Browsing Behavioral Intent Prediction on Product Recommendation Pages of E-commerce Platform

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

Abstract

User behavior data has always been the key for e-commerce platforms to make decisions and improve experience, especially when predicting users’ behavioral intent. Nowadays, the Product Recommendation Page (PRP) has played an increasingly significant role of e-commerce platforms with the popularity of recommendation systems. However, past research on predicting user behavioral intent across e-commerce platforms may not be applicable to PRPs, where users have different characteristics. In this research, users’ browsing behavioral intent of PRPs is studied and predicted. A large amount of user data of PRPs is collected and processed, and the corresponding dataset is built. After that, a user interest analysis method is proposed while five browsing intent prediction models are applied and compared. The method distinguishes users with different browsing interest degrees, and the models can better predict users’ browsing behavior intent within different interest groups. A validation experiment on the large-scale dataset shows that the proposed method can predict user browsing intent with a decent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Shimon, D., et al.: Recsys challenge 2015 and the yoochoose dataset. In: Proceedings of the 9th ACM Conference on Recommender Systems (2015)

    Google Scholar 

  2. Zhao, P., et al.: Behavior analysis for electronic commerce trading systems: a survey. IEEE Access 7, 108703–108728 (2019)

    Article  Google Scholar 

  3. Zhang, Y., et al.: User-click modeling for understanding and predicting search-behavior. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011)

    Google Scholar 

  4. Turčanik, M.: Web users clustering by their behaviour on the network. In: 2020 New Trends in Signal Processing (NTSP), pp. 1–5. IEEE (2020)

    Google Scholar 

  5. Ahmad, N.B., Alias, U.F., Mohamad, N., Yusof, N.: Principal component analysis and self-organizing map clustering for student browsing behaviour analysis. Procedia Comput. Sci. 163, 550–559 (2019)

    Article  Google Scholar 

  6. Urman, A., Makhortykh, M.: You are how (and where) you search? Comparative analysis of web search behaviour using web tracking data. arXiv preprint arXiv:2105.04961 (2021)

  7. Zeng, M., Cao, H., Chen, M., Li, Y.: User behaviour modeling, recommendations, and purchase prediction during shopping festivals. Electron. Mark. 29(2), 263–274 (2019)

    Article  Google Scholar 

  8. Requena, B., Cassani, G., Tagliabue, J., Greco, C., Lacasa, L.: Shopper intent prediction from clickstream e-commerce data with minimal browsing information. Sci. Rep. 10(1), 1–23 (2020)

    Article  Google Scholar 

  9. Rathipriya, R., Thangavel, K.: A fuzzy co-clustering approach for clickstream data pattern. arXiv preprint arXiv:1109.6726 (2011)

  10. Liu, H., Xing, H., Zhang, F.: Web personalized recommendation algorithm incorporated with user interest change. J. Comput. Inf. Syst. 8(4), 1383–1390 (2012)

    Google Scholar 

  11. Gong, S., Cheng, G.: Mining user interest change for improving collaborative filtering. In: 2008 Second International Symposium on Intelligent Information Technology Application, vol. 3, pp. 24–27. IEEE (2008)

    Google Scholar 

  12. Kim, Y.S., Yum, B.-J.: Recommender system based on click stream data using association rule mining. Expert Syst. Appl. 38(10), 13320–13327 (2011)

    Article  Google Scholar 

  13. Yu, H., Luo, H.: Possibilistic fuzzy clustering algorithm based on web user access paths. J. Chin. Comput. Syst. 33(1), 135–139 (2012)

    Google Scholar 

  14. Li, Y., Tan, B.-H.: Clustering algorithm of web click stream frequency pattern. Tianjin Keji Daxue Xuebao/ J. Tianjin Univ. Sci. Technol. 26(3), 69–73 (2011)

    Google Scholar 

  15. Hidasi, B., et al.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

  16. Xing, Z., Pei, J., Keogh, E.: Evaluation of session-based recommendation algorithms. User Model. User-Adap. Inter. 28(4), 331–390 (2018)

    Google Scholar 

  17. Zhu, Y., et al.: What to do next: modeling user behaviors by time-LSTM. IJCAI 17, 3602–3608 (2017)

    Google Scholar 

  18. Toth, A., et al.: Predicting shopping behavior with mixture of RNNs. In: ACM SIGIR Forum. ACM (2017)

    Google Scholar 

  19. Jannach, D., Ludewig, M., Lerche, L.: Session-based item recommendation in e-commerce: on short-term intents, reminders, trends and discounts. User Model. User-Adap. Inter. 27(3), 351–392 (2017)

    Article  Google Scholar 

  20. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 495–503 (2017)

    Google Scholar 

  21. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explor. Newsl. 12(1), 40–48 (2010)

    Article  Google Scholar 

  22. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956 (2009)

    Google Scholar 

  23. Wei, L., Keogh, E.: Semi-supervised time series classification. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 748–753 (2006)

    Google Scholar 

  24. Sheil, H., Rana, O., Reilly, R.: Predicting purchasing intent: automatic feature learning using recurrent neural networks. In: ACM SIGIR Forum. ACM (2018)

    Google Scholar 

  25. Guo, L., et al.: Buying or browsing?: predicting real-time purchasing intent using attention-based deep network with multiple behavior. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  26. Sakar, C.O., et al.: Real-time prediction of online shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Comput. Appl. 31(10), 6893–6908 (2019)

    Article  Google Scholar 

  27. Zhao, Y., Shen, Y., Huang, Y.: DMDP: a dynamic multi-source default probability prediction framework. Data Sci. Eng. 4(1), 3–13 (2019)

    Article  Google Scholar 

  28. Kowsari, K., et al.: Text classification algorithms: a survey. Information 10(4), 150 (2019)

    Article  Google Scholar 

  29. Guo, L., Zhang, D., Wang, L., Wang, H., Cui, B.: CRAN: a hybrid CNN-RNN attention-based model for text classification. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 571–585. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_42

    Chapter  Google Scholar 

  30. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  31. Gueniche, T., Fournier-Viger, P., Tseng, V.S.: Compact prediction tree: a lossless model for accurate sequence prediction. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 177–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6_16

    Chapter  Google Scholar 

  32. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  33. Su, Q., Chen, L.: A method for discovering clusters of e-commerce interest patterns using click-stream data. Electron. Commer. Res. Appl. 14(1), 1–13 (2015)

    Article  Google Scholar 

  34. Chen, Y., et al.: Intent contrastive learning for sequential recommendation. In: Proceedings of the ACM Web Conference 2022 (2022)

    Google Scholar 

  35. Li, Z., et al.: Learning the compositional visual coherence for complementary recommendations. In: IJCAI (2020)

    Google Scholar 

Download references

Acknowledgments

This research is supported by Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuqing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Z. et al. (2022). Browsing Behavioral Intent Prediction on Product Recommendation Pages of E-commerce Platform. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics