Skip to main content

Survey of Hypergraph Neural Networks and Its Application to Action Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Abstract

With the development of deep learning, graph neural networks have attracted ever-increasing attention due to their exciting results on handling data from non-Euclidean space in recent years. However, existing graph neural networks frameworks are designed based on simple graphs, which limits their ability to handle data with complex correlations. Therefore, in some special cases, especially when the data have interdependence, the complexity of the data poses a significant challenge to traditional graph neural networks algorithm. To overcome this challenge, researchers model the complex relationship of data by constructing hypergraph, and use hypergraph neural networks to learn the complex relationship within data, so as to effectively obtain higher-order feature representations of data. In this paper, we first review the basics of hypergraph, then provide a detailed analysis and comparison of some recently proposed hypergraph neural networks algorithm, next some applications of hypergraph neural networks for action recognition are listed, and finally propose potential future research directions of hypergraph neural networks to provide ideas for subsequent research.

This work was supported by Beijing Natural Science Foundation (No. 4222025), the National Natural Science Foundation of China (Nos. 61871038 and 61931012).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Song, Y.F., Zhang, Z., Shan, C., Wang, L.: Constructing stronger and faster baselines for skeleton-based action recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  2. Xiong, J., Bi, R., Tian, Y., Liu, X., Wu, D.: Toward lightweight, privacy-preserving cooperative object classification for connected autonomous vehicles. IEEE Internet Things J. 9(4), 2787–2801 (2021)

    Article  Google Scholar 

  3. Langacker, R.W.: Interactive cognition: Toward a unified account of structure, processing, and discourse. Int. J. Cogni. Linguist. 3(2), 95 (2012)

    Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: 25th Proceedings of the Conference on Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

    Google Scholar 

  6. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Google Scholar 

  7. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  8. Medsker, L.R., Jain, L.: Recurrent neural networks. Des. Appl. 5, 64–67 (2001)

    Google Scholar 

  9. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  10. Bretto, A.: Hypergraph Theory. An introduction. Mathematical Engineering. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-00080-0

    Book  MATH  Google Scholar 

  11. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558–3565 (2019)

    Google Scholar 

  12. Huang, Y., Liu, Q., Metaxas, D.: ] video object segmentation by hypergraph cut. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1738–1745. IEEE (2009)

    Google Scholar 

  13. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-d object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic hypergraph ranking. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3376–3383. IEEE (2010)

    Google Scholar 

  15. Zhao, W., et al.: Learning to map social network users by unified manifold alignment on hypergraph. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 5834–5846 (2018)

    Article  MathSciNet  Google Scholar 

  16. Luo, F., Du, B., Zhang, L., Zhang, L., Tao, D.: Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image. IEEE Trans. Cybern. 49(7), 2406–2419 (2018)

    Article  Google Scholar 

  17. Zhu, L., Shen, J., Jin, H., Zheng, R., Xie, L.: Content-based visual landmark search via multimodal hypergraph learning. IEEE Trans. Cybern. 45(12), 2756–2769 (2015)

    Article  Google Scholar 

  18. Du, D., Qi, H., Wen, L., Tian, Q., Huang, Q., Lyu, S.: Geometric hypergraph learning for visual tracking. IEEE Trans. Cybern. 47(12), 4182–4195 (2016)

    Article  Google Scholar 

  19. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: Tea: Temporal excitation and aggregation for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 909–918 (2020)

    Google Scholar 

  20. Wang, Y., Zhu, L., Qian, X., Han, J.: Joint hypergraph learning for tag-based image retrieval. IEEE Trans. Image Process. 27(9), 4437–4451 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Q., Sun, Y., Wang, C., Liu, T., Tao, D.: Elastic net hypergraph learning for image clustering and semi-supervised classification. IEEE Trans. Image Process. 26(1), 452–463 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Joslyn, C., et al.: High performance hypergraph analytics of domain name system relationships. In: HICSS 2019 Symposium on Cybersecurity Big Data Analytics (2019)

    Google Scholar 

  23. Zu, C., et al.: Identifying high order brain connectome biomarkers via learning on hypergraph. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 1–9. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_1

    Chapter  Google Scholar 

  24. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: 19th Proceedings of the Conference on Advances in Neural Information Processing Systems (2006)

    Google Scholar 

  25. Xiao, L., Stephen, J.M., Wilson, T.W., Calhoun, V.D., Wang, Y.P.: A hypergraph learning method for brain functional connectivity network construction from FMRI data. In: Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 11317, pp. 254–259. SPIE (2020)

    Google Scholar 

  26. Gao, Y., Zhang, Z., Lin, H., Zhao, X., Du, S., Zou, C.: Hypergraph learning: methods and practices. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2548–2566 (2020)

    Google Scholar 

  27. Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: Hypergcn: a new method for training graph convolutional networks on hypergraphs. In: 32nd Proceedings of the Conference on Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  28. Jiang, J., Wei, Y., Feng, Y., Cao, J., Gao, Y.: Dynamic hypergraph neural networks. In: IJCAI.,pp. 2635–2641 (2019)

    Google Scholar 

  29. Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph attention. Pattern Recogn. 110, 107637 (2021)

    Article  Google Scholar 

  30. Wu, L., Wang, D., Song, K., Feng, S., Zhang, Y., Yu, G.: Dual-view hypergraph neural networks for attributed graph learning. Knowl.-Based Syst. 227, 107185 (2021)

    Article  Google Scholar 

  31. Gao, Y., Feng, Y., Ji, S., Ji, R.: Hgnn \(\hat{+}\): General hypergraph neural networks. IEEE Trans. Pattern Analy. Mach. Intell. (2022)

    Google Scholar 

  32. Hao, X., Li, J., Guo, Y., Jiang, T., Yu, M.: Hypergraph neural network for skeleton-based action recognition. IEEE Trans. Image Process. 30, 2263–2275 (2021)

    Article  MathSciNet  Google Scholar 

  33. He, C., Xiao, C., Liu, S., Qin, X., Zhao, Y., Zhang, X.: Single-skeleton and dual-skeleton hypergraph convolution neural networks for skeleton-based action recognition. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13109, pp. 15–27. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92270-2_2

    Chapter  Google Scholar 

  34. Wei, J., Wang, Y., Guo, M., Lv, P., Yang, X., Xu, M.: Dynamic hypergraph convolutional networks for skeleton-based action recognition. arXiv preprint arXiv:2112.10570 (2021)

  35. Chen, Y., Li, Y., Zhang, C., Zhou, H., Luo, Y., Hu, C.: Informed patch enhanced hypergcn for skeleton-based action recognition. Inf. Processi. Manag. 59(4), 102950 (2022)

    Article  Google Scholar 

  36. Sun, X., et al.: Heterogeneous hypergraph embedding for graph classification. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 725–733 (2021)

    Google Scholar 

  37. Ma, N., et al.: Future vehicles: interactive wheeled robots. Sci. China Inf. Sci. 64(5), 1–3 (2021)

    Article  Google Scholar 

  38. Li, D., Ma, N., Gao, Y.: Future vehicles: learnable wheeled robots. Sci. China Inf. Sci. 63(9), 1–8 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (No. 4222025), the National Natural Science Foundation of China (Nos. 61871038 and 61931012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Ma, N., Wu, Z., Zhang, J., Yao, Y. (2022). Survey of Hypergraph Neural Networks and Its Application to Action Recognition. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics